btrfs: scrub: support subpage data scrub

Btrfs scrub is more flexible than buffered data write path, as we can
read an unaligned subpage data into page offset 0.

This ability makes subpage support much easier, we just need to check
each scrub_page::page_len and ensure we only calculate hash for [0,
page_len) of a page.

There is a small thing to notice: for subpage case, we still do sector
by sector scrub.  This means we will submit a read bio for each sector
to scrub, resulting in the same amount of read bios, just like on the 4K
page systems.

This behavior can be considered as a good thing, if we want everything
to be the same as 4K page systems.  But this also means, we're wasting
the possibility to submit larger bio using 64K page size.  This is
another problem to consider in the future.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
Qu Wenruo 2020-12-02 14:48:10 +08:00 committed by David Sterba
parent 53f3251d3b
commit b29dca44ab
1 changed files with 7 additions and 3 deletions

View File

@ -1795,11 +1795,15 @@ static int scrub_checksum_data(struct scrub_block *sblock)
shash->tfm = fs_info->csum_shash; shash->tfm = fs_info->csum_shash;
crypto_shash_init(shash); crypto_shash_init(shash);
crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
if (memcmp(csum, spage->csum, sctx->fs_info->csum_size)) /*
* In scrub_pages() and scrub_pages_for_parity() we ensure each spage
* only contains one sector of data.
*/
crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
if (memcmp(csum, spage->csum, fs_info->csum_size))
sblock->checksum_error = 1; sblock->checksum_error = 1;
return sblock->checksum_error; return sblock->checksum_error;
} }