hwmon/dme1737: Add documentation
Add documentation for the new SMSC DME1737 driver. Signed-off-by: Juerg Haefliger <juergh at gmail.com> Signed-off-by: Jean Delvare <khali@linux-fr.org>
This commit is contained in:
parent
9431996f55
commit
b825037d18
|
@ -0,0 +1,257 @@
|
|||
Kernel driver dme1737
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* SMSC DME1737 and compatibles (like Asus A8000)
|
||||
Prefix: 'dme1737'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: Provided by SMSC upon request and under NDA
|
||||
|
||||
Authors:
|
||||
Juerg Haefliger <juergh@gmail.com>
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* force_start: bool Enables the monitoring of voltage, fan and temp inputs
|
||||
and PWM output control functions. Using this parameter
|
||||
shouldn't be required since the BIOS usually takes care
|
||||
of this.
|
||||
|
||||
Note that there is no need to use this parameter if the driver loads without
|
||||
complaining. The driver will say so if it is necessary.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the hardware monitoring capabilities of the
|
||||
SMSC DME1737 and Asus A8000 (which are the same) Super-I/O chips. This chip
|
||||
features monitoring of 3 temp sensors temp[1-3] (2 remote diodes and 1
|
||||
internal), 7 voltages in[0-6] (6 external and 1 internal) and 6 fan speeds
|
||||
fan[1-6]. Additionally, the chip implements 5 PWM outputs pwm[1-3,5-6] for
|
||||
controlling fan speeds both manually and automatically.
|
||||
|
||||
Fan[3-6] and pwm[3,5-6] are optional features and their availability is
|
||||
dependent on the configuration of the chip. The driver will detect which
|
||||
features are present during initialization and create the sysfs attributes
|
||||
accordingly.
|
||||
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
The voltage inputs are sampled with 12-bit resolution and have internal
|
||||
scaling resistors. The values returned by the driver therefore reflect true
|
||||
millivolts and don't need scaling. The voltage inputs are mapped as follows
|
||||
(the last column indicates the input ranges):
|
||||
|
||||
in0: +5VTR (+5V standby) 0V - 6.64V
|
||||
in1: Vccp (processor core) 0V - 3V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: +5V 0V - 6.64V
|
||||
in4: +12V 0V - 16V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
Each voltage input has associated min and max limits which trigger an alarm
|
||||
when crossed.
|
||||
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are measured with 12-bit resolution and reported in millidegree
|
||||
Celsius. The chip also features offsets for all 3 temperature inputs which -
|
||||
when programmed - get added to the input readings. The chip does all the
|
||||
scaling by itself and the driver therefore reports true temperatures that don't
|
||||
need any user-space adjustments. The temperature inputs are mapped as follows
|
||||
(the last column indicates the input ranges):
|
||||
|
||||
temp1: Remote diode 1 (3904 type) temperature -127C - +127C
|
||||
temp2: DME1737 internal temperature -127C - +127C
|
||||
temp3: Remote diode 2 (3904 type) temperature -127C - +127C
|
||||
|
||||
Each temperature input has associated min and max limits which trigger an alarm
|
||||
when crossed. Additionally, each temperature input has a fault attribute that
|
||||
returns 1 when a faulty diode or an unconnected input is detected and 0
|
||||
otherwise.
|
||||
|
||||
|
||||
Fan Monitoring
|
||||
--------------
|
||||
|
||||
Fan RPMs are measured with 16-bit resolution. The chip provides inputs for 6
|
||||
fan tachometers. All 6 inputs have an associated min limit which triggers an
|
||||
alarm when crossed. Fan inputs 1-4 provide type attributes that need to be set
|
||||
to the number of pulses per fan revolution that the connected tachometer
|
||||
generates. Supported values are 1, 2, and 4. Fan inputs 5-6 only support fans
|
||||
that generate 2 pulses per revolution. Fan inputs 5-6 also provide a max
|
||||
attribute that needs to be set to the maximum attainable RPM (fan at 100% duty-
|
||||
cycle) of the input. The chip adjusts the sampling rate based on this value.
|
||||
|
||||
|
||||
PWM Output Control
|
||||
------------------
|
||||
|
||||
This chip features 5 PWM outputs. PWM outputs 1-3 are associated with fan
|
||||
inputs 1-3 and PWM outputs 5-6 are associated with fan inputs 5-6. PWM outputs
|
||||
1-3 can be configured to operate either in manual or automatic mode by setting
|
||||
the appropriate enable attribute accordingly. PWM outputs 5-6 can only operate
|
||||
in manual mode, their enable attributes are therefore read-only. When set to
|
||||
manual mode, the fan speed is set by writing the duty-cycle value to the
|
||||
appropriate PWM attribute. In automatic mode, the PWM attribute returns the
|
||||
current duty-cycle as set by the fan controller in the chip. All PWM outputs
|
||||
support the setting of the output frequency via the freq attribute.
