Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar: - Introduce the ORC unwinder, which can be enabled via CONFIG_ORC_UNWINDER=y. The ORC unwinder is a lightweight, Linux kernel specific debuginfo implementation, which aims to be DWARF done right for unwinding. Objtool is used to generate the ORC unwinder tables during build, so the data format is flexible and kernel internal: there's no dependency on debuginfo created by an external toolchain. The ORC unwinder is almost two orders of magnitude faster than the (out of tree) DWARF unwinder - which is important for perf call graph profiling. It is also significantly simpler and is coded defensively: there has not been a single ORC related kernel crash so far, even with early versions. (knock on wood!) But the main advantage is that enabling the ORC unwinder allows CONFIG_FRAME_POINTERS to be turned off - which speeds up the kernel measurably: With frame pointers disabled, GCC does not have to add frame pointer instrumentation code to every function in the kernel. The kernel's .text size decreases by about 3.2%, resulting in better cache utilization and fewer instructions executed, resulting in a broad kernel-wide speedup. Average speedup of system calls should be roughly in the 1-3% range - measurements by Mel Gorman [1] have shown a speedup of 5-10% for some function execution intense workloads. The main cost of the unwinder is that the unwinder data has to be stored in RAM: the memory cost is 2-4MB of RAM, depending on kernel config - which is a modest cost on modern x86 systems. Given how young the ORC unwinder code is it's not enabled by default - but given the performance advantages the plan is to eventually make it the default unwinder on x86. See Documentation/x86/orc-unwinder.txt for more details. - Remove lguest support: its intended role was that of a temporary proof of concept for virtualization, plus its removal will enable the reduction (removal) of the paravirt API as well, so Rusty agreed to its removal. (Juergen Gross) - Clean up and fix FSGS related functionality (Andy Lutomirski) - Clean up IO access APIs (Andy Shevchenko) - Enhance the symbol namespace (Jiri Slaby) * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits) objtool: Handle GCC stack pointer adjustment bug x86/entry/64: Use ENTRY() instead of ALIGN+GLOBAL for stub32_clone() x86/fpu/math-emu: Add ENDPROC to functions x86/boot/64: Extract efi_pe_entry() from startup_64() x86/boot/32: Extract efi_pe_entry() from startup_32() x86/lguest: Remove lguest support x86/paravirt/xen: Remove xen_patch() objtool: Fix objtool fallthrough detection with function padding x86/xen/64: Fix the reported SS and CS in SYSCALL objtool: Track DRAP separately from callee-saved registers objtool: Fix validate_branch() return codes x86: Clarify/fix no-op barriers for text_poke_bp() x86/switch_to/64: Rewrite FS/GS switching yet again to fix AMD CPUs selftests/x86/fsgsbase: Test selectors 1, 2, and 3 x86/fsgsbase/64: Report FSBASE and GSBASE correctly in core dumps x86/fsgsbase/64: Fully initialize FS and GS state in start_thread_common x86/asm: Fix UNWIND_HINT_REGS macro for older binutils x86/asm/32: Fix regs_get_register() on segment registers x86/xen/64: Rearrange the SYSCALL entries x86/asm/32: Remove a bunch of '& 0xffff' from pt_regs segment reads ...
This commit is contained in:
commit
b0c79f49c3
|
@ -0,0 +1,179 @@
|
|||
ORC unwinder
|
||||
============
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
The kernel CONFIG_ORC_UNWINDER option enables the ORC unwinder, which is
|
||||
similar in concept to a DWARF unwinder. The difference is that the
|
||||
format of the ORC data is much simpler than DWARF, which in turn allows
|
||||
the ORC unwinder to be much simpler and faster.
|
||||
|
||||
The ORC data consists of unwind tables which are generated by objtool.
|
||||
They contain out-of-band data which is used by the in-kernel ORC
|
||||
unwinder. Objtool generates the ORC data by first doing compile-time
|
||||
stack metadata validation (CONFIG_STACK_VALIDATION). After analyzing
|
||||
all the code paths of a .o file, it determines information about the
|
||||
stack state at each instruction address in the file and outputs that
|
||||
information to the .orc_unwind and .orc_unwind_ip sections.
|
||||
|
||||
The per-object ORC sections are combined at link time and are sorted and
|
||||
post-processed at boot time. The unwinder uses the resulting data to
|
||||
correlate instruction addresses with their stack states at run time.
|
||||
|
||||
|
||||
ORC vs frame pointers
|
||||
---------------------
|
||||
|
||||
With frame pointers enabled, GCC adds instrumentation code to every
|
||||
function in the kernel. The kernel's .text size increases by about
|
||||
3.2%, resulting in a broad kernel-wide slowdown. Measurements by Mel
|
||||
Gorman [1] have shown a slowdown of 5-10% for some workloads.
|
||||
|
||||
In contrast, the ORC unwinder has no effect on text size or runtime
|
||||
performance, because the debuginfo is out of band. So if you disable
|
||||
frame pointers and enable the ORC unwinder, you get a nice performance
|
||||
improvement across the board, and still have reliable stack traces.
|
||||
|
||||
Ingo Molnar says:
|
||||
|
||||
"Note that it's not just a performance improvement, but also an
|
||||
instruction cache locality improvement: 3.2% .text savings almost
|
||||
directly transform into a similarly sized reduction in cache
|
||||
footprint. That can transform to even higher speedups for workloads
|
||||
whose cache locality is borderline."
|
||||
|
||||
Another benefit of ORC compared to frame pointers is that it can
|
||||
reliably unwind across interrupts and exceptions. Frame pointer based
|
||||
unwinds can sometimes skip the caller of the interrupted function, if it
|
||||
was a leaf function or if the interrupt hit before the frame pointer was
|
||||
saved.
|
||||
|
||||
The main disadvantage of the ORC unwinder compared to frame pointers is
|
||||
that it needs more memory to store the ORC unwind tables: roughly 2-4MB
|
||||
depending on the kernel config.
|
||||
|
||||
|
||||
ORC vs DWARF
|
||||
------------
|
||||
|
||||
ORC debuginfo's advantage over DWARF itself is that it's much simpler.
|
||||
It gets rid of the complex DWARF CFI state machine and also gets rid of
|
||||
the tracking of unnecessary registers. This allows the unwinder to be
|
||||
much simpler, meaning fewer bugs, which is especially important for
|
||||
mission critical oops code.
|
||||
|
||||
The simpler debuginfo format also enables the unwinder to be much faster
|
||||
than DWARF, which is important for perf and lockdep. In a basic
|
||||
performance test by Jiri Slaby [2], the ORC unwinder was about 20x
|
||||
faster than an out-of-tree DWARF unwinder. (Note: That measurement was
|
||||
taken before some performance tweaks were added, which doubled
|
||||
performance, so the speedup over DWARF may be closer to 40x.)
|
||||
|
||||
The ORC data format does have a few downsides compared to DWARF. ORC
|
||||
unwind tables take up ~50% more RAM (+1.3MB on an x86 defconfig kernel)
|
||||
than DWARF-based eh_frame tables.
|
||||
|
||||
Another potential downside is that, as GCC evolves, it's conceivable
|
||||
that the ORC data may end up being *too* simple to describe the state of
|
||||
the stack for certain optimizations. But IMO this is unlikely because
|
||||
GCC saves the frame pointer for any unusual stack adjustments it does,
|
||||
so I suspect we'll really only ever need to keep track of the stack
|
||||
pointer and the frame pointer between call frames. But even if we do
|
||||
end up having to track all the registers DWARF tracks, at least we will
|
||||
still be able to control the format, e.g. no complex state machines.
|
||||
|
||||
|
||||
ORC unwind table generation
|
||||
---------------------------
|
||||
|
||||
The ORC data is generated by objtool. With the existing compile-time
|
||||
stack metadata validation feature, objtool already follows all code
|
||||
paths, and so it already has all the information it needs to be able to
|
||||
generate ORC data from scratch. So it's an easy step to go from stack
|
||||
validation to ORC data generation.
|
||||
|
||||
It should be possible to instead generate the ORC data with a simple
|
||||
tool which converts DWARF to ORC data. However, such a solution would
|
||||
be incomplete due to the kernel's extensive use of asm, inline asm, and
|
||||
special sections like exception tables.
|
||||
|
||||
That could be rectified by manually annotating those special code paths
|
||||
using GNU assembler .cfi annotations in .S files, and homegrown
|
||||
annotations for inline asm in .c files. But asm annotations were tried
|
||||
in the past and were found to be unmaintainable. They were often
|
||||
incorrect/incomplete and made the code harder to read and keep updated.
|
||||
And based on looking at glibc code, annotating inline asm in .c files
|
||||
might be even worse.
|
||||
|
||||
Objtool still needs a few annotations, but only in code which does
|
||||
unusual things to the stack like entry code. And even then, far fewer
|
||||
annotations are needed than what DWARF would need, so they're much more
|
||||
maintainable than DWARF CFI annotations.
|
||||
|
||||
So the advantages of using objtool to generate ORC data are that it
|
||||
gives more accurate debuginfo, with very few annotations. It also
|
||||
insulates the kernel from toolchain bugs which can be very painful to
|
||||
deal with in the kernel since we often have to workaround issues in
|
||||
older versions of the toolchain for years.
|
||||
|
||||
The downside is that the unwinder now becomes dependent on objtool's
|
||||
ability to reverse engineer GCC code flow. If GCC optimizations become
|
||||
too complicated for objtool to follow, the ORC data generation might
|
||||
stop working or become incomplete. (It's worth noting that livepatch
|
||||
already has such a dependency on objtool's ability to follow GCC code
|
||||
flow.)
|
||||
|
||||
If newer versions of GCC come up with some optimizations which break
|
||||
objtool, we may need to revisit the current implementation. Some
|
||||
possible solutions would be asking GCC to make the optimizations more
|
||||
palatable, or having objtool use DWARF as an additional input, or
|
||||
creating a GCC plugin to assist objtool with its analysis. But for now,
|
||||
objtool follows GCC code quite well.
|
||||
|
||||
|
||||
Unwinder implementation details
|
||||
-------------------------------
|
||||
|
||||
Objtool generates the ORC data by integrating with the compile-time
|
||||
stack metadata validation feature, which is described in detail in
|
||||
tools/objtool/Documentation/stack-validation.txt. After analyzing all
|
||||
the code paths of a .o file, it creates an array of orc_entry structs,
|
||||
and a parallel array of instruction addresses associated with those
|
||||
structs, and writes them to the .orc_unwind and .orc_unwind_ip sections
|
||||
respectively.
|
||||
|
||||
The ORC data is split into the two arrays for performance reasons, to
|
||||
make the searchable part of the data (.orc_unwind_ip) more compact. The
|
||||
arrays are sorted in parallel at boot time.
|
||||
|
||||
Performance is further improved by the use of a fast lookup table which
|
||||
is created at runtime. The fast lookup table associates a given address
|
||||
with a range of indices for the .orc_unwind table, so that only a small
|
||||
subset of the table needs to be searched.
|
||||
|
||||
|
||||
Etymology
|
||||
---------
|
||||
|
||||
Orcs, fearsome creatures of medieval folklore, are the Dwarves' natural
|
||||
enemies. Similarly, the ORC unwinder was created in opposition to the
|
||||
complexity and slowness of DWARF.
|
||||
|
||||
"Although Orcs rarely consider multiple solutions to a problem, they do
|
||||
excel at getting things done because they are creatures of action, not
|
||||
thought." [3] Similarly, unlike the esoteric DWARF unwinder, the
|
||||
veracious ORC unwinder wastes no time or siloconic effort decoding
|
||||
variable-length zero-extended unsigned-integer byte-coded
|
||||
state-machine-based debug information entries.
|
||||
|
||||
Similar to how Orcs frequently unravel the well-intentioned plans of
|
||||
their adversaries, the ORC unwinder frequently unravels stacks with
|
||||
brutal, unyielding efficiency.
|
||||
|
||||
ORC stands for Oops Rewind Capability.
|
||||
|
||||
|
||||
[1] https://lkml.kernel.org/r/20170602104048.jkkzssljsompjdwy@suse.de
|
||||
[2] https://lkml.kernel.org/r/d2ca5435-6386-29b8-db87-7f227c2b713a@suse.cz
|
||||
[3] http://dustin.wikidot.com/half-orcs-and-orcs
|
11
MAINTAINERS
11
MAINTAINERS
|
@ -7660,17 +7660,6 @@ T: git git://linuxtv.org/mkrufky/tuners.git
|
|||
S: Maintained
|
||||
F: drivers/media/dvb-frontends/lgdt3305.*
|
||||
|
||||
LGUEST
|
||||
M: Rusty Russell <rusty@rustcorp.com.au>
|
||||
L: lguest@lists.ozlabs.org
|
||||
W: http://lguest.ozlabs.org/
|
||||
S: Odd Fixes
|
||||
F: arch/x86/include/asm/lguest*.h
|
||||
F: arch/x86/lguest/
|
||||
F: drivers/lguest/
|
||||
F: include/linux/lguest*.h
|
||||
F: tools/lguest/
|
||||
|
||||
LIBATA PATA ARASAN COMPACT FLASH CONTROLLER
|
||||
M: Viresh Kumar <vireshk@kernel.org>
|
||||
L: linux-ide@vger.kernel.org
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
#ifndef _ASM_UML_UNWIND_H
|
||||
#define _ASM_UML_UNWIND_H
|
||||
|
||||
static inline void
|
||||
unwind_module_init(struct module *mod, void *orc_ip, size_t orc_ip_size,
|
||||
void *orc, size_t orc_size) {}
|
||||
|
||||
#endif /* _ASM_UML_UNWIND_H */
|
|
@ -10,9 +10,6 @@ obj-$(CONFIG_XEN) += xen/
|
|||
# Hyper-V paravirtualization support
|
||||
obj-$(CONFIG_HYPERVISOR_GUEST) += hyperv/
|
||||
|
||||
# lguest paravirtualization support
|
||||
obj-$(CONFIG_LGUEST_GUEST) += lguest/
|
||||
|
||||
obj-y += realmode/
|
||||
obj-y += kernel/
|
||||
obj-y += mm/
|
||||
|
|
|
@ -73,7 +73,6 @@ config X86
|
|||
select ARCH_USE_QUEUED_RWLOCKS
|
||||
select ARCH_USE_QUEUED_SPINLOCKS
|
||||
select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
|
||||
select ARCH_WANT_FRAME_POINTERS
|
||||
select ARCH_WANTS_DYNAMIC_TASK_STRUCT
|
||||
select ARCH_WANTS_THP_SWAP if X86_64
|
||||
select BUILDTIME_EXTABLE_SORT
|
||||
|
@ -158,6 +157,7 @@ config X86
|
|||
select HAVE_MEMBLOCK
|
||||
select HAVE_MEMBLOCK_NODE_MAP
|
||||
select HAVE_MIXED_BREAKPOINTS_REGS
|
||||
select HAVE_MOD_ARCH_SPECIFIC
|
||||
select HAVE_NMI
|
||||
select HAVE_OPROFILE
|
||||
select HAVE_OPTPROBES
|
||||
|
@ -168,7 +168,7 @@ config X86
|
|||
select HAVE_PERF_REGS
|
||||
select HAVE_PERF_USER_STACK_DUMP
|
||||
select HAVE_REGS_AND_STACK_ACCESS_API
|
||||
select HAVE_RELIABLE_STACKTRACE if X86_64 && FRAME_POINTER && STACK_VALIDATION
|
||||
select HAVE_RELIABLE_STACKTRACE if X86_64 && FRAME_POINTER_UNWINDER && STACK_VALIDATION
|
||||
select HAVE_STACK_VALIDATION if X86_64
|
||||
select HAVE_SYSCALL_TRACEPOINTS
|
||||
select HAVE_UNSTABLE_SCHED_CLOCK
|
||||
|
@ -778,8 +778,6 @@ config KVM_DEBUG_FS
|
|||
Statistics are displayed in debugfs filesystem. Enabling this option
|
||||
may incur significant overhead.
|
||||
|
||||
source "arch/x86/lguest/Kconfig"
|
||||
|
||||
config PARAVIRT_TIME_ACCOUNTING
|
||||
bool "Paravirtual steal time accounting"
|
||||
depends on PARAVIRT
|
||||
|
|
|
@ -305,8 +305,6 @@ config DEBUG_ENTRY
|
|||
Some of these sanity checks may slow down kernel entries and
|
||||
exits or otherwise impact performance.
|
||||
|
||||
This is currently used to help test NMI code.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
config DEBUG_NMI_SELFTEST
|
||||
|
@ -358,4 +356,61 @@ config PUNIT_ATOM_DEBUG
|
|||
The current power state can be read from
|
||||
/sys/kernel/debug/punit_atom/dev_power_state
|
||||
|
||||
choice
|
||||
prompt "Choose kernel unwinder"
|
||||
default FRAME_POINTER_UNWINDER
|
||||
---help---
|
||||
This determines which method will be used for unwinding kernel stack
|
||||
traces for panics, oopses, bugs, warnings, perf, /proc/<pid>/stack,
|
||||
livepatch, lockdep, and more.
|
||||
|
||||
config FRAME_POINTER_UNWINDER
|
||||
bool "Frame pointer unwinder"
|
||||
select FRAME_POINTER
|
||||
---help---
|
||||
This option enables the frame pointer unwinder for unwinding kernel
|
||||
stack traces.
|
||||
|
||||
The unwinder itself is fast and it uses less RAM than the ORC
|
||||
unwinder, but the kernel text size will grow by ~3% and the kernel's
|
||||
overall performance will degrade by roughly 5-10%.
|
||||
|
||||
This option is recommended if you want to use the livepatch
|
||||
consistency model, as this is currently the only way to get a
|
||||
reliable stack trace (CONFIG_HAVE_RELIABLE_STACKTRACE).
|
||||
|
||||
config ORC_UNWINDER
|
||||
bool "ORC unwinder"
|
||||
depends on X86_64
|
||||
select STACK_VALIDATION
|
||||
---help---
|
||||
This option enables the ORC (Oops Rewind Capability) unwinder for
|
||||
unwinding kernel stack traces. It uses a custom data format which is
|
||||
a simplified version of the DWARF Call Frame Information standard.
|
||||
|
||||
This unwinder is more accurate across interrupt entry frames than the
|
||||
frame pointer unwinder. It also enables a 5-10% performance
|
||||
improvement across the entire kernel compared to frame pointers.
|
||||
|
||||
Enabling this option will increase the kernel's runtime memory usage
|
||||
by roughly 2-4MB, depending on your kernel config.
|
||||
|
||||
config GUESS_UNWINDER
|
||||
bool "Guess unwinder"
|
||||
depends on EXPERT
|
||||
---help---
|
||||
This option enables the "guess" unwinder for unwinding kernel stack
|
||||
traces. It scans the stack and reports every kernel text address it
|
||||
finds. Some of the addresses it reports may be incorrect.
|
||||
|
||||
While this option often produces false positives, it can still be
|
||||
useful in many cases. Unlike the other unwinders, it has no runtime
|
||||
overhead.
|
||||
|
||||
endchoice
|
||||
|
||||
config FRAME_POINTER
|
||||
depends on !ORC_UNWINDER && !GUESS_UNWINDER
|
||||
bool
|
||||
|
||||
endmenu
|
||||
|
|
|
@ -61,71 +61,6 @@
|
|||
|
||||
__HEAD
|
||||
ENTRY(startup_32)
|
||||
#ifdef CONFIG_EFI_STUB
|
||||
jmp preferred_addr
|
||||
|
||||
/*
|
||||
* We don't need the return address, so set up the stack so
|
||||
* efi_main() can find its arguments.
|
||||
*/
|
||||
ENTRY(efi_pe_entry)
|
||||
add $0x4, %esp
|
||||
|
||||
call 1f
|
||||
1: popl %esi
|
||||
subl $1b, %esi
|
||||
|
||||
popl %ecx
|
||||
movl %ecx, efi32_config(%esi) /* Handle */
|
||||
popl %ecx
|
||||
movl %ecx, efi32_config+8(%esi) /* EFI System table pointer */
|
||||
|
||||
/* Relocate efi_config->call() */
|
||||
leal efi32_config(%esi), %eax
|
||||
add %esi, 40(%eax)
|
||||
pushl %eax
|
||||
|
||||
call make_boot_params
|
||||
cmpl $0, %eax
|
||||
je fail
|
||||
movl %esi, BP_code32_start(%eax)
|
||||
popl %ecx
|
||||
pushl %eax
|
||||
pushl %ecx
|
||||
jmp 2f /* Skip efi_config initialization */
|
||||
|
||||
ENTRY(efi32_stub_entry)
|
||||
add $0x4, %esp
|
||||
popl %ecx
|
||||
popl %edx
|
||||
|
||||
call 1f
|
||||
1: popl %esi
|
||||
subl $1b, %esi
|
||||
|
||||
movl %ecx, efi32_config(%esi) /* Handle */
|
||||
movl %edx, efi32_config+8(%esi) /* EFI System table pointer */
|
||||
|
||||
/* Relocate efi_config->call() */
|
||||
leal efi32_config(%esi), %eax
|
||||
add %esi, 40(%eax)
|
||||
pushl %eax
|
||||
2:
|
||||
call efi_main
|
||||
cmpl $0, %eax
|
||||
movl %eax, %esi
|
||||
jne 2f
|
||||
fail:
|
||||
/* EFI init failed, so hang. */
|
||||
hlt
|
||||
jmp fail
|
||||
2:
|
||||
movl BP_code32_start(%esi), %eax
|
||||
leal preferred_addr(%eax), %eax
|
||||
jmp *%eax
|
||||
|
||||
preferred_addr:
|
||||
#endif
|
||||
cld
|
||||
/*
|
||||
* Test KEEP_SEGMENTS flag to see if the bootloader is asking
|
||||
|
@ -208,6 +143,70 @@ preferred_addr:
|
|||
jmp *%eax
|
||||
ENDPROC(startup_32)
|
||||
|
||||
#ifdef CONFIG_EFI_STUB
|
||||
/*
|
||||
* We don't need the return address, so set up the stack so efi_main() can find
|
||||
* its arguments.