|
||||
|
||||
In automatic mode, the chip supports the setting of the PWM ramp rate which
|
||||
defines how fast the PWM output is adjusting to changes of the associated
|
||||
temperature input. Associating PWM outputs to temperature inputs is done via
|
||||
temperature zones. The chip features 3 zones whose assignments to temperature
|
||||
inputs is static and determined during initialization. These assignments can
|
||||
be retrieved via the zone[1-3]_auto_channels_temp attributes. Each PWM output
|
||||
is assigned to one (or hottest of multiple) temperature zone(s) through the
|
||||
pwm[1-3]_auto_channels_zone attributes. Each PWM output has 3 distinct output
|
||||
duty-cycles: full, low, and min. Full is internally hard-wired to 255 (100%)
|
||||
and low and min can be programmed via pwm[1-3]_auto_point1_pwm and
|
||||
pwm[1-3]_auto_pwm_min, respectively. The thermal thresholds of the zones are
|
||||
programmed via zone[1-3]_auto_point[1-3]_temp and
|
||||
zone[1-3]_auto_point1_temp_hyst:
|
||||
|
||||
pwm[1-3]_auto_point2_pwm full-speed duty-cycle (255, i.e., 100%)
|
||||
pwm[1-3]_auto_point1_pwm low-speed duty-cycle
|
||||
pwm[1-3]_auto_pwm_min min-speed duty-cycle
|
||||
|
||||
zone[1-3]_auto_point3_temp full-speed temp (all outputs)
|
||||
zone[1-3]_auto_point2_temp full-speed temp
|
||||
zone[1-3]_auto_point1_temp low-speed temp
|
||||
zone[1-3]_auto_point1_temp_hyst min-speed temp
|
||||
|
||||
The chip adjusts the output duty-cycle linearly in the range of auto_point1_pwm
|
||||
to auto_point2_pwm if the temperature of the associated zone is between
|
||||
auto_point1_temp and auto_point2_temp. If the temperature drops below the
|
||||
auto_point1_temp_hyst value, the output duty-cycle is set to the auto_pwm_min
|
||||
value which only supports two values: 0 or auto_point1_pwm. That means that the
|
||||
fan either turns completely off or keeps spinning with the low-speed
|
||||
duty-cycle. If any of the temperatures rise above the auto_point3_temp value,
|
||||
all PWM outputs are set to 100% duty-cycle.
|
||||
|
||||
Following is another representation of how the chip sets the output duty-cycle
|
||||
based on the temperature of the associated thermal zone:
|
||||
|
||||
Duty-Cycle Duty-Cycle
|
||||
Temperature Rising Temp Falling Temp
|
||||
----------- ----------- ------------
|
||||
full-speed full-speed full-speed
|
||||
|
||||
< linearly adjusted duty-cycle >
|
||||
|
||||
low-speed low-speed low-speed
|
||||
min-speed low-speed
|
||||
min-speed min-speed min-speed
|
||||
min-speed min-speed
|
||||
|
||||
|
||||
Sysfs Attributes
|
||||
----------------
|
||||
|
||||
Following is a list of all sysfs attributes that the driver provides, their
|
||||
permissions and a short description:
|
||||
|
||||
Name Perm Description
|
||||
---- ---- -----------
|
||||
cpu0_vid RO CPU core reference voltage in
|
||||
millivolts.
|
||||
vrm RW Voltage regulator module version
|
||||
number.
|
||||
|
||||
in[0-6]_input RO Measured voltage in millivolts.
|
||||
in[0-6]_min RW Low limit for voltage input.
|
||||
in[0-6]_max RW High limit for voltage input.
|
||||
in[0-6]_alarm RO Voltage input alarm. Returns 1 if
|
||||
voltage input is or went outside the
|
||||
associated min-max range, 0 otherwise.
|
||||
|
||||
temp[1-3]_input RO Measured temperature in millidegree
|
||||
Celsius.
|
||||
temp[1-3]_min RW Low limit for temp input.
|
||||
temp[1-3]_max RW High limit for temp input.
|
||||
temp[1-3]_offset RW Offset for temp input. This value will
|
||||
be added by the chip to the measured
|
||||
temperature.
|
||||
temp[1-3]_alarm RO Alarm for temp input. Returns 1 if temp
|
||||
input is or went outside the associated
|
||||
min-max range, 0 otherwise.