|
||||
*/
|
||||
ENTRY(efi_pe_entry)
|
||||
add $0x4, %esp
|
||||
|
||||
call 1f
|
||||
1: popl %esi
|
||||
subl $1b, %esi
|
||||
|
||||
popl %ecx
|
||||
movl %ecx, efi32_config(%esi) /* Handle */
|
||||
popl %ecx
|
||||
movl %ecx, efi32_config+8(%esi) /* EFI System table pointer */
|
||||
|
||||
/* Relocate efi_config->call() */
|
||||
leal efi32_config(%esi), %eax
|
||||
add %esi, 40(%eax)
|
||||
pushl %eax
|
||||
|
||||
call make_boot_params
|
||||
cmpl $0, %eax
|
||||
je fail
|
||||
movl %esi, BP_code32_start(%eax)
|
||||
popl %ecx
|
||||
pushl %eax
|
||||
pushl %ecx
|
||||
jmp 2f /* Skip efi_config initialization */
|
||||
ENDPROC(efi_pe_entry)
|
||||
|
||||
ENTRY(efi32_stub_entry)
|
||||
add $0x4, %esp
|
||||
popl %ecx
|
||||
popl %edx
|
||||
|
||||
call 1f
|
||||
1: popl %esi
|
||||
subl $1b, %esi
|
||||
|
||||
movl %ecx, efi32_config(%esi) /* Handle */
|
||||
movl %edx, efi32_config+8(%esi) /* EFI System table pointer */
|
||||
|
||||
/* Relocate efi_config->call() */
|
||||
leal efi32_config(%esi), %eax
|
||||
add %esi, 40(%eax)
|
||||
pushl %eax
|
||||
2:
|
||||
call efi_main
|
||||
cmpl $0, %eax
|
||||
movl %eax, %esi
|
||||
jne 2f
|
||||
fail:
|
||||
/* EFI init failed, so hang. */
|
||||
hlt
|
||||
jmp fail
|
||||
2:
|
||||
movl BP_code32_start(%esi), %eax
|
||||
leal startup_32(%eax), %eax
|
||||
jmp *%eax
|
||||
ENDPROC(efi32_stub_entry)
|
||||
#endif
|
||||
|
||||
.text
|
||||
relocated:
|
||||
|
||||
|
|
|
@ -243,65 +243,6 @@ ENTRY(startup_64)
|
|||
* that maps our entire kernel(text+data+bss+brk), zero page
|
||||
* and command line.
|
||||
*/
|
||||
#ifdef CONFIG_EFI_STUB
|
||||
/*
|
||||
* The entry point for the PE/COFF executable is efi_pe_entry, so
|
||||
* only legacy boot loaders will execute this jmp.
|
||||
*/
|
||||
jmp preferred_addr
|
||||
|
||||
ENTRY(efi_pe_entry)
|
||||
movq %rcx, efi64_config(%rip) /* Handle */
|
||||
movq %rdx, efi64_config+8(%rip) /* EFI System table pointer */
|
||||
|
||||
leaq efi64_config(%rip), %rax
|
||||
movq %rax, efi_config(%rip)
|
||||
|
||||
call 1f
|
||||
1: popq %rbp
|
||||
subq $1b, %rbp
|
||||
|
||||
/*
|
||||
* Relocate efi_config->call().
|
||||
*/
|
||||
addq %rbp, efi64_config+40(%rip)
|
||||
|
||||
movq %rax, %rdi
|
||||
call make_boot_params
|
||||
cmpq $0,%rax
|
||||
je fail
|
||||
mov %rax, %rsi
|
||||
leaq startup_32(%rip), %rax
|
||||
movl %eax, BP_code32_start(%rsi)
|
||||
jmp 2f /* Skip the relocation */
|
||||
|
||||
handover_entry:
|
||||
call 1f
|
||||
1: popq %rbp
|
||||
subq $1b, %rbp
|
||||
|
||||
/*
|
||||
* Relocate efi_config->call().
|
||||
*/
|
||||
movq efi_config(%rip), %rax
|
||||
addq %rbp, 40(%rax)
|
||||
2:
|
||||
movq efi_config(%rip), %rdi
|
||||
call efi_main
|
||||
movq %rax,%rsi
|
||||
cmpq $0,%rax
|
||||
jne 2f
|
||||
fail:
|
||||
/* EFI init failed, so hang. */
|
||||
hlt
|
||||
jmp fail
|
||||
2:
|
||||
movl BP_code32_start(%esi), %eax
|
||||
leaq preferred_addr(%rax), %rax
|
||||
jmp *%rax
|
||||
|
||||
preferred_addr:
|
||||
#endif
|
||||
|
||||
/* Setup data segments. */
|
||||
xorl %eax, %eax
|
||||
|
@ -413,6 +354,59 @@ lvl5:
|
|||
jmp *%rax
|
||||
|
||||
#ifdef CONFIG_EFI_STUB
|
||||
|
||||
/* The entry point for the PE/COFF executable is efi_pe_entry. */
|
||||
ENTRY(efi_pe_entry)
|
||||
movq %rcx, efi64_config(%rip) /* Handle */
|
||||
movq %rdx, efi64_config+8(%rip) /* EFI System table pointer */
|
||||
|
||||
leaq efi64_config(%rip), %rax
|
||||
movq %rax, efi_config(%rip)
|
||||
|
||||
call 1f
|
||||
1: popq %rbp
|
||||
subq $1b, %rbp
|
||||
|
||||
/*
|
||||
* Relocate efi_config->call().
|
||||
*/
|
||||
addq %rbp, efi64_config+40(%rip)
|
||||
|
||||
movq %rax, %rdi
|
||||
call make_boot_params
|
||||
cmpq $0,%rax
|
||||
je fail
|
||||
mov %rax, %rsi
|
||||
leaq startup_32(%rip), %rax
|
||||
movl %eax, BP_code32_start(%rsi)
|
||||
jmp 2f /* Skip the relocation */
|
||||
|
||||
handover_entry:
|
||||
call 1f
|
||||
1: popq %rbp
|
||||
subq $1b, %rbp
|
||||
|
||||
/*
|
||||
* Relocate efi_config->call().
|
||||
*/
|
||||
movq efi_config(%rip), %rax
|
||||
addq %rbp, 40(%rax)
|
||||
2:
|
||||
movq efi_config(%rip), %rdi
|
||||
call efi_main
|
||||
movq %rax,%rsi
|
||||
cmpq $0,%rax
|
||||
jne 2f
|
||||
fail:
|
||||
/* EFI init failed, so hang. */
|
||||
hlt
|
||||
jmp fail
|
||||
2:
|
||||
movl BP_code32_start(%esi), %eax
|
||||
leaq startup_64(%rax), %rax
|
||||
jmp *%rax
|
||||
ENDPROC(efi_pe_entry)
|
||||
|
||||
.org 0x390
|
||||
ENTRY(efi64_stub_entry)
|
||||
movq %rdi, efi64_config(%rip) /* Handle */
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
CONFIG_NOHIGHMEM=y
|
||||
# CONFIG_HIGHMEM4G is not set
|
||||
# CONFIG_HIGHMEM64G is not set
|
||||
CONFIG_GUESS_UNWINDER=y
|
||||
# CONFIG_FRAME_POINTER_UNWINDER is not set
|
||||
|
|
|
@ -2,7 +2,6 @@
|
|||
# Makefile for the x86 low level entry code
|
||||
#
|
||||
|
||||
OBJECT_FILES_NON_STANDARD_entry_$(BITS).o := y
|
||||
OBJECT_FILES_NON_STANDARD_entry_64_compat.o := y
|
||||
|
||||
CFLAGS_syscall_64.o += $(call cc-option,-Wno-override-init,)
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include <linux/jump_label.h>
|
||||
#include <asm/unwind_hints.h>
|
||||
|
||||
/*
|
||||
|
||||
|
@ -112,6 +113,7 @@ For 32-bit we have the following conventions - kernel is built with
|
|||
movq %rdx, 12*8+\offset(%rsp)
|
||||
movq %rsi, 13*8+\offset(%rsp)
|
||||
movq %rdi, 14*8+\offset(%rsp)
|
||||
UNWIND_HINT_REGS offset=\offset extra=0
|
||||
.endm
|
||||
.macro SAVE_C_REGS offset=0
|
||||
SAVE_C_REGS_HELPER \offset, 1, 1, 1, 1
|
||||
|
@ -136,6 +138,7 @@ For 32-bit we have the following conventions - kernel is built with
|
|||
movq %r12, 3*8+\offset(%rsp)
|
||||
movq %rbp, 4*8+\offset(%rsp)
|
||||
movq %rbx, 5*8+\offset(%rsp)
|
||||
UNWIND_HINT_REGS offset=\offset
|
||||
.endm
|
||||
|
||||
.macro RESTORE_EXTRA_REGS offset=0
|
||||
|
@ -145,6 +148,7 @@ For 32-bit we have the following conventions - kernel is built with
|
|||
movq 3*8+\offset(%rsp), %r12
|
||||
movq 4*8+\offset(%rsp), %rbp
|
||||
movq 5*8+\offset(%rsp), %rbx
|
||||
UNWIND_HINT_REGS offset=\offset extra=0
|
||||
.endm
|
||||
|
||||
.macro RESTORE_C_REGS_HELPER rstor_rax=1, rstor_rcx=1, rstor_r11=1, rstor_r8910=1, rstor_rdx=1
|
||||
|
@ -167,6 +171,7 @@ For 32-bit we have the following conventions - kernel is built with
|
|||
.endif
|
||||
movq 13*8(%rsp), %rsi
|
||||
movq 14*8(%rsp), %rdi
|
||||
UNWIND_HINT_IRET_REGS offset=16*8
|
||||
.endm
|
||||
.macro RESTORE_C_REGS
|
||||
RESTORE_C_REGS_HELPER 1,1,1,1,1
|
||||
|
|
|
@ -36,6 +36,7 @@
|
|||
#include <asm/smap.h>
|
||||
#include <asm/pgtable_types.h>
|
||||
#include <asm/export.h>
|
||||
#include <asm/frame.h>
|
||||
#include <linux/err.h>
|
||||
|
||||
.code64
|
||||
|
@ -43,9 +44,10 @@
|
|||
|
||||
#ifdef CONFIG_PARAVIRT
|
||||
ENTRY(native_usergs_sysret64)
|
||||
UNWIND_HINT_EMPTY
|
||||
swapgs
|
||||
sysretq
|
||||
ENDPROC(native_usergs_sysret64)
|
||||
END(native_usergs_sysret64)
|
||||
#endif /* CONFIG_PARAVIRT */
|
||||
|
||||
.macro TRACE_IRQS_IRETQ
|
||||
|
@ -134,19 +136,14 @@ ENDPROC(native_usergs_sysret64)
|
|||
*/
|
||||
|
||||
ENTRY(entry_SYSCALL_64)
|
||||
UNWIND_HINT_EMPTY
|
||||
/*
|
||||
* Interrupts are off on entry.
|
||||
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
|
||||
* it is too small to ever cause noticeable irq latency.
|
||||
*/
|
||||
SWAPGS_UNSAFE_STACK
|
||||
/*
|
||||
* A hypervisor implementation might want to use a label
|
||||
* after the swapgs, so that it can do the swapgs
|
||||
* for the guest and jump here on syscall.
|
||||
*/
|
||||
GLOBAL(entry_SYSCALL_64_after_swapgs)
|
||||
|
||||
swapgs
|
||||
movq %rsp, PER_CPU_VAR(rsp_scratch)
|
||||
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
||||
|
||||
|
@ -158,6 +155,7 @@ GLOBAL(entry_SYSCALL_64_after_swapgs)
|
|||
pushq %r11 /* pt_regs->flags */
|
||||
pushq $__USER_CS /* pt_regs->cs */
|
||||
pushq %rcx /* pt_regs->ip */
|
||||
GLOBAL(entry_SYSCALL_64_after_hwframe)
|
||||
pushq %rax /* pt_regs->orig_ax */
|
||||
pushq %rdi /* pt_regs->di */
|
||||
pushq %rsi /* pt_regs->si */
|
||||
|
@ -169,6 +167,7 @@ GLOBAL(entry_SYSCALL_64_after_swapgs)
|
|||
pushq %r10 /* pt_regs->r10 */
|
||||
pushq %r11 /* pt_regs->r11 */
|
||||
sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
|
||||
UNWIND_HINT_REGS extra=0
|
||||
|
||||
/*
|
||||
* If we need to do entry work or if we guess we'll need to do
|
||||
|
@ -223,6 +222,7 @@ entry_SYSCALL_64_fastpath:
|
|||
movq EFLAGS(%rsp), %r11
|
||||
RESTORE_C_REGS_EXCEPT_RCX_R11
|
||||
movq RSP(%rsp), %rsp
|
||||
UNWIND_HINT_EMPTY
|
||||
USERGS_SYSRET64
|
||||
|
||||
1:
|
||||
|
@ -316,6 +316,7 @@ syscall_return_via_sysret:
|
|||
/* rcx and r11 are already restored (see code above) */
|
||||
RESTORE_C_REGS_EXCEPT_RCX_R11
|
||||
movq RSP(%rsp), %rsp
|
||||
UNWIND_HINT_EMPTY
|
||||
USERGS_SYSRET64
|
||||
|
||||
opportunistic_sysret_failed:
|
||||
|
@ -343,6 +344,7 @@ ENTRY(stub_ptregs_64)
|
|||
DISABLE_INTERRUPTS(CLBR_ANY)
|
||||
TRACE_IRQS_OFF
|
||||
popq %rax
|
||||
UNWIND_HINT_REGS extra=0
|
||||
jmp entry_SYSCALL64_slow_path
|
||||
|
||||
1:
|
||||
|
@ -351,6 +353,7 @@ END(stub_ptregs_64)
|
|||
|
||||
.macro ptregs_stub func
|
||||
ENTRY(ptregs_\func)
|
||||
UNWIND_HINT_FUNC
|
||||
leaq \func(%rip), %rax
|
||||
jmp stub_ptregs_64
|
||||
END(ptregs_\func)
|
||||
|
@ -367,6 +370,7 @@ END(ptregs_\func)
|
|||
* %rsi: next task
|
||||
*/
|
||||
ENTRY(__switch_to_asm)
|
||||
UNWIND_HINT_FUNC
|
||||
/*
|
||||
* Save callee-saved registers
|
||||
* This must match the order in inactive_task_frame
|
||||
|
@ -406,6 +410,7 @@ END(__switch_to_asm)
|
|||
* r12: kernel thread arg
|
||||
*/
|
||||
ENTRY(ret_from_fork)
|
||||
UNWIND_HINT_EMPTY
|
||||
movq %rax, %rdi
|
||||
call schedule_tail /* rdi: 'prev' task parameter */
|
||||
|
||||
|
@ -413,6 +418,7 @@ ENTRY(ret_from_fork)
|
|||
jnz 1f /* kernel threads are uncommon */
|
||||
|
||||
2:
|
||||
UNWIND_HINT_REGS
|
||||
movq %rsp, %rdi
|
||||
call syscall_return_slowpath /* returns with IRQs disabled */
|
||||
TRACE_IRQS_ON /* user mode is traced as IRQS on */
|
||||
|
@ -440,13 +446,102 @@ END(ret_from_fork)
|
|||
ENTRY(irq_entries_start)
|
||||
vector=FIRST_EXTERNAL_VECTOR
|
||||
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
|
||||
UNWIND_HINT_IRET_REGS
|
||||
pushq $(~vector+0x80) /* Note: always in signed byte range */
|
||||
vector=vector+1
|
||||
jmp common_interrupt
|
||||
.align 8
|
||||
vector=vector+1
|
||||
.endr
|
||||
END(irq_entries_start)
|
||||
|
||||
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
|
||||
#ifdef CONFIG_DEBUG_ENTRY
|
||||
pushfq
|
||||
testl $X86_EFLAGS_IF, (%rsp)
|
||||
jz .Lokay_\@
|
||||
ud2
|
||||
.Lokay_\@:
|
||||
addq $8, %rsp
|
||||
#endif
|
||||
.endm
|
||||
|
||||
/*
|
||||
* Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
|
||||
* flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
|
||||
* Requires kernel GSBASE.
|
||||
*
|
||||
* The invariant is that, if irq_count != -1, then the IRQ stack is in use.
|
||||
*/
|
||||
.macro ENTER_IRQ_STACK regs=1 old_rsp
|
||||
DEBUG_ENTRY_ASSERT_IRQS_OFF
|
||||
movq %rsp, \old_rsp
|
||||
|
||||
.if \regs
|
||||
UNWIND_HINT_REGS base=\old_rsp
|
||||
.endif
|
||||
|
||||
incl PER_CPU_VAR(irq_count)
|
||||
jnz .Lirq_stack_push_old_rsp_\@
|
||||
|
||||
/*
|
||||
* Right now, if we just incremented irq_count to zero, we've
|
||||
* claimed the IRQ stack but we haven't switched to it yet.
|
||||
*
|
||||
* If anything is added that can interrupt us here without using IST,
|
||||
* it must be *extremely* careful to limit its stack usage. This
|
||||
* could include kprobes and a hypothetical future IST-less #DB
|
||||
* handler.
|
||||
*
|
||||
* The OOPS unwinder relies on the word at the top of the IRQ
|
||||
* stack linking back to the previous RSP for the entire time we're
|
||||
* on the IRQ stack. For this to work reliably, we need to write
|
||||
* it before we actually move ourselves to the IRQ stack.
|
||||
*/
|
||||
|
||||
movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
|
||||
movq PER_CPU_VAR(irq_stack_ptr), %rsp
|
||||
|
||||
#ifdef CONFIG_DEBUG_ENTRY
|
||||
/*
|
||||
* If the first movq above becomes wrong due to IRQ stack layout
|
||||
* changes, the only way we'll notice is if we try to unwind right
|
||||
* here. Assert that we set up the stack right to catch this type
|
||||
* of bug quickly.
|
||||
*/
|
||||
cmpq -8(%rsp), \old_rsp
|
||||
je .Lirq_stack_okay\@
|
||||
ud2
|
||||
.Lirq_stack_okay\@:
|
||||
#endif
|
||||
|
||||
.Lirq_stack_push_old_rsp_\@:
|
||||
pushq \old_rsp
|
||||
|
||||
.if \regs
|
||||
UNWIND_HINT_REGS indirect=1
|
||||
.endif
|
||||
.endm
|
||||
|
||||
/*
|
||||
* Undoes ENTER_IRQ_STACK.
|
||||
*/
|
||||
.macro LEAVE_IRQ_STACK regs=1
|
||||
DEBUG_ENTRY_ASSERT_IRQS_OFF
|
||||
/* We need to be off the IRQ stack before decrementing irq_count. */
|
||||
popq %rsp
|
||||
|
||||
.if \regs
|
||||
UNWIND_HINT_REGS
|
||||
.endif
|
||||
|
||||
/*
|
||||
* As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
|
||||
* the irq stack but we're not on it.
|
||||
*/
|
||||
|
||||
decl PER_CPU_VAR(irq_count)
|
||||
.endm
|
||||
|
||||
/*
|
||||
* Interrupt entry/exit.
|
||||
*
|
||||
|
@ -485,17 +580,7 @@ END(irq_entries_start)
|
|||
CALL_enter_from_user_mode
|
||||
|
||||
1:
|
||||
/*
|
||||
* Save previous stack pointer, optionally switch to interrupt stack.
|
||||
* irq_count is used to check if a CPU is already on an interrupt stack
|
||||
* or not. While this is essentially redundant with preempt_count it is
|
||||
* a little cheaper to use a separate counter in the PDA (short of
|
||||
* moving irq_enter into assembly, which would be too much work)
|
||||
*/
|
||||
movq %rsp, %rdi
|
||||
incl PER_CPU_VAR(irq_count)
|
||||
cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
|
||||
pushq %rdi
|
||||
ENTER_IRQ_STACK old_rsp=%rdi
|
||||
/* We entered an interrupt context - irqs are off: */
|
||||
TRACE_IRQS_OFF
|
||||
|
||||
|
@ -515,10 +600,8 @@ common_interrupt:
|
|||
ret_from_intr:
|
||||
DISABLE_INTERRUPTS(CLBR_ANY)
|
||||
TRACE_IRQS_OFF
|
||||
decl PER_CPU_VAR(irq_count)
|
||||
|
||||
/* Restore saved previous stack */
|
||||
popq %rsp
|
||||
LEAVE_IRQ_STACK
|
||||
|
||||
testb $3, CS(%rsp)
|
||||
jz retint_kernel
|
||||
|
@ -561,6 +644,7 @@ restore_c_regs_and_iret:
|
|||
INTERRUPT_RETURN
|
||||
|
||||
ENTRY(native_iret)
|
||||
UNWIND_HINT_IRET_REGS
|
||||
/*
|
||||
* Are we returning to a stack segment from the LDT? Note: in
|
||||
* 64-bit mode SS:RSP on the exception stack is always valid.
|
||||
|
@ -633,6 +717,7 @@ native_irq_return_ldt:
|
|||
orq PER_CPU_VAR(espfix_stack), %rax
|
||||
SWAPGS
|
||||
movq %rax, %rsp
|
||||
UNWIND_HINT_IRET_REGS offset=8
|
||||
|
||||
/*
|
||||
* At this point, we cannot write to the stack any more, but we can
|
||||
|
@ -654,6 +739,7 @@ END(common_interrupt)
|
|||
*/
|
||||
.macro apicinterrupt3 num sym do_sym
|
||||
ENTRY(\sym)
|
||||
UNWIND_HINT_IRET_REGS
|
||||
ASM_CLAC
|
||||
pushq $~(\num)
|
||||
.Lcommon_\sym:
|
||||
|
@ -735,6 +821,8 @@ apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
|
|||
|
||||
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
|
||||
ENTRY(\sym)
|
||||
UNWIND_HINT_IRET_REGS offset=8
|
||||
|
||||
/* Sanity check */
|
||||
.if \shift_ist != -1 && \paranoid == 0
|
||||
.error "using shift_ist requires paranoid=1"
|
||||
|
@ -758,6 +846,7 @@ ENTRY(\sym)
|
|||
.else
|
||||
call error_entry
|
||||
.endif
|
||||
UNWIND_HINT_REGS
|
||||
/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
|
||||
|
||||
.if \paranoid
|
||||
|
@ -855,6 +944,7 @@ idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
|
|||
* edi: new selector
|
||||
*/
|
||||
ENTRY(native_load_gs_index)
|
||||
FRAME_BEGIN
|
||||
pushfq
|
||||
DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
|
||||
SWAPGS
|
||||
|
@ -863,8 +953,9 @@ ENTRY(native_load_gs_index)
|
|||
2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
|
||||
SWAPGS
|
||||
popfq
|
||||
FRAME_END
|
||||
ret
|
||||
END(native_load_gs_index)
|
||||
ENDPROC(native_load_gs_index)
|
||||
EXPORT_SYMBOL(native_load_gs_index)
|
||||
|
||||
_ASM_EXTABLE(.Lgs_change, bad_gs)
|
||||
|
@ -887,14 +978,12 @@ bad_gs:
|
|||
ENTRY(do_softirq_own_stack)
|
||||
pushq %rbp
|
||||
mov %rsp, %rbp
|
||||
incl PER_CPU_VAR(irq_count)
|
||||
cmove PER_CPU_VAR(irq_stack_ptr), %rsp
|
||||
push %rbp /* frame pointer backlink */
|
||||
ENTER_IRQ_STACK regs=0 old_rsp=%r11
|
||||
call __do_softirq
|
||||
LEAVE_IRQ_STACK regs=0
|
||||
leaveq
|
||||
decl PER_CPU_VAR(irq_count)
|
||||
ret
|
||||
END(do_softirq_own_stack)
|
||||
ENDPROC(do_softirq_own_stack)
|
||||
|
||||
#ifdef CONFIG_XEN
|
||||
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
|
||||
|
@ -918,14 +1007,14 @@ ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
|
|||
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
|
||||
* see the correct pointer to the pt_regs
|
||||
*/
|
||||
UNWIND_HINT_FUNC
|
||||
movq %rdi, %rsp /* we don't return, adjust the stack frame */
|
||||
11: incl PER_CPU_VAR(irq_count)
|
||||
movq %rsp, %rbp
|
||||
cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
|
||||
pushq %rbp /* frame pointer backlink */
|
||||
UNWIND_HINT_REGS
|
||||
|
||||
ENTER_IRQ_STACK old_rsp=%r10
|
||||
call xen_evtchn_do_upcall
|
||||
popq %rsp
|
||||
decl PER_CPU_VAR(irq_count)
|
||||
LEAVE_IRQ_STACK
|
||||
|
||||
#ifndef CONFIG_PREEMPT
|
||||
call xen_maybe_preempt_hcall
|
||||
#endif
|
||||
|
@ -946,6 +1035,7 @@ END(xen_do_hypervisor_callback)
|
|||
* with its current contents: any discrepancy means we in category 1.
|
||||
*/
|
||||
ENTRY(xen_failsafe_callback)
|
||||
UNWIND_HINT_EMPTY
|
||||
movl %ds, %ecx
|
||||
cmpw %cx, 0x10(%rsp)
|
||||
jne 1f
|
||||
|
@ -965,11 +1055,13 @@ ENTRY(xen_failsafe_callback)
|
|||
pushq $0 /* RIP */
|
||||
pushq %r11
|
||||
pushq %rcx
|
||||
UNWIND_HINT_IRET_REGS offset=8
|
||||
jmp general_protection
|
||||
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
|
||||
movq (%rsp), %rcx
|
||||
movq 8(%rsp), %r11
|
||||
addq $0x30, %rsp
|
||||
UNWIND_HINT_IRET_REGS
|
||||
pushq $-1 /* orig_ax = -1 => not a system call */
|
||||
ALLOC_PT_GPREGS_ON_STACK
|
||||
SAVE_C_REGS
|
||||
|
@ -1015,6 +1107,7 @@ idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vec
|
|||
* Return: ebx=0: need swapgs on exit, ebx=1: otherwise
|
||||
*/
|
||||
ENTRY(paranoid_entry)
|
||||
UNWIND_HINT_FUNC
|
||||
cld
|
||||
SAVE_C_REGS 8
|
||||
SAVE_EXTRA_REGS 8
|
||||
|
@ -1042,6 +1135,7 @@ END(paranoid_entry)
|
|||
* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
|
||||
*/
|
||||
ENTRY(paranoid_exit)
|
||||
UNWIND_HINT_REGS
|
||||
DISABLE_INTERRUPTS(CLBR_ANY)
|
||||
TRACE_IRQS_OFF_DEBUG
|
||||
testl %ebx, %ebx /* swapgs needed? */
|
||||
|
@ -1063,6 +1157,7 @@ END(paranoid_exit)
|
|||
* Return: EBX=0: came from user mode; EBX=1: otherwise
|
||||
*/
|
||||
ENTRY(error_entry)
|
||||
UNWIND_HINT_FUNC
|
||||
cld
|
||||
SAVE_C_REGS 8
|
||||
SAVE_EXTRA_REGS 8
|
||||
|
@ -1147,6 +1242,7 @@ END(error_entry)
|
|||
* 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
|
||||
*/
|
||||
ENTRY(error_exit)
|
||||
UNWIND_HINT_REGS
|
||||
DISABLE_INTERRUPTS(CLBR_ANY)
|
||||
TRACE_IRQS_OFF
|
||||
testl %ebx, %ebx
|
||||
|
@ -1156,6 +1252,7 @@ END(error_exit)
|
|||
|
||||
/* Runs on exception stack */
|
||||
ENTRY(nmi)
|
||||
UNWIND_HINT_IRET_REGS
|
||||
/*
|
||||
* Fix up the exception frame if we're on Xen.
|
||||
* PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
|
||||
|
@ -1229,11 +1326,13 @@ ENTRY(nmi)
|
|||
cld
|
||||
movq %rsp, %rdx
|
||||
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
||||
UNWIND_HINT_IRET_REGS base=%rdx offset=8
|
||||
pushq 5*8(%rdx) /* pt_regs->ss */
|
||||
pushq 4*8(%rdx) /* pt_regs->rsp */
|
||||
pushq 3*8(%rdx) /* pt_regs->flags */
|
||||
pushq 2*8(%rdx) /* pt_regs->cs */
|
||||
pushq 1*8(%rdx) /* pt_regs->rip */
|
||||
UNWIND_HINT_IRET_REGS
|
||||
pushq $-1 /* pt_regs->orig_ax */
|
||||
pushq %rdi /* pt_regs->di */
|
||||
pushq %rsi /* pt_regs->si */
|
||||
|
@ -1250,6 +1349,7 @@ ENTRY(nmi)
|
|||
pushq %r13 /* pt_regs->r13 */
|
||||
pushq %r14 /* pt_regs->r14 */
|
||||
pushq %r15 /* pt_regs->r15 */
|
||||
UNWIND_HINT_REGS
|
||||
ENCODE_FRAME_POINTER
|
||||
|
||||
/*
|
||||
|
@ -1404,6 +1504,7 @@ first_nmi:
|
|||
.rept 5
|
||||
pushq 11*8(%rsp)
|
||||
.endr
|
||||
UNWIND_HINT_IRET_REGS
|
||||
|
||||
/* Everything up to here is safe from nested NMIs */
|
||||
|
||||
|
@ -1419,6 +1520,7 @@ first_nmi:
|
|||
pushq $__KERNEL_CS /* CS */
|
||||
pushq $1f /* RIP */
|
||||
INTERRUPT_RETURN /* continues at repeat_nmi below */
|
||||
UNWIND_HINT_IRET_REGS
|
||||
1:
|
||||
#endif
|
||||
|
||||
|
@ -1468,6 +1570,7 @@ end_repeat_nmi:
|
|||
* exceptions might do.
|
||||
*/
|
||||
call paranoid_entry
|
||||
UNWIND_HINT_REGS
|
||||
|
||||
/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
|
||||
movq %rsp, %rdi
|
||||
|
@ -1505,17 +1608,19 @@ nmi_restore:
|
|||
END(nmi)
|
||||
|
||||
ENTRY(ignore_sysret)
|
||||
UNWIND_HINT_EMPTY
|
||||
mov $-ENOSYS, %eax
|
||||
sysret
|
||||
END(ignore_sysret)
|
||||
|
||||
ENTRY(rewind_stack_do_exit)
|
||||
UNWIND_HINT_FUNC
|
||||
/* Prevent any naive code from trying to unwind to our caller. */
|
||||
xorl %ebp, %ebp
|
||||
|
||||
movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
|
||||
leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
|
||||
leaq -PTREGS_SIZE(%rax), %rsp
|
||||
UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
|
||||
|
||||
call do_exit
|
||||
1: jmp 1b
|
||||
END(rewind_stack_do_exit)
|
||||
|
|
|
@ -183,21 +183,20 @@ ENDPROC(entry_SYSENTER_compat)
|
|||
*/
|
||||
ENTRY(entry_SYSCALL_compat)
|
||||
/* Interrupts are off on entry. */
|
||||
SWAPGS_UNSAFE_STACK
|
||||
swapgs
|
||||
|
||||
/* Stash user ESP and switch to the kernel stack. */
|
||||
movl %esp, %r8d
|
||||
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
||||
|
||||
/* Zero-extending 32-bit regs, do not remove */
|
||||
movl %eax, %eax
|
||||
|
||||
/* Construct struct pt_regs on stack */
|
||||
pushq $__USER32_DS /* pt_regs->ss */
|
||||
pushq %r8 /* pt_regs->sp */
|
||||
pushq %r11 /* pt_regs->flags */
|
||||
pushq $__USER32_CS /* pt_regs->cs */
|
||||
pushq %rcx /* pt_regs->ip */
|
||||
GLOBAL(entry_SYSCALL_compat_after_hwframe)
|
||||
movl %eax, %eax /* discard orig_ax high bits */
|
||||
pushq %rax /* pt_regs->orig_ax */
|
||||
pushq %rdi /* pt_regs->di */
|
||||
pushq %rsi /* pt_regs->si */
|
||||
|
@ -342,8 +341,7 @@ ENTRY(entry_INT80_compat)
|
|||
jmp restore_regs_and_iret
|
||||
END(entry_INT80_compat)
|
||||
|
||||
ALIGN
|
||||
GLOBAL(stub32_clone)
|
||||
ENTRY(stub32_clone)
|
||||
/*
|
||||
* The 32-bit clone ABI is: clone(..., int tls_val, int *child_tidptr).
|
||||
* The 64-bit clone ABI is: clone(..., int *child_tidptr, int tls_val).
|
||||
|
@ -353,3 +351,4 @@ GLOBAL(stub32_clone)
|
|||
*/
|
||||
xchg %r8, %rcx
|
||||
jmp sys_clone
|
||||
ENDPROC(stub32_clone)
|
||||
|
|
|
@ -226,7 +226,7 @@ static void __user *get_sigframe(struct ksignal *ksig, struct pt_regs *regs,
|
|||
if (ksig->ka.sa.sa_flags & SA_ONSTACK)
|
||||
sp = sigsp(sp, ksig);
|
||||
/* This is the legacy signal stack switching. */
|
||||
else if ((regs->ss & 0xffff) != __USER32_DS &&
|
||||
else if (regs->ss != __USER32_DS &&
|
||||
!(ksig->ka.sa.sa_flags & SA_RESTORER) &&
|
||||
ksig->ka.sa.sa_restorer)
|
||||
sp = (unsigned long) ksig->ka.sa.sa_restorer;
|
||||
|
|
|
@ -126,15 +126,15 @@ do { \
|
|||
pr_reg[4] = regs->di; \
|
||||
pr_reg[5] = regs->bp; \
|
||||
pr_reg[6] = regs->ax; \
|
||||
pr_reg[7] = regs->ds & 0xffff; \
|
||||
pr_reg[8] = regs->es & 0xffff; \
|
||||
pr_reg[9] = regs->fs & 0xffff; \
|
||||
pr_reg[7] = regs->ds; \
|
||||
pr_reg[8] = regs->es; \
|
||||
pr_reg[9] = regs->fs; \
|
||||
pr_reg[11] = regs->orig_ax; \
|
||||
pr_reg[12] = regs->ip; \
|
||||
pr_reg[13] = regs->cs & 0xffff; \
|
||||
pr_reg[13] = regs->cs; \
|
||||
pr_reg[14] = regs->flags; \
|
||||
pr_reg[15] = regs->sp; \
|
||||
pr_reg[16] = regs->ss & 0xffff; \
|
||||
pr_reg[16] = regs->ss; \
|
||||
} while (0);
|
||||
|
||||
#define ELF_CORE_COPY_REGS(pr_reg, regs) \
|
||||
|
@ -204,6 +204,7 @@ void set_personality_ia32(bool);
|
|||
|
||||
#define ELF_CORE_COPY_REGS(pr_reg, regs) \
|
||||
do { \
|
||||
unsigned long base; \
|
||||
unsigned v; \
|
||||
(pr_reg)[0] = (regs)->r15; \
|
||||
(pr_reg)[1] = (regs)->r14; \
|
||||
|
@ -226,8 +227,8 @@ do { \
|
|||
(pr_reg)[18] = (regs)->flags; \
|
||||
(pr_reg)[19] = (regs)->sp; \
|
||||
(pr_reg)[20] = (regs)->ss; \
|
||||
(pr_reg)[21] = current->thread.fsbase; \
|
||||
(pr_reg)[22] = current->thread.gsbase; \
|
||||
rdmsrl(MSR_FS_BASE, base); (pr_reg)[21] = base; \
|
||||
rdmsrl(MSR_KERNEL_GS_BASE, base); (pr_reg)[22] = base; \
|
||||
asm("movl %%ds,%0" : "=r" (v)); (pr_reg)[23] = v; \
|
||||
asm("movl %%es,%0" : "=r" (v)); (pr_reg)[24] = v; \
|
||||
asm("movl %%fs,%0" : "=r" (v)); (pr_reg)[25] = v; \
|
||||
|
|
|
@ -69,6 +69,9 @@ build_mmio_write(__writeb, "b", unsigned char, "q", )
|
|||
build_mmio_write(__writew, "w", unsigned short, "r", )
|
||||
build_mmio_write(__writel, "l", unsigned int, "r", )
|
||||
|
||||
#define readb readb
|
||||
#define readw readw
|
||||
#define readl readl
|
||||
#define readb_relaxed(a) __readb(a)
|
||||
#define readw_relaxed(a) __readw(a)
|
||||
#define readl_relaxed(a) __readl(a)
|
||||
|
@ -76,6 +79,9 @@ build_mmio_write(__writel, "l", unsigned int, "r", )
|
|||
#define __raw_readw __readw
|
||||
#define __raw_readl __readl
|
||||
|
||||
#define writeb writeb
|
||||
#define writew writew
|
||||
#define writel writel
|
||||
#define writeb_relaxed(v, a) __writeb(v, a)
|
||||
#define writew_relaxed(v, a) __writew(v, a)
|
||||
#define writel_relaxed(v, a) __writel(v, a)
|
||||
|
@ -88,13 +94,15 @@ build_mmio_write(__writel, "l", unsigned int, "r", )
|
|||
#ifdef CONFIG_X86_64
|
||||
|
||||
build_mmio_read(readq, "q", unsigned long, "=r", :"memory")
|
||||
build_mmio_read(__readq, "q", unsigned long, "=r", )
|
||||
build_mmio_write(writeq, "q", unsigned long, "r", :"memory")
|
||||
build_mmio_write(__writeq, "q", unsigned long, "r", )
|
||||
|
||||
#define readq_relaxed(a) readq(a)
|
||||
#define writeq_relaxed(v, a) writeq(v, a)
|
||||
#define readq_relaxed(a) __readq(a)
|
||||
#define writeq_relaxed(v, a) __writeq(v, a)
|
||||
|
||||
#define __raw_readq(a) readq(a)
|
||||
#define __raw_writeq(val, addr) writeq(val, addr)
|
||||
#define __raw_readq __readq
|
||||
#define __raw_writeq __writeq
|
||||
|
||||
/* Let people know that we have them */
|
||||
#define readq readq
|
||||
|
@ -119,6 +127,7 @@ static inline phys_addr_t virt_to_phys(volatile void *address)
|
|||
{
|
||||
return __pa(address);
|
||||
}
|
||||
#define virt_to_phys virt_to_phys
|
||||
|
||||
/**
|
||||
* phys_to_virt - map physical address to virtual
|
||||
|
@ -137,6 +146,7 @@ static inline void *phys_to_virt(phys_addr_t address)
|
|||
{
|
||||
return __va(address);
|
||||
}
|
||||
#define phys_to_virt phys_to_virt
|
||||
|
||||
/*
|
||||
* Change "struct page" to physical address.
|
||||
|
@ -169,11 +179,14 @@ static inline unsigned int isa_virt_to_bus(volatile void *address)
|
|||
* else, you probably want one of the following.
|
||||
*/
|
||||
extern void __iomem *ioremap_nocache(resource_size_t offset, unsigned long size);
|
||||
#define ioremap_nocache ioremap_nocache
|
||||
extern void __iomem *ioremap_uc(resource_size_t offset, unsigned long size);
|
||||
#define ioremap_uc ioremap_uc
|
||||
|
||||
extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size);
|
||||
#define ioremap_cache ioremap_cache
|
||||
extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, unsigned long prot_val);
|
||||
#define ioremap_prot ioremap_prot
|
||||
|
||||
/**
|
||||
* ioremap - map bus memory into CPU space
|
||||
|
@ -193,8 +206,10 @@ static inline void __iomem *ioremap(resource_size_t offset, unsigned long size)
|
|||
{
|
||||
return ioremap_nocache(offset, size);
|
||||
}
|
||||
#define ioremap ioremap
|
||||
|
||||
extern void iounmap(volatile void __iomem *addr);
|
||||
#define iounmap iounmap
|
||||
|
||||
extern void set_iounmap_nonlazy(void);
|
||||
|
||||
|
@ -202,53 +217,6 @@ extern void set_iounmap_nonlazy(void);
|
|||
|
||||
#include <asm-generic/iomap.h>
|
||||
|
||||
/*
|
||||
* Convert a virtual cached pointer to an uncached pointer
|
||||
*/
|
||||
#define xlate_dev_kmem_ptr(p) p
|
||||
|
||||
/**
|
||||
* memset_io Set a range of I/O memory to a constant value
|
||||
* @addr: The beginning of the I/O-memory range to set
|
||||
* @val: The value to set the memory to
|
||||
* @count: The number of bytes to set
|
||||
*
|
||||
* Set a range of I/O memory to a given value.
|
||||
*/
|
||||
static inline void
|
||||
memset_io(volatile void __iomem *addr, unsigned char val, size_t count)
|
||||
{
|
||||
memset((void __force *)addr, val, count);
|
||||
}
|
||||
|
||||
/**
|
||||
* memcpy_fromio Copy a block of data from I/O memory
|
||||
* @dst: The (RAM) destination for the copy
|
||||
* @src: The (I/O memory) source for the data
|
||||
* @count: The number of bytes to copy
|
||||
*
|
||||
* Copy a block of data from I/O memory.
|
||||
*/
|
||||
static inline void
|
||||
memcpy_fromio(void *dst, const volatile void __iomem *src, size_t count)
|
||||
{
|
||||
memcpy(dst, (const void __force *)src, count);
|
||||
}
|
||||
|
||||
/**
|
||||
* memcpy_toio Copy a block of data into I/O memory
|
||||
* @dst: The (I/O memory) destination for the copy
|
||||
* @src: The (RAM) source for the data
|
||||
* @count: The number of bytes to copy
|
||||
*
|
||||
* Copy a block of data to I/O memory.