|
||||
temp[1-3]_fault RO Temp input fault. Returns 1 if the chip
|
||||
detects a faulty thermal diode or an
|
||||
unconnected temp input, 0 otherwise.
|
||||
|
||||
zone[1-3]_auto_channels_temp RO Temperature zone to temperature input
|
||||
mapping. This attribute is a bitfield
|
||||
and supports the following values:
|
||||
1: temp1
|
||||
2: temp2
|
||||
4: temp3
|
||||
zone[1-3]_auto_point1_temp_hyst RW Auto PWM temp point1 hysteresis. The
|
||||
output of the corresponding PWM is set
|
||||
to the pwm_auto_min value if the temp
|
||||
falls below the auto_point1_temp_hyst
|
||||
value.
|
||||
zone[1-3]_auto_point[1-3]_temp RW Auto PWM temp points. Auto_point1 is
|
||||
the low-speed temp, auto_point2 is the
|
||||
full-speed temp, and auto_point3 is the
|
||||
temp at which all PWM outputs are set
|
||||
to full-speed (100% duty-cycle).
|
||||
|
||||
fan[1-6]_input RO Measured fan speed in RPM.
|
||||
fan[1-6]_min RW Low limit for fan input.
|
||||
fan[1-6]_alarm RO Alarm for fan input. Returns 1 if fan
|
||||
input is or went below the associated
|
||||
min value, 0 otherwise.
|
||||
fan[1-4]_type RW Type of attached fan. Expressed in
|
||||
number of pulses per revolution that
|
||||
the fan generates. Supported values are
|
||||
1, 2, and 4.
|
||||
fan[5-6]_max RW Max attainable RPM at 100% duty-cycle.
|
||||
Required for chip to adjust the
|
||||
sampling rate accordingly.
|
||||
|
||||
pmw[1-3,5-6] RO/RW Duty-cycle of PWM output. Supported
|
||||
values are 0-255 (0%-100%). Only
|
||||
writeable if the associated PWM is in
|
||||
manual mode.
|
||||
pwm[1-3]_enable RW Enable of PWM outputs 1-3. Supported
|
||||
values are:
|
||||
0: turned off (output @ 100%)
|
||||
1: manual mode
|
||||
2: automatic mode
|
||||
pwm[5-6]_enable RO Enable of PWM outputs 5-6. Always
|
||||
returns 1 since these 2 outputs are
|
||||
hard-wired to manual mode.
|
||||
pmw[1-3,5-6]_freq RW Frequency of PWM output. Supported
|
||||
values are in the range 11Hz-30000Hz
|
||||
(default is 25000Hz).
|
||||
pmw[1-3]_ramp_rate RW Ramp rate of PWM output. Determines how
|
||||
fast the PWM duty-cycle will change
|
||||
when the PWM is in automatic mode.
|
||||
Expressed in ms per PWM step. Supported
|
||||
values are in the range 0ms-206ms
|
||||
(default is 0, which means the duty-
|
||||
cycle changes instantly).
|
||||
pwm[1-3]_auto_channels_zone RW PWM output to temperature zone mapping.
|
||||
This attribute is a bitfield and
|
||||
supports the following values:
|
||||
1: zone1
|
||||
2: zone2
|
||||
4: zone3
|
||||
6: highest of zone[2-3]
|
||||
7: highest of zone[1-3]
|
||||
pwm[1-3]_auto_pwm_min RW Auto PWM min pwm. Minimum PWM duty-
|
||||
cycle. Supported values are 0 or
|
||||
auto_point1_pwm.
|
||||
pwm[1-3]_auto_point1_pwm RW Auto PWM pwm point. Auto_point1 is the
|
||||
low-speed duty-cycle.
|
||||
pwm[1-3]_auto_point2_pwm RO Auto PWM pwm point. Auto_point2 is the
|
||||
full-speed duty-cycle which is hard-
|
||||
wired to 255 (100% duty-cycle).
|
|
@ -1283,6 +1283,12 @@ M: tori@unhappy.mine.nu
|
|||
L: netdev@vger.kernel.org
|
||||
S: Maintained
|
||||
|
||||
DME1737 HARDWARE MONITOR DRIVER
|
||||
P: Juerg Haefliger
|
||||
M: juergh@gmail.com
|
||||
L: lm-sensors@lm-sensors.org
|
||||
S: Maintained
|
||||
|
||||
DOCBOOK FOR DOCUMENTATION
|
||||
P: Randy Dunlap
|
||||
M: rdunlap@xenotime.net
|
||||
|
|
Loading…
Reference in New Issue