|
||||
*/
|
||||
static inline void
|
||||
memcpy_toio(volatile void __iomem *dst, const void *src, size_t count)
|
||||
{
|
||||
memcpy((void __force *)dst, src, count);
|
||||
}
|
||||
|
||||
/*
|
||||
* ISA space is 'always mapped' on a typical x86 system, no need to
|
||||
* explicitly ioremap() it. The fact that the ISA IO space is mapped
|
||||
|
@ -341,13 +309,38 @@ BUILDIO(b, b, char)
|
|||
BUILDIO(w, w, short)
|
||||
BUILDIO(l, , int)
|
||||
|
||||
#define inb inb
|
||||
#define inw inw
|
||||
#define inl inl
|
||||
#define inb_p inb_p
|
||||
#define inw_p inw_p
|
||||
#define inl_p inl_p
|
||||
#define insb insb
|
||||
#define insw insw
|
||||
#define insl insl
|
||||
|
||||
#define outb outb
|
||||
#define outw outw
|
||||
#define outl outl
|
||||
#define outb_p outb_p
|
||||
#define outw_p outw_p
|
||||
#define outl_p outl_p
|
||||
#define outsb outsb
|
||||
#define outsw outsw
|
||||
#define outsl outsl
|
||||
|
||||
extern void *xlate_dev_mem_ptr(phys_addr_t phys);
|
||||
extern void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr);
|
||||
|
||||
#define xlate_dev_mem_ptr xlate_dev_mem_ptr
|
||||
#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
|
||||
|
||||
extern int ioremap_change_attr(unsigned long vaddr, unsigned long size,
|
||||
enum page_cache_mode pcm);
|
||||
extern void __iomem *ioremap_wc(resource_size_t offset, unsigned long size);
|
||||
#define ioremap_wc ioremap_wc
|
||||
extern void __iomem *ioremap_wt(resource_size_t offset, unsigned long size);
|
||||
#define ioremap_wt ioremap_wt
|
||||
|
||||
extern bool is_early_ioremap_ptep(pte_t *ptep);
|
||||
|
||||
|
@ -365,6 +358,9 @@ extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
|
|||
|
||||
#define IO_SPACE_LIMIT 0xffff
|
||||
|
||||
#include <asm-generic/io.h>
|
||||
#undef PCI_IOBASE
|
||||
|
||||
#ifdef CONFIG_MTRR
|
||||
extern int __must_check arch_phys_wc_index(int handle);
|
||||
#define arch_phys_wc_index arch_phys_wc_index
|
||||
|
|
|
@ -1,91 +0,0 @@
|
|||
#ifndef _ASM_X86_LGUEST_H
|
||||
#define _ASM_X86_LGUEST_H
|
||||
|
||||
#define GDT_ENTRY_LGUEST_CS 10
|
||||
#define GDT_ENTRY_LGUEST_DS 11
|
||||
#define LGUEST_CS (GDT_ENTRY_LGUEST_CS * 8)
|
||||
#define LGUEST_DS (GDT_ENTRY_LGUEST_DS * 8)
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <asm/desc.h>
|
||||
|
||||
#define GUEST_PL 1
|
||||
|
||||
/* Page for Switcher text itself, then two pages per cpu */
|
||||
#define SWITCHER_TEXT_PAGES (1)
|
||||
#define SWITCHER_STACK_PAGES (2 * nr_cpu_ids)
|
||||
#define TOTAL_SWITCHER_PAGES (SWITCHER_TEXT_PAGES + SWITCHER_STACK_PAGES)
|
||||
|
||||
/* Where we map the Switcher, in both Host and Guest. */
|
||||
extern unsigned long switcher_addr;
|
||||
|
||||
/* Found in switcher.S */
|
||||
extern unsigned long default_idt_entries[];
|
||||
|
||||
/* Declarations for definitions in arch/x86/lguest/head_32.S */
|
||||
extern char lguest_noirq_iret[];
|
||||
extern const char lgstart_cli[], lgend_cli[];
|
||||
extern const char lgstart_pushf[], lgend_pushf[];
|
||||
|
||||
extern void lguest_iret(void);
|
||||
extern void lguest_init(void);
|
||||
|
||||
struct lguest_regs {
|
||||
/* Manually saved part. */
|
||||
unsigned long eax, ebx, ecx, edx;
|
||||
unsigned long esi, edi, ebp;
|
||||
unsigned long gs;
|
||||
unsigned long fs, ds, es;
|
||||
unsigned long trapnum, errcode;
|
||||
/* Trap pushed part */
|
||||
unsigned long eip;
|
||||
unsigned long cs;
|
||||
unsigned long eflags;
|
||||
unsigned long esp;
|
||||
unsigned long ss;
|
||||
};
|
||||
|
||||
/* This is a guest-specific page (mapped ro) into the guest. */
|
||||
struct lguest_ro_state {
|
||||
/* Host information we need to restore when we switch back. */
|
||||
u32 host_cr3;
|
||||
struct desc_ptr host_idt_desc;
|
||||
struct desc_ptr host_gdt_desc;
|
||||
u32 host_sp;
|
||||
|
||||
/* Fields which are used when guest is running. */
|
||||
struct desc_ptr guest_idt_desc;
|
||||
struct desc_ptr guest_gdt_desc;
|
||||
struct x86_hw_tss guest_tss;
|
||||
struct desc_struct guest_idt[IDT_ENTRIES];
|
||||
struct desc_struct guest_gdt[GDT_ENTRIES];
|
||||
};
|
||||
|
||||
struct lg_cpu_arch {
|
||||
/* The GDT entries copied into lguest_ro_state when running. */
|
||||
struct desc_struct gdt[GDT_ENTRIES];
|
||||
|
||||
/* The IDT entries: some copied into lguest_ro_state when running. */
|
||||
struct desc_struct idt[IDT_ENTRIES];
|
||||
|
||||
/* The address of the last guest-visible pagefault (ie. cr2). */
|
||||
unsigned long last_pagefault;
|
||||
};
|
||||
|
||||
static inline void lguest_set_ts(void)
|
||||
{
|
||||
u32 cr0;
|
||||
|
||||
cr0 = read_cr0();
|
||||
if (!(cr0 & 8))
|
||||
write_cr0(cr0 | 8);
|
||||
}
|
||||
|
||||
/* Full 4G segment descriptors, suitable for CS and DS. */
|
||||
#define FULL_EXEC_SEGMENT \
|
||||
((struct desc_struct)GDT_ENTRY_INIT(0xc09b, 0, 0xfffff))
|
||||
#define FULL_SEGMENT ((struct desc_struct)GDT_ENTRY_INIT(0xc093, 0, 0xfffff))
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_X86_LGUEST_H */
|
|
@ -1,74 +0,0 @@
|
|||
/* Architecture specific portion of the lguest hypercalls */
|
||||
#ifndef _ASM_X86_LGUEST_HCALL_H
|
||||
#define _ASM_X86_LGUEST_HCALL_H
|
||||
|
||||
#define LHCALL_FLUSH_ASYNC 0
|
||||
#define LHCALL_LGUEST_INIT 1
|
||||
#define LHCALL_SHUTDOWN 2
|
||||
#define LHCALL_NEW_PGTABLE 4
|
||||
#define LHCALL_FLUSH_TLB 5
|
||||
#define LHCALL_LOAD_IDT_ENTRY 6
|
||||
#define LHCALL_SET_STACK 7
|
||||
#define LHCALL_SET_CLOCKEVENT 9
|
||||
#define LHCALL_HALT 10
|
||||
#define LHCALL_SET_PMD 13
|
||||
#define LHCALL_SET_PTE 14
|
||||
#define LHCALL_SET_PGD 15
|
||||
#define LHCALL_LOAD_TLS 16
|
||||
#define LHCALL_LOAD_GDT_ENTRY 18
|
||||
#define LHCALL_SEND_INTERRUPTS 19
|
||||
|
||||
#define LGUEST_TRAP_ENTRY 0x1F
|
||||
|
||||
/* Argument number 3 to LHCALL_LGUEST_SHUTDOWN */
|
||||
#define LGUEST_SHUTDOWN_POWEROFF 1
|
||||
#define LGUEST_SHUTDOWN_RESTART 2
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <asm/hw_irq.h>
|
||||
|
||||
/*G:030
|
||||
* But first, how does our Guest contact the Host to ask for privileged
|
||||
* operations? There are two ways: the direct way is to make a "hypercall",
|
||||
* to make requests of the Host Itself.
|
||||
*
|
||||
* Our hypercall mechanism uses the highest unused trap code (traps 32 and
|
||||
* above are used by real hardware interrupts). Seventeen hypercalls are
|
||||
* available: the hypercall number is put in the %eax register, and the
|
||||
* arguments (when required) are placed in %ebx, %ecx, %edx and %esi.
|
||||
* If a return value makes sense, it's returned in %eax.
|
||||
*
|
||||
* Grossly invalid calls result in Sudden Death at the hands of the vengeful
|
||||
* Host, rather than returning failure. This reflects Winston Churchill's
|
||||
* definition of a gentleman: "someone who is only rude intentionally".
|
||||
*/
|
||||
static inline unsigned long
|
||||
hcall(unsigned long call,
|
||||
unsigned long arg1, unsigned long arg2, unsigned long arg3,
|
||||
unsigned long arg4)
|
||||
{
|
||||
/* "int" is the Intel instruction to trigger a trap. */
|
||||
asm volatile("int $" __stringify(LGUEST_TRAP_ENTRY)
|
||||
/* The call in %eax (aka "a") might be overwritten */
|
||||
: "=a"(call)
|
||||
/* The arguments are in %eax, %ebx, %ecx, %edx & %esi */
|
||||
: "a"(call), "b"(arg1), "c"(arg2), "d"(arg3), "S"(arg4)
|
||||
/* "memory" means this might write somewhere in memory.
|
||||
* This isn't true for all calls, but it's safe to tell
|
||||
* gcc that it might happen so it doesn't get clever. */
|
||||
: "memory");
|
||||
return call;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Can't use our min() macro here: needs to be a constant */
|
||||
#define LGUEST_IRQS (NR_IRQS < 32 ? NR_IRQS: 32)
|
||||
|
||||
#define LHCALL_RING_SIZE 64
|
||||
struct hcall_args {
|
||||
/* These map directly onto eax/ebx/ecx/edx/esi in struct lguest_regs */
|
||||
unsigned long arg0, arg1, arg2, arg3, arg4;
|
||||
};
|
||||
|
||||
#endif /* !__ASSEMBLY__ */
|
||||
#endif /* _ASM_X86_LGUEST_HCALL_H */
|
|
@ -2,6 +2,15 @@
|
|||
#define _ASM_X86_MODULE_H
|
||||
|
||||
#include <asm-generic/module.h>
|
||||
#include <asm/orc_types.h>
|
||||
|
||||
struct mod_arch_specific {
|
||||
#ifdef CONFIG_ORC_UNWINDER
|
||||
unsigned int num_orcs;
|
||||
int *orc_unwind_ip;
|
||||
struct orc_entry *orc_unwind;
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
/* X86_64 does not define MODULE_PROC_FAMILY */
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
/*
|
||||
* Copyright (C) 2017 Josh Poimboeuf <jpoimboe@redhat.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef _ORC_LOOKUP_H
|
||||
#define _ORC_LOOKUP_H
|
||||
|
||||
/*
|
||||
* This is a lookup table for speeding up access to the .orc_unwind table.
|
||||
* Given an input address offset, the corresponding lookup table entry
|
||||
* specifies a subset of the .orc_unwind table to search.
|
||||
*
|
||||
* Each block represents the end of the previous range and the start of the
|
||||
* next range. An extra block is added to give the last range an end.
|
||||
*
|
||||
* The block size should be a power of 2 to avoid a costly 'div' instruction.
|
||||
*
|
||||
* A block size of 256 was chosen because it roughly doubles unwinder
|
||||
* performance while only adding ~5% to the ORC data footprint.
|
||||
*/
|
||||
#define LOOKUP_BLOCK_ORDER 8
|
||||
#define LOOKUP_BLOCK_SIZE (1 << LOOKUP_BLOCK_ORDER)
|
||||
|
||||
#ifndef LINKER_SCRIPT
|
||||
|
||||
extern unsigned int orc_lookup[];
|
||||
extern unsigned int orc_lookup_end[];
|
||||
|
||||
#define LOOKUP_START_IP (unsigned long)_stext
|
||||
#define LOOKUP_STOP_IP (unsigned long)_etext
|
||||
|
||||
#endif /* LINKER_SCRIPT */
|
||||
|
||||
#endif /* _ORC_LOOKUP_H */
|
|
@ -0,0 +1,107 @@
|
|||
/*
|
||||
* Copyright (C) 2017 Josh Poimboeuf <jpoimboe@redhat.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef _ORC_TYPES_H
|
||||
#define _ORC_TYPES_H
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/compiler.h>
|
||||
|
||||
/*
|
||||
* The ORC_REG_* registers are base registers which are used to find other
|
||||
* registers on the stack.
|
||||
*
|
||||
* ORC_REG_PREV_SP, also known as DWARF Call Frame Address (CFA), is the
|
||||
* address of the previous frame: the caller's SP before it called the current
|
||||
* function.
|
||||
*
|
||||
* ORC_REG_UNDEFINED means the corresponding register's value didn't change in
|
||||
* the current frame.
|
||||
*
|
||||
* The most commonly used base registers are SP and BP -- which the previous SP
|
||||
* is usually based on -- and PREV_SP and UNDEFINED -- which the previous BP is
|
||||
* usually based on.
|
||||
*
|
||||
* The rest of the base registers are needed for special cases like entry code
|
||||
* and GCC realigned stacks.
|
||||
*/
|
||||
#define ORC_REG_UNDEFINED 0
|
||||
#define ORC_REG_PREV_SP 1
|
||||
#define ORC_REG_DX 2
|
||||
#define ORC_REG_DI 3
|
||||
#define ORC_REG_BP 4
|
||||
#define ORC_REG_SP 5
|
||||
#define ORC_REG_R10 6
|
||||
#define ORC_REG_R13 7
|
||||
#define ORC_REG_BP_INDIRECT 8
|
||||
#define ORC_REG_SP_INDIRECT 9
|
||||
#define ORC_REG_MAX 15
|
||||
|
||||
/*
|
||||
* ORC_TYPE_CALL: Indicates that sp_reg+sp_offset resolves to PREV_SP (the
|
||||
* caller's SP right before it made the call). Used for all callable
|
||||
* functions, i.e. all C code and all callable asm functions.
|
||||
*
|
||||
* ORC_TYPE_REGS: Used in entry code to indicate that sp_reg+sp_offset points
|
||||
* to a fully populated pt_regs from a syscall, interrupt, or exception.
|
||||
*
|
||||
* ORC_TYPE_REGS_IRET: Used in entry code to indicate that sp_reg+sp_offset
|
||||
* points to the iret return frame.
|
||||
*
|
||||
* The UNWIND_HINT macros are used only for the unwind_hint struct. They
|
||||
* aren't used in struct orc_entry due to size and complexity constraints.
|
||||
* Objtool converts them to real types when it converts the hints to orc
|
||||
* entries.
|
||||
*/
|
||||
#define ORC_TYPE_CALL 0
|
||||
#define ORC_TYPE_REGS 1
|
||||
#define ORC_TYPE_REGS_IRET 2
|
||||
#define UNWIND_HINT_TYPE_SAVE 3
|
||||
#define UNWIND_HINT_TYPE_RESTORE 4
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
/*
|
||||
* This struct is more or less a vastly simplified version of the DWARF Call
|
||||
* Frame Information standard. It contains only the necessary parts of DWARF
|
||||
* CFI, simplified for ease of access by the in-kernel unwinder. It tells the
|
||||
* unwinder how to find the previous SP and BP (and sometimes entry regs) on
|
||||
* the stack for a given code address. Each instance of the struct corresponds
|
||||
* to one or more code locations.
|
||||
*/
|
||||
struct orc_entry {
|
||||
s16 sp_offset;
|
||||
s16 bp_offset;
|
||||
unsigned sp_reg:4;
|
||||
unsigned bp_reg:4;
|
||||
unsigned type:2;
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* This struct is used by asm and inline asm code to manually annotate the
|
||||
* location of registers on the stack for the ORC unwinder.
|
||||
*
|
||||
* Type can be either ORC_TYPE_* or UNWIND_HINT_TYPE_*.
|
||||
*/
|
||||
struct unwind_hint {
|
||||
u32 ip;
|
||||
s16 sp_offset;
|
||||
u8 sp_reg;
|
||||
u8 type;
|
||||
};
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ORC_TYPES_H */
|
|
@ -22,6 +22,7 @@ struct vm86;
|
|||
#include <asm/nops.h>
|
||||
#include <asm/special_insns.h>
|
||||
#include <asm/fpu/types.h>
|
||||
#include <asm/unwind_hints.h>
|
||||
|
||||
#include <linux/personality.h>
|
||||
#include <linux/cache.h>
|
||||
|
@ -661,7 +662,7 @@ static inline void sync_core(void)
|
|||
* In case NMI unmasking or performance ever becomes a problem,
|
||||
* the next best option appears to be MOV-to-CR2 and an
|
||||
* unconditional jump. That sequence also works on all CPUs,
|
||||
* but it will fault at CPL3 (i.e. Xen PV and lguest).
|
||||
* but it will fault at CPL3 (i.e. Xen PV).
|
||||
*
|
||||
* CPUID is the conventional way, but it's nasty: it doesn't
|
||||
* exist on some 486-like CPUs, and it usually exits to a
|
||||
|
@ -684,6 +685,7 @@ static inline void sync_core(void)
|
|||
unsigned int tmp;
|
||||
|
||||
asm volatile (
|
||||
UNWIND_HINT_SAVE
|
||||
"mov %%ss, %0\n\t"
|
||||
"pushq %q0\n\t"
|
||||
"pushq %%rsp\n\t"
|
||||
|
@ -693,6 +695,7 @@ static inline void sync_core(void)
|
|||
"pushq %q0\n\t"
|
||||
"pushq $1f\n\t"
|
||||
"iretq\n\t"
|
||||
UNWIND_HINT_RESTORE
|
||||
"1:"
|
||||
: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
|
||||
#endif
|
||||
|
|
|
@ -9,6 +9,20 @@
|
|||
#ifdef __i386__
|
||||
|
||||
struct pt_regs {
|
||||
/*
|
||||
* NB: 32-bit x86 CPUs are inconsistent as what happens in the
|
||||
* following cases (where %seg represents a segment register):
|
||||
*
|
||||
* - pushl %seg: some do a 16-bit write and leave the high
|
||||
* bits alone
|
||||
* - movl %seg, [mem]: some do a 16-bit write despite the movl
|
||||
* - IDT entry: some (e.g. 486) will leave the high bits of CS
|
||||
* and (if applicable) SS undefined.
|
||||
*
|
||||
* Fortunately, x86-32 doesn't read the high bits on POP or IRET,
|
||||
* so we can just treat all of the segment registers as 16-bit
|
||||
* values.
|
||||
*/
|
||||
unsigned long bx;
|
||||
unsigned long cx;
|
||||
unsigned long dx;
|
||||
|
@ -16,16 +30,22 @@ struct pt_regs {
|
|||
unsigned long di;
|
||||
unsigned long bp;
|
||||
unsigned long ax;
|
||||
unsigned long ds;
|
||||
unsigned long es;
|
||||
unsigned long fs;
|
||||
unsigned long gs;
|
||||
unsigned short ds;
|
||||
unsigned short __dsh;
|
||||
unsigned short es;
|
||||
unsigned short __esh;
|
||||
unsigned short fs;
|
||||
unsigned short __fsh;
|
||||
unsigned short gs;
|
||||
unsigned short __gsh;
|
||||
unsigned long orig_ax;
|
||||
unsigned long ip;
|
||||
unsigned long cs;
|
||||
unsigned short cs;
|
||||
unsigned short __csh;
|
||||
unsigned long flags;
|
||||
unsigned long sp;
|
||||
unsigned long ss;
|
||||
unsigned short ss;
|
||||
unsigned short __ssh;
|
||||
};
|
||||
|
||||
#else /* __i386__ */
|
||||
|
@ -176,6 +196,17 @@ static inline unsigned long regs_get_register(struct pt_regs *regs,
|
|||
if (offset == offsetof(struct pt_regs, sp) &&
|
||||
regs->cs == __KERNEL_CS)
|
||||
return kernel_stack_pointer(regs);
|
||||
|
||||
/* The selector fields are 16-bit. */
|
||||
if (offset == offsetof(struct pt_regs, cs) ||
|
||||
offset == offsetof(struct pt_regs, ss) ||
|
||||
offset == offsetof(struct pt_regs, ds) ||
|
||||
offset == offsetof(struct pt_regs, es) ||
|
||||
offset == offsetof(struct pt_regs, fs) ||
|
||||
offset == offsetof(struct pt_regs, gs)) {
|
||||
return *(u16 *)((unsigned long)regs + offset);
|
||||
|
||||
}
|
||||
#endif
|
||||
return *(unsigned long *)((unsigned long)regs + offset);
|
||||
}
|
||||
|
|
|
@ -1,45 +1,56 @@
|
|||
#ifndef _ASM_X86_RMWcc
|
||||
#define _ASM_X86_RMWcc
|
||||
|
||||
#define __CLOBBERS_MEM "memory"
|
||||
#define __CLOBBERS_MEM_CC_CX "memory", "cc", "cx"
|
||||
|
||||
#if !defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(CC_HAVE_ASM_GOTO)
|
||||
|
||||
/* Use asm goto */
|
||||
|
||||
#define __GEN_RMWcc(fullop, var, cc, ...) \
|
||||
#define __GEN_RMWcc(fullop, var, cc, clobbers, ...) \
|
||||
do { \
|
||||
asm_volatile_goto (fullop "; j" #cc " %l[cc_label]" \
|
||||
: : "m" (var), ## __VA_ARGS__ \
|
||||
: "memory" : cc_label); \
|
||||
: : [counter] "m" (var), ## __VA_ARGS__ \
|
||||
: clobbers : cc_label); \
|
||||
return 0; \
|
||||
cc_label: \
|
||||
return 1; \
|
||||
} while (0)
|
||||
|
||||
#define GEN_UNARY_RMWcc(op, var, arg0, cc) \
|
||||
__GEN_RMWcc(op " " arg0, var, cc)
|
||||
#define __BINARY_RMWcc_ARG " %1, "
|
||||
|
||||
#define GEN_BINARY_RMWcc(op, var, vcon, val, arg0, cc) \
|
||||
__GEN_RMWcc(op " %1, " arg0, var, cc, vcon (val))
|
||||
|
||||
#else /* defined(__GCC_ASM_FLAG_OUTPUTS__) || !defined(CC_HAVE_ASM_GOTO) */
|
||||
|
||||
/* Use flags output or a set instruction */
|
||||
|
||||
#define __GEN_RMWcc(fullop, var, cc, ...) \
|
||||
#define __GEN_RMWcc(fullop, var, cc, clobbers, ...) \
|
||||
do { \
|
||||
bool c; \
|
||||
asm volatile (fullop ";" CC_SET(cc) \
|
||||
: "+m" (var), CC_OUT(cc) (c) \
|
||||
: __VA_ARGS__ : "memory"); \
|
||||
: [counter] "+m" (var), CC_OUT(cc) (c) \
|
||||
: __VA_ARGS__ : clobbers); \
|
||||
return c; \
|
||||
} while (0)
|
||||
|
||||
#define GEN_UNARY_RMWcc(op, var, arg0, cc) \
|
||||
__GEN_RMWcc(op " " arg0, var, cc)
|
||||
|
||||
#define GEN_BINARY_RMWcc(op, var, vcon, val, arg0, cc) \
|
||||
__GEN_RMWcc(op " %2, " arg0, var, cc, vcon (val))
|
||||
#define __BINARY_RMWcc_ARG " %2, "
|
||||
|
||||
#endif /* defined(__GCC_ASM_FLAG_OUTPUTS__) || !defined(CC_HAVE_ASM_GOTO) */
|
||||
|
||||
#define GEN_UNARY_RMWcc(op, var, arg0, cc) \
|
||||
__GEN_RMWcc(op " " arg0, var, cc, __CLOBBERS_MEM)
|
||||
|
||||
#define GEN_UNARY_SUFFIXED_RMWcc(op, suffix, var, arg0, cc) \
|
||||
__GEN_RMWcc(op " " arg0 "\n\t" suffix, var, cc, \
|
||||
__CLOBBERS_MEM_CC_CX)
|
||||
|
||||
#define GEN_BINARY_RMWcc(op, var, vcon, val, arg0, cc) \
|
||||
__GEN_RMWcc(op __BINARY_RMWcc_ARG arg0, var, cc, \
|
||||
__CLOBBERS_MEM, vcon (val))
|
||||
|
||||
#define GEN_BINARY_SUFFIXED_RMWcc(op, suffix, var, vcon, val, arg0, cc) \
|
||||
__GEN_RMWcc(op __BINARY_RMWcc_ARG arg0 "\n\t" suffix, var, cc, \
|
||||
__CLOBBERS_MEM_CC_CX, vcon (val))
|
||||
|
||||
#endif /* _ASM_X86_RMWcc */
|
||||
|
|
|
@ -12,11 +12,14 @@ struct unwind_state {
|
|||
struct task_struct *task;
|
||||
int graph_idx;
|
||||
bool error;
|
||||
#ifdef CONFIG_FRAME_POINTER
|
||||
bool got_irq;
|
||||
unsigned long *bp, *orig_sp;
|
||||
#if defined(CONFIG_ORC_UNWINDER)
|
||||
bool signal, full_regs;
|
||||
unsigned long sp, bp, ip;
|
||||
struct pt_regs *regs;
|
||||
#elif defined(CONFIG_FRAME_POINTER_UNWINDER)
|
||||
bool got_irq;
|
||||
unsigned long *bp, *orig_sp, ip;
|
||||
struct pt_regs *regs;
|
||||
unsigned long ip;
|
||||
#else
|
||||
unsigned long *sp;
|
||||
#endif
|
||||
|
@ -24,16 +27,20 @@ struct unwind_state {
|
|||
|
||||
void __unwind_start(struct unwind_state *state, struct task_struct *task,
|
||||
struct pt_regs *regs, unsigned long *first_frame);
|
||||
|
||||
bool unwind_next_frame(struct unwind_state *state);
|
||||
|
||||
unsigned long unwind_get_return_address(struct unwind_state *state);
|
||||
unsigned long *unwind_get_return_address_ptr(struct unwind_state *state);
|
||||
|
||||
static inline bool unwind_done(struct unwind_state *state)
|
||||
{
|
||||
return state->stack_info.type == STACK_TYPE_UNKNOWN;
|
||||
}
|
||||
|
||||
static inline bool unwind_error(struct unwind_state *state)
|
||||
{
|
||||
return state->error;
|
||||
}
|
||||
|
||||
static inline
|
||||
void unwind_start(struct unwind_state *state, struct task_struct *task,
|
||||
struct pt_regs *regs, unsigned long *first_frame)
|
||||
|
@ -43,22 +50,7 @@ void unwind_start(struct unwind_state *state, struct task_struct *task,
|
|||
__unwind_start(state, task, regs, first_frame);
|
||||
}
|
||||
|
||||
static inline bool unwind_error(struct unwind_state *state)
|
||||
{
|
||||
return state->error;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_FRAME_POINTER
|
||||
|
||||
static inline
|
||||
unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
return NULL;
|
||||
|
||||
return state->regs ? &state->regs->ip : state->bp + 1;
|
||||
}
|
||||
|
||||
#if defined(CONFIG_ORC_UNWINDER) || defined(CONFIG_FRAME_POINTER_UNWINDER)
|
||||
static inline struct pt_regs *unwind_get_entry_regs(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
|
@ -66,20 +58,46 @@ static inline struct pt_regs *unwind_get_entry_regs(struct unwind_state *state)
|
|||
|
||||
return state->regs;
|
||||
}
|
||||
|
||||
#else /* !CONFIG_FRAME_POINTER */
|
||||
|
||||
static inline
|
||||
unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#else
|
||||
static inline struct pt_regs *unwind_get_entry_regs(struct unwind_state *state)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* CONFIG_FRAME_POINTER */
|
||||
#ifdef CONFIG_ORC_UNWINDER
|
||||
void unwind_init(void);
|
||||
void unwind_module_init(struct module *mod, void *orc_ip, size_t orc_ip_size,
|
||||
void *orc, size_t orc_size);
|
||||
#else
|
||||
static inline void unwind_init(void) {}
|
||||
static inline
|
||||
void unwind_module_init(struct module *mod, void *orc_ip, size_t orc_ip_size,
|
||||
void *orc, size_t orc_size) {}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This disables KASAN checking when reading a value from another task's stack,
|
||||
* since the other task could be running on another CPU and could have poisoned
|
||||
* the stack in the meantime.
|
||||
*/
|
||||
#define READ_ONCE_TASK_STACK(task, x) \
|
||||
({ \
|
||||
unsigned long val; \
|
||||
if (task == current) \
|
||||
val = READ_ONCE(x); \
|
||||
else \
|
||||
val = READ_ONCE_NOCHECK(x); \
|
||||
val; \
|
||||
})
|
||||
|
||||
static inline bool task_on_another_cpu(struct task_struct *task)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
return task != current && task->on_cpu;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* _ASM_X86_UNWIND_H */
|
||||
|
|
|
@ -0,0 +1,105 @@
|
|||
#ifndef _ASM_X86_UNWIND_HINTS_H
|
||||
#define _ASM_X86_UNWIND_HINTS_H
|
||||
|
||||
#include "orc_types.h"
|
||||
|
||||
#ifdef __ASSEMBLY__
|
||||
|
||||
/*
|
||||
* In asm, there are two kinds of code: normal C-type callable functions and
|
||||
* the rest. The normal callable functions can be called by other code, and
|
||||
* don't do anything unusual with the stack. Such normal callable functions
|
||||
* are annotated with the ENTRY/ENDPROC macros. Most asm code falls in this
|
||||
* category. In this case, no special debugging annotations are needed because
|
||||
* objtool can automatically generate the ORC data for the ORC unwinder to read
|
||||
* at runtime.
|
||||
*
|
||||
* Anything which doesn't fall into the above category, such as syscall and
|
||||
* interrupt handlers, tends to not be called directly by other functions, and
|
||||
* often does unusual non-C-function-type things with the stack pointer. Such
|
||||
* code needs to be annotated such that objtool can understand it. The
|
||||
* following CFI hint macros are for this type of code.
|
||||
*
|
||||
* These macros provide hints to objtool about the state of the stack at each
|
||||
* instruction. Objtool starts from the hints and follows the code flow,
|
||||
* making automatic CFI adjustments when it sees pushes and pops, filling out
|
||||
* the debuginfo as necessary. It will also warn if it sees any
|
||||
* inconsistencies.
|
||||
*/
|
||||
.macro UNWIND_HINT sp_reg=ORC_REG_SP sp_offset=0 type=ORC_TYPE_CALL
|
||||
#ifdef CONFIG_STACK_VALIDATION
|
||||
.Lunwind_hint_ip_\@:
|
||||
.pushsection .discard.unwind_hints
|
||||
/* struct unwind_hint */
|
||||
.long .Lunwind_hint_ip_\@ - .
|
||||
.short \sp_offset
|
||||
.byte \sp_reg
|
||||
.byte \type
|
||||
.popsection
|
||||
#endif
|
||||
.endm
|
||||
|
||||
.macro UNWIND_HINT_EMPTY
|
||||
UNWIND_HINT sp_reg=ORC_REG_UNDEFINED
|
||||
.endm
|
||||
|
||||
.macro UNWIND_HINT_REGS base=%rsp offset=0 indirect=0 extra=1 iret=0
|
||||
.if \base == %rsp
|
||||
.if \indirect
|
||||
.set sp_reg, ORC_REG_SP_INDIRECT
|
||||
.else
|
||||
.set sp_reg, ORC_REG_SP
|
||||
.endif
|
||||
.elseif \base == %rbp
|
||||
.set sp_reg, ORC_REG_BP
|
||||
.elseif \base == %rdi
|
||||
.set sp_reg, ORC_REG_DI
|
||||
.elseif \base == %rdx
|
||||
.set sp_reg, ORC_REG_DX
|
||||
.elseif \base == %r10
|
||||
.set sp_reg, ORC_REG_R10
|
||||
.else
|
||||
.error "UNWIND_HINT_REGS: bad base register"
|
||||
.endif
|
||||
|
||||
.set sp_offset, \offset
|
||||
|
||||
.if \iret
|
||||
.set type, ORC_TYPE_REGS_IRET
|
||||
.elseif \extra == 0
|
||||
.set type, ORC_TYPE_REGS_IRET
|
||||
.set sp_offset, \offset + (16*8)
|
||||
.else
|
||||
.set type, ORC_TYPE_REGS
|
||||
.endif
|
||||
|
||||
UNWIND_HINT sp_reg=sp_reg sp_offset=sp_offset type=type
|
||||
.endm
|
||||
|
||||
.macro UNWIND_HINT_IRET_REGS base=%rsp offset=0
|
||||
UNWIND_HINT_REGS base=\base offset=\offset iret=1
|
||||
.endm
|
||||
|
||||
.macro UNWIND_HINT_FUNC sp_offset=8
|
||||
UNWIND_HINT sp_offset=\sp_offset
|
||||
.endm
|
||||
|
||||
#else /* !__ASSEMBLY__ */
|
||||
|
||||
#define UNWIND_HINT(sp_reg, sp_offset, type) \
|
||||
"987: \n\t" \
|
||||
".pushsection .discard.unwind_hints\n\t" \
|
||||
/* struct unwind_hint */ \
|
||||
".long 987b - .\n\t" \
|
||||
".short " __stringify(sp_offset) "\n\t" \
|
||||
".byte " __stringify(sp_reg) "\n\t" \
|
||||
".byte " __stringify(type) "\n\t" \
|
||||
".popsection\n\t"
|
||||
|
||||
#define UNWIND_HINT_SAVE UNWIND_HINT(0, 0, UNWIND_HINT_TYPE_SAVE)
|
||||
|
||||
#define UNWIND_HINT_RESTORE UNWIND_HINT(0, 0, UNWIND_HINT_TYPE_RESTORE)
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_X86_UNWIND_HINTS_H */
|
|
@ -201,7 +201,7 @@ struct boot_params {
|
|||
*
|
||||
* @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
|
||||
* PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
|
||||
* @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest
|
||||
* @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest, deprecated
|
||||
* @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
|
||||
* which start at asm startup_xen() entry point and later jump to the C
|
||||
* xen_start_kernel() entry point. Both domU and dom0 type of guests are
|
||||
|
|
|
@ -126,11 +126,9 @@ obj-$(CONFIG_PERF_EVENTS) += perf_regs.o
|
|||
obj-$(CONFIG_TRACING) += tracepoint.o
|
||||
obj-$(CONFIG_SCHED_MC_PRIO) += itmt.o
|
||||
|
||||
ifdef CONFIG_FRAME_POINTER
|
||||
obj-y += unwind_frame.o
|
||||
else
|
||||
obj-y += unwind_guess.o
|
||||
endif
|
||||
obj-$(CONFIG_ORC_UNWINDER) += unwind_orc.o
|
||||
obj-$(CONFIG_FRAME_POINTER_UNWINDER) += unwind_frame.o
|
||||
obj-$(CONFIG_GUESS_UNWINDER) += unwind_guess.o
|
||||
|
||||
###
|
||||
# 64 bit specific files
|
||||
|
|
|
@ -742,7 +742,16 @@ static void *bp_int3_handler, *bp_int3_addr;
|
|||
|
||||
int poke_int3_handler(struct pt_regs *regs)
|
||||
{
|
||||
/* bp_patching_in_progress */
|
||||
/*
|
||||
* Having observed our INT3 instruction, we now must observe
|
||||
* bp_patching_in_progress.
|
||||
*
|
||||
* in_progress = TRUE INT3
|
||||
* WMB RMB
|
||||
* write INT3 if (in_progress)
|
||||
*
|
||||
* Idem for bp_int3_handler.
|
||||
*/
|
||||
smp_rmb();
|
||||
|
||||
if (likely(!bp_patching_in_progress))
|
||||
|
@ -788,9 +797,8 @@ void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
|
|||
bp_int3_addr = (u8 *)addr + sizeof(int3);
|
||||
bp_patching_in_progress = true;
|
||||
/*
|
||||
* Corresponding read barrier in int3 notifier for
|
||||
* making sure the in_progress flags is correctly ordered wrt.
|
||||
* patching
|
||||
* Corresponding read barrier in int3 notifier for making sure the
|
||||
* in_progress and handler are correctly ordered wrt. patching.
|
||||
*/
|
||||
smp_wmb();
|
||||
|
||||
|
@ -815,9 +823,11 @@ void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
|
|||
text_poke(addr, opcode, sizeof(int3));
|
||||
|
||||
on_each_cpu(do_sync_core, NULL, 1);
|
||||
|
||||
/*
|
||||
* sync_core() implies an smp_mb() and orders this store against
|
||||
* the writing of the new instruction.
|
||||
*/
|
||||
bp_patching_in_progress = false;
|
||||
smp_wmb();
|
||||
|
||||
return addr;
|
||||
}
|
||||
|
|
|
@ -4,9 +4,6 @@
|
|||
|
||||
#include <asm/ucontext.h>
|
||||
|
||||
#include <linux/lguest.h>
|
||||
#include "../../../drivers/lguest/lg.h"
|
||||
|
||||
#define __SYSCALL_I386(nr, sym, qual) [nr] = 1,
|
||||
static char syscalls[] = {
|
||||
#include <asm/syscalls_32.h>
|
||||
|
@ -62,23 +59,6 @@ void foo(void)
|
|||
OFFSET(stack_canary_offset, stack_canary, canary);
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_LGUEST) || defined(CONFIG_LGUEST_GUEST) || defined(CONFIG_LGUEST_MODULE)
|
||||
BLANK();
|
||||
OFFSET(LGUEST_DATA_irq_enabled, lguest_data, irq_enabled);
|
||||
OFFSET(LGUEST_DATA_irq_pending, lguest_data, irq_pending);
|
||||
|
||||
BLANK();
|
||||
OFFSET(LGUEST_PAGES_host_gdt_desc, lguest_pages, state.host_gdt_desc);
|
||||
OFFSET(LGUEST_PAGES_host_idt_desc, lguest_pages, state.host_idt_desc);
|
||||
OFFSET(LGUEST_PAGES_host_cr3, lguest_pages, state.host_cr3);
|
||||
OFFSET(LGUEST_PAGES_host_sp, lguest_pages, state.host_sp);
|
||||
OFFSET(LGUEST_PAGES_guest_gdt_desc, lguest_pages,state.guest_gdt_desc);
|
||||
OFFSET(LGUEST_PAGES_guest_idt_desc, lguest_pages,state.guest_idt_desc);
|
||||
OFFSET(LGUEST_PAGES_guest_gdt, lguest_pages, state.guest_gdt);
|
||||
OFFSET(LGUEST_PAGES_regs_trapnum, lguest_pages, regs.trapnum);
|
||||
OFFSET(LGUEST_PAGES_regs_errcode, lguest_pages, regs.errcode);
|
||||
OFFSET(LGUEST_PAGES_regs, lguest_pages, regs);
|
||||
#endif
|
||||
BLANK();
|
||||
DEFINE(__NR_syscall_max, sizeof(syscalls) - 1);
|
||||
DEFINE(NR_syscalls, sizeof(syscalls));
|
||||
|
|
|
@ -94,6 +94,9 @@ void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
|
|||
if (stack_name)
|
||||
printk("%s <%s>\n", log_lvl, stack_name);
|
||||
|
||||
if (regs && on_stack(&stack_info, regs, sizeof(*regs)))
|
||||
__show_regs(regs, 0);
|
||||
|
||||
/*
|
||||
* Scan the stack, printing any text addresses we find. At the
|
||||
* same time, follow proper stack frames with the unwinder.
|
||||
|
@ -118,10 +121,8 @@ void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
|
|||
* Don't print regs->ip again if it was already printed
|
||||
* by __show_regs() below.
|
||||
*/
|
||||
if (regs && stack == ®s->ip) {
|
||||
unwind_next_frame(&state);
|
||||
continue;
|
||||
}
|
||||
if (regs && stack == ®s->ip)
|
||||
goto next;
|
||||
|
||||
if (stack == ret_addr_p)
|
||||
reliable = 1;
|
||||
|
@ -144,6 +145,7 @@ void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
|
|||
if (!reliable)
|
||||
continue;
|
||||
|
||||
next:
|
||||
/*
|
||||
* Get the next frame from the unwinder. No need to
|
||||
* check for an error: if anything goes wrong, the rest
|
||||
|
@ -153,7 +155,7 @@ void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
|
|||
|
||||
/* if the frame has entry regs, print them */
|
||||
regs = unwind_get_entry_regs(&state);
|
||||
if (regs)
|
||||
if (regs && on_stack(&stack_info, regs, sizeof(*regs)))
|
||||
__show_regs(regs, 0);
|
||||
}
|
||||
|
||||
|
@ -265,7 +267,7 @@ int __die(const char *str, struct pt_regs *regs, long err)
|
|||
#ifdef CONFIG_X86_32
|
||||
if (user_mode(regs)) {
|
||||
sp = regs->sp;
|
||||
ss = regs->ss & 0xffff;
|
||||
ss = regs->ss;
|
||||
} else {
|
||||
sp = kernel_stack_pointer(regs);
|
||||
savesegment(ss, ss);
|
||||
|
|
|
@ -37,7 +37,7 @@ static bool in_hardirq_stack(unsigned long *stack, struct stack_info *info)
|
|||
* This is a software stack, so 'end' can be a valid stack pointer.
|
||||
* It just means the stack is empty.
|
||||
*/
|
||||
if (stack < begin || stack > end)
|
||||
if (stack <= begin || stack > end)
|
||||
return false;
|
||||
|
||||
info->type = STACK_TYPE_IRQ;
|
||||
|
@ -62,7 +62,7 @@ static bool in_softirq_stack(unsigned long *stack, struct stack_info *info)
|
|||
* This is a software stack, so 'end' can be a valid stack pointer.
|
||||
* It just means the stack is empty.
|
||||
*/
|
||||
if (stack < begin || stack > end)
|
||||
if (stack <= begin || stack > end)
|
||||
return false;
|
||||
|
||||
info->type = STACK_TYPE_SOFTIRQ;
|
||||
|
|
|
@ -55,7 +55,7 @@ static bool in_exception_stack(unsigned long *stack, struct stack_info *info)
|
|||
begin = end - (exception_stack_sizes[k] / sizeof(long));
|
||||
regs = (struct pt_regs *)end - 1;
|
||||
|
||||
if (stack < begin || stack >= end)
|
||||
if (stack <= begin || stack >= end)
|
||||
continue;
|
||||
|
||||
info->type = STACK_TYPE_EXCEPTION + k;
|
||||
|
@ -78,7 +78,7 @@ static bool in_irq_stack(unsigned long *stack, struct stack_info *info)
|
|||
* This is a software stack, so 'end' can be a valid stack pointer.
|
||||
* It just means the stack is empty.
|
||||
*/
|
||||
if (stack < begin || stack > end)
|
||||
if (stack <= begin || stack > end)
|
||||
return false;
|
||||
|
||||
info->type = STACK_TYPE_IRQ;
|
||||
|
|
|
@ -155,7 +155,6 @@ ENTRY(startup_32)
|
|||
jmp *%eax
|
||||
|
||||
.Lbad_subarch:
|
||||
WEAK(lguest_entry)
|
||||
WEAK(xen_entry)
|
||||
/* Unknown implementation; there's really
|
||||
nothing we can do at this point. */
|
||||
|
@ -165,7 +164,6 @@ WEAK(xen_entry)
|
|||
|
||||
subarch_entries:
|
||||
.long .Ldefault_entry /* normal x86/PC */
|
||||
.long lguest_entry /* lguest hypervisor */
|
||||
.long xen_entry /* Xen hypervisor */
|
||||
.long .Ldefault_entry /* Moorestown MID */
|
||||
num_subarch_entries = (. - subarch_entries) / 4
|
||||
|
@ -457,12 +455,9 @@ early_idt_handler_common:
|
|||
/* The vector number is in pt_regs->gs */
|
||||
|
||||
cld
|
||||
pushl %fs /* pt_regs->fs */
|
||||
movw $0, 2(%esp) /* clear high bits (some CPUs leave garbage) */
|
||||
pushl %es /* pt_regs->es */
|
||||
movw $0, 2(%esp) /* clear high bits (some CPUs leave garbage) */
|
||||
pushl %ds /* pt_regs->ds */
|
||||
movw $0, 2(%esp) /* clear high bits (some CPUs leave garbage) */
|
||||
pushl %fs /* pt_regs->fs (__fsh varies by model) */
|
||||
pushl %es /* pt_regs->es (__esh varies by model) */
|
||||
pushl %ds /* pt_regs->ds (__dsh varies by model) */
|
||||
pushl %eax /* pt_regs->ax */
|
||||
pushl %ebp /* pt_regs->bp */
|
||||
pushl %edi /* pt_regs->di */
|
||||
|
@ -479,9 +474,8 @@ early_idt_handler_common:
|
|||
/* Load the vector number into EDX */
|
||||
movl PT_GS(%esp), %edx
|
||||
|
||||
/* Load GS into pt_regs->gs and clear high bits */
|
||||
/* Load GS into pt_regs->gs (and maybe clobber __gsh) */
|
||||
movw %gs, PT_GS(%esp)
|
||||
movw $0, PT_GS+2(%esp)
|
||||
|
||||
movl %esp, %eax /* args are pt_regs (EAX), trapnr (EDX) */
|
||||
call early_fixup_exception
|
||||
|
@ -493,10 +487,10 @@ early_idt_handler_common:
|
|||
popl %edi /* pt_regs->di */
|
||||
popl %ebp /* pt_regs->bp */
|
||||
popl %eax /* pt_regs->ax */
|
||||
popl %ds /* pt_regs->ds */
|
||||
popl %es /* pt_regs->es */
|
||||
popl %fs /* pt_regs->fs */
|
||||
popl %gs /* pt_regs->gs */
|
||||
popl %ds /* pt_regs->ds (always ignores __dsh) */
|
||||
popl %es /* pt_regs->es (always ignores __esh) */
|
||||
popl %fs /* pt_regs->fs (always ignores __fsh) */
|
||||
popl %gs /* pt_regs->gs (always ignores __gsh) */
|
||||
decl %ss:early_recursion_flag
|
||||
addl $4, %esp /* pop pt_regs->orig_ax */
|
||||
iret
|
||||
|
|
|
@ -21,6 +21,25 @@
|
|||
#include <asm/mmu_context.h>
|
||||
#include <asm/syscalls.h>
|
||||
|
||||
static void refresh_ldt_segments(void)
|
||||
{
|
||||
#ifdef CONFIG_X86_64
|
||||
unsigned short sel;
|
||||
|
||||
/*
|
||||
* Make sure that the cached DS and ES descriptors match the updated
|
||||
* LDT.
|
||||
*/
|
||||
savesegment(ds, sel);
|
||||
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
|
||||
loadsegment(ds, sel);
|
||||
|
||||
savesegment(es, sel);
|
||||
if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
|
||||
loadsegment(es, sel);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* context.lock is held for us, so we don't need any locking. */
|
||||
static void flush_ldt(void *__mm)
|
||||
{
|
||||
|
@ -32,6 +51,8 @@ static void flush_ldt(void *__mm)
|
|||
|
||||
pc = &mm->context;
|
||||
set_ldt(pc->ldt->entries, pc->ldt->nr_entries);
|
||||
|
||||
refresh_ldt_segments();
|
||||
}
|
||||
|
||||
/* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
|
||||
|
|
|
@ -35,6 +35,7 @@
|
|||
#include <asm/page.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/setup.h>
|
||||
#include <asm/unwind.h>
|
||||
|
||||
#if 0
|
||||
#define DEBUGP(fmt, ...) \
|
||||
|
@ -213,7 +214,7 @@ int module_finalize(const Elf_Ehdr *hdr,
|
|||
struct module *me)
|
||||
{
|
||||
const Elf_Shdr *s, *text = NULL, *alt = NULL, *locks = NULL,
|
||||
*para = NULL;
|
||||
*para = NULL, *orc = NULL, *orc_ip = NULL;
|
||||
char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
|
||||
|
||||
for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
|
||||
|
@ -225,6 +226,10 @@ int module_finalize(const Elf_Ehdr *hdr,
|
|||
locks = s;
|
||||
if (!strcmp(".parainstructions", secstrings + s->sh_name))
|
||||
para = s;
|
||||
if (!strcmp(".orc_unwind", secstrings + s->sh_name))
|
||||
orc = s;
|
||||
if (!strcmp(".orc_unwind_ip", secstrings + s->sh_name))
|
||||
orc_ip = s;
|
||||
}
|
||||
|
||||
if (alt) {
|
||||
|
@ -248,6 +253,10 @@ int module_finalize(const Elf_Ehdr *hdr,
|
|||
/* make jump label nops */
|
||||
jump_label_apply_nops(me);
|
||||
|
||||
if (orc && orc_ip)
|
||||
unwind_module_init(me, (void *)orc_ip->sh_addr, orc_ip->sh_size,
|
||||
(void *)orc->sh_addr, orc->sh_size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ void __init x86_early_init_platform_quirks(void)
|
|||
x86_platform.legacy.reserve_bios_regions = 1;
|
||||
break;
|
||||
case X86_SUBARCH_XEN:
|
||||
case X86_SUBARCH_LGUEST:
|
||||
x86_platform.legacy.devices.pnpbios = 0;
|
||||
x86_platform.legacy.rtc = 0;
|
||||
break;
|
||||
|
|
|
@ -68,7 +68,7 @@ void __show_regs(struct pt_regs *regs, int all)
|
|||
|
||||
if (user_mode(regs)) {
|
||||
sp = regs->sp;
|
||||
ss = regs->ss & 0xffff;
|
||||
ss = regs->ss;
|
||||
gs = get_user_gs(regs);
|
||||
} else {
|
||||
sp = kernel_stack_pointer(regs);
|
||||
|
|
|
@ -69,8 +69,7 @@ void __show_regs(struct pt_regs *regs, int all)
|
|||
unsigned int fsindex, gsindex;
|
||||
unsigned int ds, cs, es;
|
||||
|
||||
printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs & 0xffff,
|
||||
(void *)regs->ip);
|
||||
printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs, (void *)regs->ip);
|
||||
printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
|
||||
regs->sp, regs->flags);
|
||||
if (regs->orig_ax != -1)
|
||||
|
@ -149,6 +148,123 @@ void release_thread(struct task_struct *dead_task)
|
|||
}
|
||||
}
|
||||
|
||||
enum which_selector {
|
||||
FS,
|
||||
GS
|
||||
};
|
||||
|
||||
/*
|
||||
* Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
|
||||
* not available. The goal is to be reasonably fast on non-FSGSBASE systems.
|
||||
* It's forcibly inlined because it'll generate better code and this function
|
||||
* is hot.
|
||||
*/
|
||||
static __always_inline void save_base_legacy(struct task_struct *prev_p,
|
||||
unsigned short selector,
|
||||
enum which_selector which)
|
||||
{
|
||||
if (likely(selector == 0)) {
|
||||
/*
|
||||
* On Intel (without X86_BUG_NULL_SEG), the segment base could
|
||||
* be the pre-existing saved base or it could be zero. On AMD
|
||||
* (with X86_BUG_NULL_SEG), the segment base could be almost
|
||||
* anything.
|
||||
*
|
||||
* This branch is very hot (it's hit twice on almost every
|
||||
* context switch between 64-bit programs), and avoiding
|
||||
* the RDMSR helps a lot, so we just assume that whatever
|
||||
* value is already saved is correct. This matches historical
|
||||
* Linux behavior, so it won't break existing applications.
|
||||
*
|
||||
* To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
|
||||
* report that the base is zero, it needs to actually be zero:
|
||||
* see the corresponding logic in load_seg_legacy.
|
||||
*/
|
||||
} else {
|
||||
/*
|
||||
* If the selector is 1, 2, or 3, then the base is zero on
|
||||
* !X86_BUG_NULL_SEG CPUs and could be anything on
|
||||
* X86_BUG_NULL_SEG CPUs. In the latter case, Linux
|
||||
* has never attempted to preserve the base across context
|
||||
* switches.
|
||||
*
|
||||
* If selector > 3, then it refers to a real segment, and
|
||||
* saving the base isn't necessary.
|
||||
*/
|
||||
if (which == FS)
|
||||
prev_p->thread.fsbase = 0;
|
||||
else
|
||||
prev_p->thread.gsbase = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static __always_inline void save_fsgs(struct task_struct *task)
|
||||
{
|
||||
savesegment(fs, task->thread.fsindex);
|
||||
savesegment(gs, task->thread.gsindex);
|
||||
save_base_legacy(task, task->thread.fsindex, FS);
|
||||
save_base_legacy(task, task->thread.gsindex, GS);
|
||||
}
|
||||
|
||||
static __always_inline void loadseg(enum which_selector which,
|
||||
unsigned short sel)
|
||||
{
|
||||
if (which == FS)
|
||||
loadsegment(fs, sel);
|
||||
else
|
||||
load_gs_index(sel);
|
||||
}
|
||||
|
||||
static __always_inline void load_seg_legacy(unsigned short prev_index,
|
||||
unsigned long prev_base,
|
||||
unsigned short next_index,
|
||||
unsigned long next_base,
|
||||
enum which_selector which)
|
||||
{
|
||||
if (likely(next_index <= 3)) {
|
||||
/*
|
||||
* The next task is using 64-bit TLS, is not using this
|
||||
* segment at all, or is having fun with arcane CPU features.
|
||||
*/
|
||||
if (next_base == 0) {
|
||||
/*
|
||||
* Nasty case: on AMD CPUs, we need to forcibly zero
|
||||
* the base.
|
||||
*/
|
||||
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
||||
loadseg(which, __USER_DS);
|
||||
loadseg(which, next_index);
|
||||
} else {
|
||||
/*
|
||||
* We could try to exhaustively detect cases
|
||||
* under which we can skip the segment load,
|
||||
* but there's really only one case that matters
|
||||
* for performance: if both the previous and
|
||||
* next states are fully zeroed, we can skip
|
||||
* the load.
|
||||
*
|
||||
* (This assumes that prev_base == 0 has no
|
||||
* false positives. This is the case on
|
||||
* Intel-style CPUs.)
|
||||
*/
|
||||
if (likely(prev_index | next_index | prev_base))
|
||||
loadseg(which, next_index);
|
||||
}
|
||||
} else {
|
||||
if (prev_index != next_index)
|
||||
loadseg(which, next_index);
|
||||
wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
|
||||
next_base);
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* The next task is using a real segment. Loading the selector
|
||||
* is sufficient.
|
||||
*/
|
||||
loadseg(which, next_index);
|
||||
}
|
||||
}
|
||||
|
||||
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
|
||||
unsigned long arg, struct task_struct *p, unsigned long tls)
|
||||
{
|
||||
|
@ -229,10 +345,19 @@ start_thread_common(struct pt_regs *regs, unsigned long new_ip,
|
|||
unsigned long new_sp,
|
||||
unsigned int _cs, unsigned int _ss, unsigned int _ds)
|
||||
{
|
||||
WARN_ON_ONCE(regs != current_pt_regs());
|
||||
|
||||
if (static_cpu_has(X86_BUG_NULL_SEG)) {
|
||||
/* Loading zero below won't clear the base. */
|
||||
loadsegment(fs, __USER_DS);
|
||||
load_gs_index(__USER_DS);
|
||||
}
|
||||
|
||||
loadsegment(fs, 0);
|
||||
loadsegment(es, _ds);
|
||||
loadsegment(ds, _ds);
|
||||
load_gs_index(0);
|
||||
|
||||
regs->ip = new_ip;
|
||||
regs->sp = new_sp;
|
||||
regs->cs = _cs;
|
||||
|
@ -277,7 +402,9 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|||
struct fpu *next_fpu = &next->fpu;
|
||||
int cpu = smp_processor_id();
|
||||
struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
|
||||
unsigned prev_fsindex, prev_gsindex;
|
||||
|
||||
WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
|
||||
this_cpu_read(irq_count) != -1);
|
||||
|
||||
switch_fpu_prepare(prev_fpu, cpu);
|
||||
|
||||
|
@ -286,8 +413,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|||
*
|
||||
* (e.g. xen_load_tls())
|
||||
*/
|
||||
savesegment(fs, prev_fsindex);
|
||||
savesegment(gs, prev_gsindex);
|
||||
save_fsgs(prev_p);
|
||||
|
||||
/*
|
||||
* Load TLS before restoring any segments so that segment loads
|
||||
|
@ -326,108 +452,10 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|||
if (unlikely(next->ds | prev->ds))
|
||||
loadsegment(ds, next->ds);
|
||||
|
||||
/*
|
||||
* Switch FS and GS.
|
||||
*
|
||||
* These are even more complicated than DS and ES: they have
|
||||
* 64-bit bases are that controlled by arch_prctl. The bases
|
||||
* don't necessarily match the selectors, as user code can do
|
||||
* any number of things to cause them to be inconsistent.
|
||||
*
|
||||
* We don't promise to preserve the bases if the selectors are
|
||||
* nonzero. We also don't promise to preserve the base if the
|
||||
* selector is zero and the base doesn't match whatever was
|
||||
* most recently passed to ARCH_SET_FS/GS. (If/when the
|
||||
* FSGSBASE instructions are enabled, we'll need to offer
|
||||
* stronger guarantees.)
|
||||
*
|
||||
* As an invariant,
|
||||
* (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is
|
||||
* impossible.
|
||||
*/
|
||||
if (next->fsindex) {
|
||||
/* Loading a nonzero value into FS sets the index and base. */
|
||||
loadsegment(fs, next->fsindex);
|
||||
} else {
|
||||
if (next->fsbase) {
|
||||
/* Next index is zero but next base is nonzero. */
|
||||
if (prev_fsindex)
|
||||
loadsegment(fs, 0);
|
||||
wrmsrl(MSR_FS_BASE, next->fsbase);
|
||||
} else {
|
||||
/* Next base and index are both zero. */
|
||||
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
||||
/*
|
||||
* We don't know the previous base and can't
|
||||
* find out without RDMSR. Forcibly clear it.
|
||||
*/
|
||||
loadsegment(fs, __USER_DS);
|
||||
loadsegment(fs, 0);
|
||||
} else {
|
||||
/*
|
||||
* If the previous index is zero and ARCH_SET_FS
|
||||
* didn't change the base, then the base is
|
||||
* also zero and we don't need to do anything.
|
||||
*/
|
||||
if (prev->fsbase || prev_fsindex)
|
||||
loadsegment(fs, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Save the old state and preserve the invariant.
|
||||
* NB: if prev_fsindex == 0, then we can't reliably learn the base
|
||||
* without RDMSR because Intel user code can zero it without telling
|
||||
* us and AMD user code can program any 32-bit value without telling
|
||||
* us.
|
||||
*/
|
||||
if (prev_fsindex)
|
||||
prev->fsbase = 0;
|
||||
prev->fsindex = prev_fsindex;
|
||||
|
||||
if (next->gsindex) {
|
||||
/* Loading a nonzero value into GS sets the index and base. */
|
||||
load_gs_index(next->gsindex);
|
||||
} else {
|
||||
if (next->gsbase) {
|
||||
/* Next index is zero but next base is nonzero. */
|
||||
if (prev_gsindex)
|
||||
load_gs_index(0);
|
||||
wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase);
|
||||
} else {
|
||||
/* Next base and index are both zero. */
|
||||
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
||||
/*
|
||||
* We don't know the previous base and can't
|
||||
* find out without RDMSR. Forcibly clear it.
|
||||
*
|
||||
* This contains a pointless SWAPGS pair.
|
||||
* Fixing it would involve an explicit check
|
||||
* for Xen or a new pvop.
|
||||
*/
|
||||
load_gs_index(__USER_DS);
|
||||
load_gs_index(0);
|
||||
} else {
|
||||
/*
|
||||
* If the previous index is zero and ARCH_SET_GS
|
||||
* didn't change the base, then the base is
|
||||
* also zero and we don't need to do anything.
|
||||
*/
|
||||
if (prev->gsbase || prev_gsindex)
|
||||
load_gs_index(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Save the old state and preserve the invariant.
|
||||
* NB: if prev_gsindex == 0, then we can't reliably learn the base
|
||||
* without RDMSR because Intel user code can zero it without telling
|
||||
* us and AMD user code can program any 32-bit value without telling
|
||||
* us.
|
||||
*/
|
||||
if (prev_gsindex)
|
||||
prev->gsbase = 0;
|
||||
prev->gsindex = prev_gsindex;
|
||||
load_seg_legacy(prev->fsindex, prev->fsbase,
|
||||
next->fsindex, next->fsbase, FS);
|
||||
load_seg_legacy(prev->gsindex, prev->gsbase,
|
||||
next->gsindex, next->gsbase, GS);
|
||||
|
||||
switch_fpu_finish(next_fpu, cpu);
|
||||
|
||||
|
|
|
@ -115,6 +115,7 @@
|
|||
#include <asm/microcode.h>
|
||||
#include <asm/mmu_context.h>
|
||||
#include <asm/kaslr.h>
|
||||
#include <asm/unwind.h>
|
||||
|
||||
/*
|
||||
* max_low_pfn_mapped: highest direct mapped pfn under 4GB
|
||||
|
@ -1310,6 +1311,8 @@ void __init setup_arch(char **cmdline_p)
|
|||
if (efi_enabled(EFI_BOOT))
|
||||
efi_apply_memmap_quirks();
|
||||
#endif
|
||||
|
||||
unwind_init();
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
|
|
|
@ -256,7 +256,7 @@ get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size,
|
|||
sp = current->sas_ss_sp + current->sas_ss_size;
|
||||
} else if (IS_ENABLED(CONFIG_X86_32) &&
|
||||
!onsigstack &&
|
||||
(regs->ss & 0xffff) != __USER_DS &&
|
||||
regs->ss != __USER_DS &&
|
||||
!(ka->sa.sa_flags & SA_RESTORER) &&
|
||||
ka->sa.sa_restorer) {
|
||||
/* This is the legacy signal stack switching. */
|
||||
|
|
|
@ -13,7 +13,7 @@ unsigned long convert_ip_to_linear(struct task_struct *child, struct pt_regs *re
|
|||
unsigned long addr, seg;
|
||||
|
||||
addr = regs->ip;
|
||||
seg = regs->cs & 0xffff;
|
||||
seg = regs->cs;
|
||||
if (v8086_mode(regs)) {
|
||||
addr = (addr & 0xffff) + (seg << 4);
|
||||
return addr;
|
||||
|
|
|
@ -10,20 +10,22 @@
|
|||
|
||||
#define FRAME_HEADER_SIZE (sizeof(long) * 2)
|
||||
|
||||
/*
|
||||
* This disables KASAN checking when reading a value from another task's stack,
|
||||
* since the other task could be running on another CPU and could have poisoned
|
||||
* the stack in the meantime.
|
||||
*/
|
||||
#define READ_ONCE_TASK_STACK(task, x) \
|
||||
({ \
|
||||
unsigned long val; \
|
||||
if (task == current) \
|
||||
val = READ_ONCE(x); \
|
||||
else \
|
||||
val = READ_ONCE_NOCHECK(x); \
|
||||
val; \
|
||||
})
|
||||
unsigned long unwind_get_return_address(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
return 0;
|
||||
|
||||
return __kernel_text_address(state->ip) ? state->ip : 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(unwind_get_return_address);
|
||||
|
||||
unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
return NULL;
|
||||
|
||||
return state->regs ? &state->regs->ip : state->bp + 1;
|
||||
}
|
||||
|
||||
static void unwind_dump(struct unwind_state *state)
|
||||
{
|
||||
|
@ -66,15 +68,6 @@ static void unwind_dump(struct unwind_state *state)
|
|||
}
|
||||
}
|
||||
|
||||
unsigned long unwind_get_return_address(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
return 0;
|
||||
|
||||
return __kernel_text_address(state->ip) ? state->ip : 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(unwind_get_return_address);
|
||||
|
||||
static size_t regs_size(struct pt_regs *regs)
|
||||
{
|
||||
/* x86_32 regs from kernel mode are two words shorter: */
|
||||
|
|
|
@ -19,6 +19,11 @@ unsigned long unwind_get_return_address(struct unwind_state *state)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(unwind_get_return_address);
|
||||
|
||||
unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bool unwind_next_frame(struct unwind_state *state)
|
||||
{
|
||||
struct stack_info *info = &state->stack_info;
|
||||
|
|
|
@ -0,0 +1,582 @@
|
|||
#include <linux/module.h>
|
||||
#include <linux/sort.h>
|
||||
#include <asm/ptrace.h>
|
||||
#include <asm/stacktrace.h>
|
||||
#include <asm/unwind.h>
|
||||
#include <asm/orc_types.h>
|
||||
#include <asm/orc_lookup.h>
|
||||
#include <asm/sections.h>
|
||||
|
||||
#define orc_warn(fmt, ...) \
|
||||
printk_deferred_once(KERN_WARNING pr_fmt("WARNING: " fmt), ##__VA_ARGS__)
|
||||
|
||||
extern int __start_orc_unwind_ip[];
|
||||
extern int __stop_orc_unwind_ip[];
|
||||
extern struct orc_entry __start_orc_unwind[];
|
||||
extern struct orc_entry __stop_orc_unwind[];
|
||||
|
||||
static DEFINE_MUTEX(sort_mutex);
|
||||
int *cur_orc_ip_table = __start_orc_unwind_ip;
|
||||
struct orc_entry *cur_orc_table = __start_orc_unwind;
|
||||
|
||||
unsigned int lookup_num_blocks;
|
||||
bool orc_init;
|
||||
|
||||
static inline unsigned long orc_ip(const int *ip)
|
||||
{
|
||||
return (unsigned long)ip + *ip;
|
||||
}
|
||||
|
||||
static struct orc_entry *__orc_find(int *ip_table, struct orc_entry *u_table,
|
||||
unsigned int num_entries, unsigned long ip)
|
||||
{
|
||||
int *first = ip_table;
|
||||
int *last = ip_table + num_entries - 1;
|
||||
int *mid = first, *found = first;
|
||||
|
||||
if (!num_entries)
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* Do a binary range search to find the rightmost duplicate of a given
|
||||
* starting address. Some entries are section terminators which are
|
||||
* "weak" entries for ensuring there are no gaps. They should be
|
||||
* ignored when they conflict with a real entry.
|
||||
*/
|
||||
while (first <= last) {
|
||||
mid = first + ((last - first) / 2);
|
||||
|
||||
if (orc_ip(mid) <= ip) {
|
||||
found = mid;
|
||||
first = mid + 1;
|
||||
} else
|
||||
last = mid - 1;
|
||||
}
|
||||
|
||||
return u_table + (found - ip_table);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MODULES
|
||||
static struct orc_entry *orc_module_find(unsigned long ip)
|
||||
{
|
||||
struct module *mod;
|
||||
|
||||
mod = __module_address(ip);
|
||||
if (!mod || !mod->arch.orc_unwind || !mod->arch.orc_unwind_ip)
|
||||
return NULL;
|
||||
return __orc_find(mod->arch.orc_unwind_ip, mod->arch.orc_unwind,
|
||||
mod->arch.num_orcs, ip);
|
||||
}
|
||||
#else
|
||||
static struct orc_entry *orc_module_find(unsigned long ip)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
static struct orc_entry *orc_find(unsigned long ip)
|
||||
{
|
||||
if (!orc_init)
|
||||
return NULL;
|
||||
|
||||
/* For non-init vmlinux addresses, use the fast lookup table: */
|
||||
if (ip >= LOOKUP_START_IP && ip < LOOKUP_STOP_IP) {
|
||||
unsigned int idx, start, stop;
|
||||
|
||||
idx = (ip - LOOKUP_START_IP) / LOOKUP_BLOCK_SIZE;
|
||||
|
||||
if (unlikely((idx >= lookup_num_blocks-1))) {
|
||||
orc_warn("WARNING: bad lookup idx: idx=%u num=%u ip=%lx\n",
|
||||
idx, lookup_num_blocks, ip);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
start = orc_lookup[idx];
|
||||
stop = orc_lookup[idx + 1] + 1;
|
||||
|
||||
if (unlikely((__start_orc_unwind + start >= __stop_orc_unwind) ||
|
||||
(__start_orc_unwind + stop > __stop_orc_unwind))) {
|
||||
orc_warn("WARNING: bad lookup value: idx=%u num=%u start=%u stop=%u ip=%lx\n",
|
||||
idx, lookup_num_blocks, start, stop, ip);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return __orc_find(__start_orc_unwind_ip + start,
|
||||
__start_orc_unwind + start, stop - start, ip);
|
||||
}
|
||||
|
||||
/* vmlinux .init slow lookup: */
|
||||
if (ip >= (unsigned long)_sinittext && ip < (unsigned long)_einittext)
|
||||
return __orc_find(__start_orc_unwind_ip, __start_orc_unwind,
|
||||
__stop_orc_unwind_ip - __start_orc_unwind_ip, ip);
|
||||
|
||||
/* Module lookup: */
|
||||
return orc_module_find(ip);
|
||||
}
|
||||
|
||||
static void orc_sort_swap(void *_a, void *_b, int size)
|
||||
{
|
||||
struct orc_entry *orc_a, *orc_b;
|
||||
struct orc_entry orc_tmp;
|
||||
int *a = _a, *b = _b, tmp;
|
||||
int delta = _b - _a;
|
||||
|
||||
/* Swap the .orc_unwind_ip entries: */
|
||||
tmp = *a;
|
||||
*a = *b + delta;
|
||||
*b = tmp - delta;
|
||||
|
||||
/* Swap the corresponding .orc_unwind entries: */
|
||||
orc_a = cur_orc_table + (a - cur_orc_ip_table);
|
||||
orc_b = cur_orc_table + (b - cur_orc_ip_table);
|
||||
orc_tmp = *orc_a;
|
||||
*orc_a = *orc_b;
|
||||
*orc_b = orc_tmp;
|
||||
}
|
||||
|
||||
static int orc_sort_cmp(const void *_a, const void *_b)
|
||||
{
|
||||
struct orc_entry *orc_a;
|
||||
const int *a = _a, *b = _b;
|
||||
unsigned long a_val = orc_ip(a);
|
||||
unsigned long b_val = orc_ip(b);
|
||||
|
||||
if (a_val > b_val)
|
||||
return 1;
|
||||
if (a_val < b_val)
|
||||
return -1;
|
||||
|
||||
/*
|
||||
* The "weak" section terminator entries need to always be on the left
|
||||
* to ensure the lookup code skips them in favor of real entries.
|
||||
* These terminator entries exist to handle any gaps created by
|
||||
* whitelisted .o files which didn't get objtool generation.
|
||||
*/
|
||||
orc_a = cur_orc_table + (a - cur_orc_ip_table);
|
||||
return orc_a->sp_reg == ORC_REG_UNDEFINED ? -1 : 1;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MODULES
|
||||
void unwind_module_init(struct module *mod, void *_orc_ip, size_t orc_ip_size,
|
||||
void *_orc, size_t orc_size)
|
||||
{
|
||||
int *orc_ip = _orc_ip;
|
||||
struct orc_entry *orc = _orc;
|
||||
unsigned int num_entries = orc_ip_size / sizeof(int);
|
||||
|
||||
WARN_ON_ONCE(orc_ip_size % sizeof(int) != 0 ||
|
||||
orc_size % sizeof(*orc) != 0 ||
|
||||
num_entries != orc_size / sizeof(*orc));
|
||||
|
||||
/*
|
||||
* The 'cur_orc_*' globals allow the orc_sort_swap() callback to
|
||||
* associate an .orc_unwind_ip table entry with its corresponding
|
||||
* .orc_unwind entry so they can both be swapped.
|
||||
*/
|
||||
mutex_lock(&sort_mutex);
|
||||
cur_orc_ip_table = orc_ip;
|
||||
cur_orc_table = orc;
|
||||
sort(orc_ip, num_entries, sizeof(int), orc_sort_cmp, orc_sort_swap);
|
||||
mutex_unlock(&sort_mutex);
|
||||
|
||||
mod->arch.orc_unwind_ip = orc_ip;
|
||||
mod->arch.orc_unwind = orc;
|
||||
mod->arch.num_orcs = num_entries;
|
||||
}
|
||||
#endif
|
||||
|
||||
void __init unwind_init(void)
|
||||
{
|
||||
size_t orc_ip_size = (void *)__stop_orc_unwind_ip - (void *)__start_orc_unwind_ip;
|
||||
size_t orc_size = (void *)__stop_orc_unwind - (void *)__start_orc_unwind;
|
||||
size_t num_entries = orc_ip_size / sizeof(int);
|
||||
struct orc_entry *orc;
|
||||
int i;
|
||||
|
||||
if (!num_entries || orc_ip_size % sizeof(int) != 0 ||
|
||||
orc_size % sizeof(struct orc_entry) != 0 ||
|
||||
num_entries != orc_size / sizeof(struct orc_entry)) {
|
||||
orc_warn("WARNING: Bad or missing .orc_unwind table. Disabling unwinder.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Sort the .orc_unwind and .orc_unwind_ip tables: */
|
||||
sort(__start_orc_unwind_ip, num_entries, sizeof(int), orc_sort_cmp,
|
||||
orc_sort_swap);
|
||||
|
||||
/* Initialize the fast lookup table: */
|
||||
lookup_num_blocks = orc_lookup_end - orc_lookup;
|
||||
for (i = 0; i < lookup_num_blocks-1; i++) {
|
||||
orc = __orc_find(__start_orc_unwind_ip, __start_orc_unwind,
|
||||
num_entries,
|
||||
LOOKUP_START_IP + (LOOKUP_BLOCK_SIZE * i));
|
||||
if (!orc) {
|
||||
orc_warn("WARNING: Corrupt .orc_unwind table. Disabling unwinder.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
orc_lookup[i] = orc - __start_orc_unwind;
|
||||
}
|
||||
|
||||
/* Initialize the ending block: */
|
||||
orc = __orc_find(__start_orc_unwind_ip, __start_orc_unwind, num_entries,
|
||||
LOOKUP_STOP_IP);
|
||||
if (!orc) {
|
||||
orc_warn("WARNING: Corrupt .orc_unwind table. Disabling unwinder.\n");
|
||||
return;
|
||||
}
|
||||
orc_lookup[lookup_num_blocks-1] = orc - __start_orc_unwind;
|
||||
|
||||
orc_init = true;
|
||||
}
|
||||
|
||||
unsigned long unwind_get_return_address(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
return 0;
|
||||
|
||||
return __kernel_text_address(state->ip) ? state->ip : 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(unwind_get_return_address);
|
||||
|
||||
unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
|
||||
{
|
||||
if (unwind_done(state))
|
||||
return NULL;
|
||||
|
||||
if (state->regs)
|
||||
return &state->regs->ip;
|
||||
|
||||
if (state->sp)
|
||||
return (unsigned long *)state->sp - 1;
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static bool stack_access_ok(struct unwind_state *state, unsigned long addr,
|
||||
size_t len)
|
||||
{
|
||||
struct stack_info *info = &state->stack_info;
|
||||
|
||||
/*
|
||||
* If the address isn't on the current stack, switch to the next one.
|
||||
*
|
||||
* We may have to traverse multiple stacks to deal with the possibility
|
||||
* that info->next_sp could point to an empty stack and the address
|
||||
* could be on a subsequent stack.
|
||||
*/
|
||||
while (!on_stack(info, (void *)addr, len))
|
||||
if (get_stack_info(info->next_sp, state->task, info,
|
||||
&state->stack_mask))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool deref_stack_reg(struct unwind_state *state, unsigned long addr,
|
||||
unsigned long *val)
|
||||
{
|
||||
if (!stack_access_ok(state, addr, sizeof(long)))
|
||||
return false;
|
||||
|
||||
*val = READ_ONCE_TASK_STACK(state->task, *(unsigned long *)addr);
|
||||
return true;
|
||||
}
|
||||
|
||||
#define REGS_SIZE (sizeof(struct pt_regs))
|
||||
#define SP_OFFSET (offsetof(struct pt_regs, sp))
|
||||
#define IRET_REGS_SIZE (REGS_SIZE - offsetof(struct pt_regs, ip))
|
||||
#define IRET_SP_OFFSET (SP_OFFSET - offsetof(struct pt_regs, ip))
|
||||
|
||||
static bool deref_stack_regs(struct unwind_state *state, unsigned long addr,
|
||||
unsigned long *ip, unsigned long *sp, bool full)
|
||||
{
|
||||
size_t regs_size = full ? REGS_SIZE : IRET_REGS_SIZE;
|
||||
size_t sp_offset = full ? SP_OFFSET : IRET_SP_OFFSET;
|
||||
struct pt_regs *regs = (struct pt_regs *)(addr + regs_size - REGS_SIZE);
|
||||
|
||||
if (IS_ENABLED(CONFIG_X86_64)) {
|
||||
if (!stack_access_ok(state, addr, regs_size))
|
||||
return false;
|
||||
|
||||
*ip = regs->ip;
|
||||
*sp = regs->sp;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!stack_access_ok(state, addr, sp_offset))
|
||||
return false;
|
||||
|
||||
*ip = regs->ip;
|
||||
|
||||
if (user_mode(regs)) {
|
||||
if (!stack_access_ok(state, addr + sp_offset,
|
||||
REGS_SIZE - SP_OFFSET))
|
||||
return false;
|
||||
|
||||
*sp = regs->sp;
|
||||
} else
|
||||
*sp = (unsigned long)®s->sp;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool unwind_next_frame(struct unwind_state *state)
|
||||
{
|
||||
unsigned long ip_p, sp, orig_ip, prev_sp = state->sp;
|
||||
enum stack_type prev_type = state->stack_info.type;
|
||||
struct orc_entry *orc;
|
||||
struct pt_regs *ptregs;
|
||||
bool indirect = false;
|
||||
|
||||
if (unwind_done(state))
|
||||
return false;
|
||||
|
||||
/* Don't let modules unload while we're reading their ORC data. */
|
||||
preempt_disable();
|
||||
|
||||
/* Have we reached the end? */
|
||||
if (state->regs && user_mode(state->regs))
|
||||
goto done;
|
||||
|
||||
/*
|
||||
* Find the orc_entry associated with the text address.
|
||||
*
|
||||
* Decrement call return addresses by one so they work for sibling
|
||||
* calls and calls to noreturn functions.
|
||||
*/
|
||||
orc = orc_find(state->signal ? state->ip : state->ip - 1);
|
||||
if (!orc || orc->sp_reg == ORC_REG_UNDEFINED)
|
||||
goto done;
|
||||
orig_ip = state->ip;
|
||||
|
||||
/* Find the previous frame's stack: */
|
||||
switch (orc->sp_reg) {
|
||||
case ORC_REG_SP:
|
||||
sp = state->sp + orc->sp_offset;
|
||||
break;
|
||||
|
||||
case ORC_REG_BP:
|
||||
sp = state->bp + orc->sp_offset;
|
||||
break;
|
||||
|
||||
case ORC_REG_SP_INDIRECT:
|
||||
sp = state->sp + orc->sp_offset;
|
||||
indirect = true;
|
||||
break;
|
||||
|
||||
case ORC_REG_BP_INDIRECT:
|
||||
sp = state->bp + orc->sp_offset;
|
||||
indirect = true;
|
||||
break;
|
||||
|
||||
case ORC_REG_R10:
|
||||
if (!state->regs || !state->full_regs) {
|
||||
orc_warn("missing regs for base reg R10 at ip %p\n",
|
||||
(void *)state->ip);
|
||||
goto done;
|
||||
}
|
||||
sp = state->regs->r10;
|
||||
break;
|
||||
|
||||
case ORC_REG_R13:
|
||||
if (!state->regs || !state->full_regs) {
|
||||
orc_warn("missing regs for base reg R13 at ip %p\n",
|
||||
(void *)state->ip);
|
||||
goto done;
|
||||
}
|
||||
sp = state->regs->r13;
|
||||
break;
|
||||
|
||||
case ORC_REG_DI:
|
||||
if (!state->regs || !state->full_regs) {
|
||||
orc_warn("missing regs for base reg DI at ip %p\n",
|
||||
(void *)state->ip);
|
||||
goto done;
|
||||
}
|
||||
sp = state->regs->di;
|
||||
break;
|
||||
|
||||
case ORC_REG_DX:
|
||||
if (!state->regs || !state->full_regs) {
|
||||
orc_warn("missing regs for base reg DX at ip %p\n",
|
||||
(void *)state->ip);
|
||||
goto done;
|
||||
}
|
||||
sp = state->regs->dx;
|
||||
break;
|
||||
|
||||
default:
|
||||
orc_warn("unknown SP base reg %d for ip %p\n",
|
||||
orc->sp_reg, (void *)state->ip);
|
||||
goto done;
|
||||
}
|
||||
|
||||
if (indirect) {
|
||||
if (!deref_stack_reg(state, sp, &sp))
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* Find IP, SP and possibly regs: */
|
||||
switch (orc->type) {
|
||||
case ORC_TYPE_CALL:
|
||||
ip_p = sp - sizeof(long);
|
||||
|
||||
if (!deref_stack_reg(state, ip_p, &state->ip))
|
||||
goto done;
|
||||
|
||||
state->ip = ftrace_graph_ret_addr(state->task, &state->graph_idx,
|
||||
state->ip, (void *)ip_p);
|
||||
|
||||
state->sp = sp;
|
||||
state->regs = NULL;
|
||||
state->signal = false;
|
||||
break;
|
||||
|
||||
case ORC_TYPE_REGS:
|
||||
if (!deref_stack_regs(state, sp, &state->ip, &state->sp, true)) {
|
||||
orc_warn("can't dereference registers at %p for ip %p\n",
|
||||
(void *)sp, (void *)orig_ip);
|
||||
goto done;
|
||||
}
|
||||
|
||||
state->regs = (struct pt_regs *)sp;
|
||||
state->full_regs = true;
|
||||
state->signal = true;
|
||||
break;
|
||||
|
||||
case ORC_TYPE_REGS_IRET:
|
||||
if (!deref_stack_regs(state, sp, &state->ip, &state->sp, false)) {
|
||||
orc_warn("can't dereference iret registers at %p for ip %p\n",
|
||||
(void *)sp, (void *)orig_ip);
|
||||
goto done;
|
||||
}
|
||||
|
||||
ptregs = container_of((void *)sp, struct pt_regs, ip);
|
||||
if ((unsigned long)ptregs >= prev_sp &&
|
||||
on_stack(&state->stack_info, ptregs, REGS_SIZE)) {
|
||||
state->regs = ptregs;
|
||||
state->full_regs = false;
|
||||
} else
|
||||
state->regs = NULL;
|
||||
|
||||
state->signal = true;
|
||||
break;
|
||||
|
||||
default:
|
||||
orc_warn("unknown .orc_unwind entry type %d\n", orc->type);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Find BP: */
|
||||
switch (orc->bp_reg) {
|
||||
case ORC_REG_UNDEFINED:
|
||||
if (state->regs && state->full_regs)
|
||||
state->bp = state->regs->bp;
|
||||
break;
|
||||
|
||||
case ORC_REG_PREV_SP:
|
||||
if (!deref_stack_reg(state, sp + orc->bp_offset, &state->bp))
|
||||
goto done;
|
||||
break;
|
||||
|
||||
case ORC_REG_BP:
|
||||
if (!deref_stack_reg(state, state->bp + orc->bp_offset, &state->bp))
|
||||
goto done;
|
||||
break;
|
||||
|
||||
default:
|
||||
orc_warn("unknown BP base reg %d for ip %p\n",
|
||||
orc->bp_reg, (void *)orig_ip);
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* Prevent a recursive loop due to bad ORC data: */
|
||||
if (state->stack_info.type == prev_type &&
|
||||
on_stack(&state->stack_info, (void *)state->sp, sizeof(long)) &&
|
||||
state->sp <= prev_sp) {
|
||||
orc_warn("stack going in the wrong direction? ip=%p\n",
|
||||
(void *)orig_ip);
|
||||
goto done;
|
||||
}
|
||||
|
||||
preempt_enable();
|
||||
return true;
|
||||
|
||||
done:
|
||||
preempt_enable();
|
||||
state->stack_info.type = STACK_TYPE_UNKNOWN;
|
||||
return false;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(unwind_next_frame);
|
||||
|
||||
void __unwind_start(struct unwind_state *state, struct task_struct *task,
|
||||
struct pt_regs *regs, unsigned long *first_frame)
|
||||
{
|
||||
memset(state, 0, sizeof(*state));
|
||||
state->task = task;
|
||||
|
||||
/*
|
||||
* Refuse to unwind the stack of a task while it's executing on another
|
||||
* CPU. This check is racy, but that's ok: the unwinder has other
|
||||
* checks to prevent it from going off the rails.
|
||||
*/
|
||||
if (task_on_another_cpu(task))
|
||||
goto done;
|
||||
|
||||
if (regs) {
|
||||
if (user_mode(regs))
|
||||
goto done;
|
||||
|
||||
state->ip = regs->ip;
|
||||
state->sp = kernel_stack_pointer(regs);
|
||||
state->bp = regs->bp;
|
||||
state->regs = regs;
|
||||
state->full_regs = true;
|
||||
state->signal = true;
|
||||
|
||||
} else if (task == current) {
|
||||
asm volatile("lea (%%rip), %0\n\t"
|
||||
"mov %%rsp, %1\n\t"
|
||||
"mov %%rbp, %2\n\t"
|
||||
: "=r" (state->ip), "=r" (state->sp),
|
||||
"=r" (state->bp));
|
||||
|
||||
} else {
|
||||
struct inactive_task_frame *frame = (void *)task->thread.sp;
|
||||
|
||||
state->sp = task->thread.sp;
|
||||
state->bp = READ_ONCE_NOCHECK(frame->bp);
|
||||
state->ip = READ_ONCE_NOCHECK(frame->ret_addr);
|
||||
}
|
||||
|
||||
if (get_stack_info((unsigned long *)state->sp, state->task,
|
||||
&state->stack_info, &state->stack_mask))
|
||||
return;
|
||||
|
||||
/*
|
||||
* The caller can provide the address of the first frame directly
|
||||
* (first_frame) or indirectly (regs->sp) to indicate which stack frame
|
||||
* to start unwinding at. Skip ahead until we reach it.
|
||||
*/
|
||||
|
||||
/* When starting from regs, skip the regs frame: */
|
||||
if (regs) {
|
||||
unwind_next_frame(state);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Otherwise, skip ahead to the user-specified starting frame: */
|
||||
while (!unwind_done(state) &&
|
||||
(!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
|
||||
state->sp <= (unsigned long)first_frame))
|
||||
unwind_next_frame(state);
|
||||
|
||||
return;
|
||||
|
||||
done:
|
||||
state->stack_info.type = STACK_TYPE_UNKNOWN;
|
||||
return;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__unwind_start);
|
|
@ -24,6 +24,7 @@
|
|||
#include <asm/asm-offsets.h>
|
||||
#include <asm/thread_info.h>
|
||||
#include <asm/page_types.h>
|
||||
#include <asm/orc_lookup.h>
|
||||
#include <asm/cache.h>
|
||||
#include <asm/boot.h>
|
||||
|
||||
|
@ -148,6 +149,8 @@ SECTIONS
|
|||
|
||||
BUG_TABLE
|
||||
|
||||
ORC_UNWIND_TABLE
|
||||
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__vvar_page = .;
|
||||
|
||||
|
|
|
@ -89,6 +89,5 @@ config KVM_MMU_AUDIT
|
|||
# OK, it's a little counter-intuitive to do this, but it puts it neatly under
|
||||
# the virtualization menu.
|
||||
source drivers/vhost/Kconfig
|
||||
source drivers/lguest/Kconfig
|
||||
|
||||
endif # VIRTUALIZATION
|
||||
|
|
|
@ -1,14 +0,0 @@
|
|||
config LGUEST_GUEST
|
||||
bool "Lguest guest support"
|
||||
depends on X86_32 && PARAVIRT && PCI
|
||||
select TTY
|
||||
select VIRTUALIZATION
|
||||
select VIRTIO
|
||||
select VIRTIO_CONSOLE
|
||||
help
|
||||
Lguest is a tiny in-kernel hypervisor. Selecting this will
|
||||
allow your kernel to boot under lguest. This option will increase
|
||||
your kernel size by about 10k. If in doubt, say N.
|
||||
|
||||
If you say Y here, make sure you say Y (or M) to the virtio block
|
||||
and net drivers which lguest needs.
|
|
@ -1,2 +0,0 @@
|
|||
obj-y := head_32.o boot.o
|
||||
CFLAGS_boot.o := $(call cc-option, -fno-stack-protector)
|
File diff suppressed because it is too large
Load Diff
|
@ -1,192 +0,0 @@
|
|||
#include <linux/linkage.h>
|
||||
#include <linux/lguest.h>
|
||||
#include <asm/lguest_hcall.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
#include <asm/thread_info.h>
|
||||
#include <asm/processor-flags.h>
|
||||
|
||||
/*G:020
|
||||
|
||||
* Our story starts with the bzImage: booting starts at startup_32 in
|
||||
* arch/x86/boot/compressed/head_32.S. This merely uncompresses the real
|
||||
* kernel in place and then jumps into it: startup_32 in
|
||||
* arch/x86/kernel/head_32.S. Both routines expects a boot header in the %esi
|
||||
* register, which is created by the bootloader (the Launcher in our case).
|
||||
*
|
||||
* The startup_32 function does very little: it clears the uninitialized global
|
||||
* C variables which we expect to be zero (ie. BSS) and then copies the boot
|
||||
* header and kernel command line somewhere safe, and populates some initial
|
||||
* page tables. Finally it checks the 'hardware_subarch' field. This was
|
||||
* introduced in 2.6.24 for lguest and Xen: if it's set to '1' (lguest's
|
||||
* assigned number), then it calls us here.
|
||||
*
|
||||
* WARNING: be very careful here! We're running at addresses equal to physical
|
||||
* addresses (around 0), not above PAGE_OFFSET as most code expects
|
||||
* (eg. 0xC0000000). Jumps are relative, so they're OK, but we can't touch any
|
||||
* data without remembering to subtract __PAGE_OFFSET!
|
||||
*
|
||||
* The .section line puts this code in .init.text so it will be discarded after
|
||||
* boot.
|
||||
*/
|
||||
.section .init.text, "ax", @progbits
|
||||
ENTRY(lguest_entry)
|
||||
/*
|
||||
* We make the "initialization" hypercall now to tell the Host where
|
||||
* our lguest_data struct is.
|
||||
*/
|
||||
movl $LHCALL_LGUEST_INIT, %eax
|
||||
movl $lguest_data - __PAGE_OFFSET, %ebx
|
||||
int $LGUEST_TRAP_ENTRY
|
||||
|
||||
/* Now turn our pagetables on; setup by arch/x86/kernel/head_32.S. */
|
||||
movl $LHCALL_NEW_PGTABLE, %eax
|
||||
movl $(initial_page_table - __PAGE_OFFSET), %ebx
|
||||
int $LGUEST_TRAP_ENTRY
|
||||
|
||||
/* Set up the initial stack so we can run C code. */
|
||||
movl $(init_thread_union+THREAD_SIZE),%esp
|
||||
|
||||
/* Jumps are relative: we're running __PAGE_OFFSET too low. */
|
||||
jmp lguest_init+__PAGE_OFFSET
|
||||
|
||||
/*G:055
|
||||
* We create a macro which puts the assembler code between lgstart_ and lgend_
|
||||
* markers. These templates are put in the .text section: they can't be
|
||||
* discarded after boot as we may need to patch modules, too.
|
||||
*/
|
||||
.text
|
||||
#define LGUEST_PATCH(name, insns...) \
|
||||
lgstart_##name: insns; lgend_##name:; \
|
||||
.globl lgstart_##name; .globl lgend_##name
|
||||
|
||||
LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled)
|
||||
LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax)
|
||||
|
||||
/*G:033
|
||||
* But using those wrappers is inefficient (we'll see why that doesn't matter
|
||||
* for save_fl and irq_disable later). If we write our routines carefully in
|
||||
* assembler, we can avoid clobbering any registers and avoid jumping through
|
||||
* the wrapper functions.
|
||||
*
|
||||
* I skipped over our first piece of assembler, but this one is worth studying
|
||||
* in a bit more detail so I'll describe in easy stages. First, the routine to
|
||||
* enable interrupts:
|
||||
*/
|
||||
ENTRY(lg_irq_enable)
|
||||
/*
|
||||
* The reverse of irq_disable, this sets lguest_data.irq_enabled to
|
||||
* X86_EFLAGS_IF (ie. "Interrupts enabled").
|
||||
*/
|
||||
movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled
|
||||
/*
|
||||
* But now we need to check if the Host wants to know: there might have
|
||||
* been interrupts waiting to be delivered, in which case it will have
|
||||
* set lguest_data.irq_pending to X86_EFLAGS_IF. If it's not zero, we
|
||||
* jump to send_interrupts, otherwise we're done.
|
||||
*/
|
||||
cmpl $0, lguest_data+LGUEST_DATA_irq_pending
|
||||
jnz send_interrupts
|
||||
/*
|
||||
* One cool thing about x86 is that you can do many things without using
|
||||
* a register. In this case, the normal path hasn't needed to save or
|
||||
* restore any registers at all!
|
||||
*/
|
||||
ret
|
||||
send_interrupts:
|
||||
/*
|
||||
* OK, now we need a register: eax is used for the hypercall number,
|
||||
* which is LHCALL_SEND_INTERRUPTS.
|
||||
*
|
||||
* We used not to bother with this pending detection at all, which was
|
||||
* much simpler. Sooner or later the Host would realize it had to
|
||||
* send us an interrupt. But that turns out to make performance 7
|
||||
* times worse on a simple tcp benchmark. So now we do this the hard
|
||||
* way.
|
||||
*/
|
||||
pushl %eax
|
||||
movl $LHCALL_SEND_INTERRUPTS, %eax
|
||||
/* This is the actual hypercall trap. */
|
||||
int $LGUEST_TRAP_ENTRY
|
||||
/* Put eax back the way we found it. */
|
||||
popl %eax
|
||||
ret
|
||||
|
||||
/*
|
||||
* Finally, the "popf" or "restore flags" routine. The %eax register holds the
|
||||
* flags (in practice, either X86_EFLAGS_IF or 0): if it's X86_EFLAGS_IF we're
|
||||
* enabling interrupts again, if it's 0 we're leaving them off.
|
||||
*/
|
||||
ENTRY(lg_restore_fl)
|
||||
/* This is just "lguest_data.irq_enabled = flags;" */
|
||||
movl %eax, lguest_data+LGUEST_DATA_irq_enabled
|
||||
/*
|
||||
* Now, if the %eax value has enabled interrupts and
|
||||
* lguest_data.irq_pending is set, we want to tell the Host so it can
|
||||
* deliver any outstanding interrupts. Fortunately, both values will
|
||||
* be X86_EFLAGS_IF (ie. 512) in that case, and the "testl"
|
||||
* instruction will AND them together for us. If both are set, we
|
||||
* jump to send_interrupts.
|
||||
*/
|
||||
testl lguest_data+LGUEST_DATA_irq_pending, %eax
|
||||
jnz send_interrupts
|
||||
/* Again, the normal path has used no extra registers. Clever, huh? */
|
||||
ret
|
||||
/*:*/
|
||||
|
||||
/* These demark the EIP where host should never deliver interrupts. */
|
||||
.global lguest_noirq_iret
|
||||
|
||||
/*M:004
|
||||
* When the Host reflects a trap or injects an interrupt into the Guest, it
|
||||
* sets the eflags interrupt bit on the stack based on lguest_data.irq_enabled,
|
||||
* so the Guest iret logic does the right thing when restoring it. However,
|
||||
* when the Host sets the Guest up for direct traps, such as system calls, the
|
||||
* processor is the one to push eflags onto the stack, and the interrupt bit
|
||||
* will be 1 (in reality, interrupts are always enabled in the Guest).
|
||||
*
|
||||
* This turns out to be harmless: the only trap which should happen under Linux
|
||||
* with interrupts disabled is Page Fault (due to our lazy mapping of vmalloc
|
||||
* regions), which has to be reflected through the Host anyway. If another
|
||||
* trap *does* go off when interrupts are disabled, the Guest will panic, and
|
||||
* we'll never get to this iret!
|
||||
:*/
|
||||
|
||||
/*G:045
|
||||
* There is one final paravirt_op that the Guest implements, and glancing at it
|
||||
* you can see why I left it to last. It's *cool*! It's in *assembler*!
|
||||
*
|
||||
* The "iret" instruction is used to return from an interrupt or trap. The
|
||||
* stack looks like this:
|
||||
* old address
|
||||
* old code segment & privilege level
|
||||
* old processor flags ("eflags")
|
||||
*
|
||||
* The "iret" instruction pops those values off the stack and restores them all
|
||||
* at once. The only problem is that eflags includes the Interrupt Flag which
|
||||
* the Guest can't change: the CPU will simply ignore it when we do an "iret".
|
||||
* So we have to copy eflags from the stack to lguest_data.irq_enabled before
|
||||
* we do the "iret".
|
||||
*
|
||||
* There are two problems with this: firstly, we can't clobber any registers
|
||||
* and secondly, the whole thing needs to be atomic. The first problem
|
||||
* is solved by using "push memory"/"pop memory" instruction pair for copying.
|
||||
*
|
||||
* The second is harder: copying eflags to lguest_data.irq_enabled will turn
|
||||
* interrupts on before we're finished, so we could be interrupted before we
|
||||
* return to userspace or wherever. Our solution to this is to tell the
|
||||
* Host that it is *never* to interrupt us there, even if interrupts seem to be
|
||||
* enabled. (It's not necessary to protect pop instruction, since
|
||||
* data gets updated only after it completes, so we only need to protect
|
||||
* one instruction, iret).
|
||||
*/
|
||||
ENTRY(lguest_iret)
|
||||
pushl 2*4(%esp)
|
||||
/*
|
||||
* Note the %ss: segment prefix here. Normal data accesses use the
|
||||
* "ds" segment, but that will have already been restored for whatever
|
||||
* we're returning to (such as userspace): we can't trust it. The %ss:
|
||||
* prefix makes sure we use the stack segment, which is still valid.
|
||||
*/
|
||||
popl %ss:lguest_data+LGUEST_DATA_irq_enabled
|
||||
lguest_noirq_iret:
|
||||
iret
|
|
@ -363,3 +363,4 @@ L_bugged_2:
|
|||
pop %ebx
|
||||
jmp L_exit
|
||||
#endif /* PARANOID */
|
||||
ENDPROC(div_Xsig)
|
||||
|
|
|
@ -44,4 +44,4 @@ ENTRY(FPU_div_small)
|
|||
|
||||
leave
|
||||
ret
|
||||
|
||||
ENDPROC(FPU_div_small)
|
||||
|
|
|
@ -62,6 +62,7 @@ ENTRY(mul32_Xsig)
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(mul32_Xsig)
|
||||
|
||||
|
||||
ENTRY(mul64_Xsig)
|
||||
|
@ -114,6 +115,7 @@ ENTRY(mul64_Xsig)
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(mul64_Xsig)
|
||||
|
||||
|
||||
|
||||
|
@ -173,4 +175,4 @@ ENTRY(mul_Xsig_Xsig)
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
|
||||
ENDPROC(mul_Xsig_Xsig)
|
||||
|
|
|
@ -133,3 +133,4 @@ L_accum_done:
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(polynomial_Xsig)
|
||||
|
|
|
@ -94,6 +94,7 @@ L_overflow:
|
|||
call arith_overflow
|
||||
pop %ebx
|
||||
jmp L_exit
|
||||
ENDPROC(FPU_normalize)
|
||||
|
||||
|
||||
|
||||
|
@ -145,3 +146,4 @@ L_exit_nuo_zero:
|
|||
popl %ebx
|
||||
leave
|
||||
ret
|
||||
ENDPROC(FPU_normalize_nuo)
|
||||
|
|
|
@ -706,3 +706,5 @@ L_exception_exit:
|
|||
mov $-1,%eax
|
||||
jmp fpu_reg_round_special_exit
|
||||
#endif /* PARANOID */
|
||||
|
||||
ENDPROC(FPU_round)
|
||||
|
|
|
@ -165,3 +165,4 @@ L_exit:
|
|||
leave
|
||||
ret
|
||||
#endif /* PARANOID */
|
||||
ENDPROC(FPU_u_add)
|
||||
|
|
|
@ -469,3 +469,5 @@ L_exit:
|
|||
leave
|
||||
ret
|
||||
#endif /* PARANOID */
|
||||
|
||||
ENDPROC(FPU_u_div)
|
||||
|
|
|
@ -146,3 +146,4 @@ L_exit:
|
|||
ret
|
||||
#endif /* PARANOID */
|
||||
|
||||
ENDPROC(FPU_u_mul)
|
||||
|
|
|
@ -270,3 +270,4 @@ L_exit:
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(FPU_u_sub)
|
||||
|
|
|
@ -78,7 +78,7 @@ L_exit:
|
|||
popl %ebx
|
||||
leave
|
||||
ret
|
||||
|
||||
ENDPROC(round_Xsig)
|
||||
|
||||
|
||||
|
||||
|
@ -138,4 +138,4 @@ L_n_exit:
|
|||
popl %ebx
|
||||
leave
|
||||
ret
|
||||
|
||||
ENDPROC(norm_Xsig)
|
||||
|
|
|
@ -85,3 +85,4 @@ L_more_than_95:
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(shr_Xsig)
|
||||
|
|
|
@ -92,6 +92,7 @@ L_more_than_95:
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(FPU_shrx)
|
||||
|
||||
|
||||
/*---------------------------------------------------------------------------+
|
||||
|
@ -202,3 +203,4 @@ Ls_more_than_95:
|
|||
popl %esi
|
||||
leave
|
||||
ret
|
||||
ENDPROC(FPU_shrxs)
|
||||
|
|
|
@ -468,3 +468,4 @@ sqrt_more_prec_large:
|
|||
/* Our estimate is too large */
|
||||
movl $0x7fffff00,%eax
|
||||
jmp sqrt_round_result
|
||||
ENDPROC(wm_sqrt)
|
||||
|
|
|
@ -142,7 +142,7 @@ void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
|
|||
* undefined. I'm not sure which CPUs do this, but at least
|
||||
* the 486 DX works this way.
|
||||
*/
|
||||
if ((regs->cs & 0xFFFF) != __KERNEL_CS)
|
||||
if (regs->cs != __KERNEL_CS)
|
||||
goto fail;
|
||||
|
||||
/*
|
||||
|
|
|
@ -981,59 +981,6 @@ void __ref xen_setup_vcpu_info_placement(void)
|
|||
}
|
||||
}
|
||||
|
||||
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
|
||||
unsigned long addr, unsigned len)
|
||||
{
|
||||
char *start, *end, *reloc;
|
||||
unsigned ret;
|
||||
|
||||
start = end = reloc = NULL;
|
||||
|
||||
#define SITE(op, x) \
|
||||
case PARAVIRT_PATCH(op.x): \
|
||||
if (xen_have_vcpu_info_placement) { \
|
||||
start = (char *)xen_##x##_direct; \
|
||||
end = xen_##x##_direct_end; \
|
||||
reloc = xen_##x##_direct_reloc; \
|
||||
} \
|
||||
goto patch_site
|
||||
|
||||
switch (type) {
|
||||
SITE(pv_irq_ops, irq_enable);
|
||||
SITE(pv_irq_ops, irq_disable);
|
||||
SITE(pv_irq_ops, save_fl);
|
||||
SITE(pv_irq_ops, restore_fl);
|
||||
#undef SITE
|
||||
|
||||
patch_site:
|
||||
if (start == NULL || (end-start) > len)
|
||||
goto default_patch;
|
||||
|
||||
ret = paravirt_patch_insns(insnbuf, len, start, end);
|
||||
|
||||
/* Note: because reloc is assigned from something that
|
||||
appears to be an array, gcc assumes it's non-null,
|
||||
but doesn't know its relationship with start and
|
||||
end. */
|
||||
if (reloc > start && reloc < end) {
|
||||
int reloc_off = reloc - start;
|
||||
long *relocp = (long *)(insnbuf + reloc_off);
|
||||
long delta = start - (char *)addr;
|
||||
|
||||
*relocp += delta;
|
||||
}
|
||||
break;
|
||||
|
||||
default_patch:
|
||||
default:
|
||||
ret = paravirt_patch_default(type, clobbers, insnbuf,
|
||||
addr, len);
|
||||
break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static const struct pv_info xen_info __initconst = {
|
||||
.shared_kernel_pmd = 0,
|
||||
|
||||
|
@ -1043,10 +990,6 @@ static const struct pv_info xen_info __initconst = {
|
|||
.name = "Xen",
|
||||
};
|
||||
|
||||
static const struct pv_init_ops xen_init_ops __initconst = {
|
||||
.patch = xen_patch,
|
||||
};
|
||||
|
||||
static const struct pv_cpu_ops xen_cpu_ops __initconst = {
|
||||
.cpuid = xen_cpuid,
|
||||
|
||||
|
@ -1244,7 +1187,7 @@ asmlinkage __visible void __init xen_start_kernel(void)
|
|||
|
||||
/* Install Xen paravirt ops */
|
||||
pv_info = xen_info;
|
||||
pv_init_ops = xen_init_ops;
|
||||
pv_init_ops.patch = paravirt_patch_default;
|
||||
pv_cpu_ops = xen_cpu_ops;
|
||||
|
||||
x86_platform.get_nmi_reason = xen_get_nmi_reason;
|
||||
|
|
|
@ -1,14 +1,8 @@
|
|||
/*
|
||||
* Asm versions of Xen pv-ops, suitable for either direct use or
|
||||
* inlining. The inline versions are the same as the direct-use
|
||||
* versions, with the pre- and post-amble chopped off.
|
||||
*
|
||||
* This code is encoded for size rather than absolute efficiency, with
|
||||
* a view to being able to inline as much as possible.
|
||||
* Asm versions of Xen pv-ops, suitable for direct use.
|
||||
*
|
||||
* We only bother with direct forms (ie, vcpu in percpu data) of the
|
||||
* operations here; the indirect forms are better handled in C, since
|
||||
* they're generally too large to inline anyway.
|
||||
* operations here; the indirect forms are better handled in C.
|
||||
*/
|
||||
|
||||
#include <asm/asm-offsets.h>
|
||||
|
@ -16,7 +10,7 @@
|
|||
#include <asm/processor-flags.h>
|
||||
#include <asm/frame.h>
|
||||
|
||||
#include "xen-asm.h"
|
||||
#include <linux/linkage.h>
|
||||
|
||||
/*
|
||||
* Enable events. This clears the event mask and tests the pending
|
||||
|
@ -38,13 +32,11 @@ ENTRY(xen_irq_enable_direct)
|
|||
testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending
|
||||
jz 1f
|
||||
|
||||
2: call check_events
|
||||
call check_events
|
||||
1:
|
||||
ENDPATCH(xen_irq_enable_direct)
|
||||
FRAME_END
|
||||
ret
|
||||
ENDPROC(xen_irq_enable_direct)
|
||||
RELOC(xen_irq_enable_direct, 2b+1)
|
||||
|
||||
|
||||
/*
|
||||
|
@ -53,10 +45,8 @@ ENDPATCH(xen_irq_enable_direct)
|
|||
*/
|
||||
ENTRY(xen_irq_disable_direct)
|
||||
movb $1, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
|
||||
ENDPATCH(xen_irq_disable_direct)
|
||||
ret
|
||||
ENDPROC(xen_irq_disable_direct)
|
||||
RELOC(xen_irq_disable_direct, 0)
|
||||
ENDPROC(xen_irq_disable_direct)
|
||||
|
||||
/*
|
||||
* (xen_)save_fl is used to get the current interrupt enable status.
|
||||
|
@ -71,10 +61,8 @@ ENTRY(xen_save_fl_direct)
|
|||
testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask
|
||||
setz %ah
|
||||
addb %ah, %ah
|
||||
ENDPATCH(xen_save_fl_direct)
|
||||
ret
|
||||
ENDPROC(xen_save_fl_direct)
|
||||
RELOC(xen_save_fl_direct, 0)
|
||||
|
||||
|
||||
/*
|
||||
|
@ -101,13 +89,11 @@ ENTRY(xen_restore_fl_direct)
|
|||
/* check for unmasked and pending */
|
||||
cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending
|
||||
jnz 1f
|
||||
2: call check_events
|
||||
call check_events
|
||||
1:
|
||||
ENDPATCH(xen_restore_fl_direct)
|
||||
FRAME_END
|
||||
ret
|
||||
ENDPROC(xen_restore_fl_direct)
|
||||
RELOC(xen_restore_fl_direct, 2b+1)
|
||||
|
||||
|
||||
/*
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
#ifndef _XEN_XEN_ASM_H
|
||||
#define _XEN_XEN_ASM_H
|
||||
|
||||
#include <linux/linkage.h>
|
||||
|
||||
#define RELOC(x, v) .globl x##_reloc; x##_reloc=v
|
||||
#define ENDPATCH(x) .globl x##_end; x##_end=.
|
||||
|
||||
/* Pseudo-flag used for virtual NMI, which we don't implement yet */
|
||||
#define XEN_EFLAGS_NMI 0x80000000
|
||||
|
||||
#endif
|
|
@ -1,14 +1,8 @@
|
|||
/*
|
||||
* Asm versions of Xen pv-ops, suitable for either direct use or
|
||||
* inlining. The inline versions are the same as the direct-use
|
||||
* versions, with the pre- and post-amble chopped off.
|
||||
*
|
||||
* This code is encoded for size rather than absolute efficiency, with
|
||||
* a view to being able to inline as much as possible.
|
||||
* Asm versions of Xen pv-ops, suitable for direct use.
|
||||
*
|
||||
* We only bother with direct forms (ie, vcpu in pda) of the
|
||||
* operations here; the indirect forms are better handled in C, since
|
||||
* they're generally too large to inline anyway.
|
||||
* operations here; the indirect forms are better handled in C.
|
||||
*/
|
||||
|
||||
#include <asm/thread_info.h>
|
||||
|
@ -18,21 +12,10 @@
|
|||
|
||||
#include <xen/interface/xen.h>
|
||||
|
||||
#include "xen-asm.h"
|
||||
#include <linux/linkage.h>
|
||||
|
||||
/*
|
||||
* Force an event check by making a hypercall, but preserve regs
|
||||
* before making the call.
|
||||
*/
|
||||
check_events:
|
||||
push %eax
|
||||
push %ecx
|
||||
push %edx
|
||||
call xen_force_evtchn_callback
|
||||
pop %edx
|
||||
pop %ecx
|
||||
pop %eax
|
||||
ret
|
||||
/* Pseudo-flag used for virtual NMI, which we don't implement yet */
|
||||
#define XEN_EFLAGS_NMI 0x80000000
|
||||
|
||||
/*
|
||||
* This is run where a normal iret would be run, with the same stack setup:
|
||||
|
|
|
@ -1,14 +1,8 @@
|
|||
/*
|
||||
* Asm versions of Xen pv-ops, suitable for either direct use or
|
||||
* inlining. The inline versions are the same as the direct-use
|
||||
* versions, with the pre- and post-amble chopped off.
|
||||
*
|
||||
* This code is encoded for size rather than absolute efficiency, with
|
||||
* a view to being able to inline as much as possible.
|
||||
* Asm versions of Xen pv-ops, suitable for direct use.
|
||||
*
|
||||
* We only bother with direct forms (ie, vcpu in pda) of the
|
||||
* operations here; the indirect forms are better handled in C, since
|
||||
* they're generally too large to inline anyway.
|
||||
* operations here; the indirect forms are better handled in C.
|
||||
*/
|
||||
|
||||
#include <asm/errno.h>
|
||||
|
@ -20,7 +14,7 @@
|
|||
|
||||
#include <xen/interface/xen.h>
|
||||
|
||||
#include "xen-asm.h"
|
||||
#include <linux/linkage.h>
|
||||
|
||||
ENTRY(xen_adjust_exception_frame)
|
||||
mov 8+0(%rsp), %rcx
|
||||
|
@ -46,9 +40,7 @@ hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32
|
|||
*/
|
||||
ENTRY(xen_iret)
|
||||
pushq $0
|
||||
1: jmp hypercall_iret
|
||||
ENDPATCH(xen_iret)
|
||||
RELOC(xen_iret, 1b+1)
|
||||
jmp hypercall_iret
|
||||
|
||||
ENTRY(xen_sysret64)
|
||||
/*
|
||||
|
@ -65,9 +57,7 @@ ENTRY(xen_sysret64)
|
|||
pushq %rcx
|
||||
|
||||
pushq $VGCF_in_syscall
|
||||
1: jmp hypercall_iret
|
||||
ENDPATCH(xen_sysret64)
|
||||
RELOC(xen_sysret64, 1b+1)
|
||||
jmp hypercall_iret
|
||||
|
||||
/*
|
||||
* Xen handles syscall callbacks much like ordinary exceptions, which
|
||||
|
@ -82,34 +72,47 @@ RELOC(xen_sysret64, 1b+1)
|
|||
* rip
|
||||
* r11
|
||||
* rsp->rcx
|
||||
*
|
||||
* In all the entrypoints, we undo all that to make it look like a
|
||||
* CPU-generated syscall/sysenter and jump to the normal entrypoint.
|
||||
*/
|
||||
|
||||
.macro undo_xen_syscall
|
||||
mov 0*8(%rsp), %rcx
|
||||
mov 1*8(%rsp), %r11
|
||||
mov 5*8(%rsp), %rsp
|
||||
.endm
|
||||
|
||||
/* Normal 64-bit system call target */
|
||||
ENTRY(xen_syscall_target)
|
||||
undo_xen_syscall
|
||||
jmp entry_SYSCALL_64_after_swapgs
|
||||
popq %rcx
|
||||
popq %r11
|
||||
|
||||
/*
|
||||
* Neither Xen nor the kernel really knows what the old SS and
|
||||
* CS were. The kernel expects __USER_DS and __USER_CS, so
|
||||
* report those values even though Xen will guess its own values.
|
||||
*/
|
||||
movq $__USER_DS, 4*8(%rsp)
|
||||
movq $__USER_CS, 1*8(%rsp)
|
||||
|
||||
jmp entry_SYSCALL_64_after_hwframe
|
||||
ENDPROC(xen_syscall_target)
|
||||
|
||||
#ifdef CONFIG_IA32_EMULATION
|
||||
|
||||
/* 32-bit compat syscall target */
|
||||
ENTRY(xen_syscall32_target)
|
||||
undo_xen_syscall
|
||||
jmp entry_SYSCALL_compat
|
||||
popq %rcx
|
||||
popq %r11
|
||||
|
||||
/*
|
||||
* Neither Xen nor the kernel really knows what the old SS and
|
||||
* CS were. The kernel expects __USER32_DS and __USER32_CS, so
|
||||
* report those values even though Xen will guess its own values.
|
||||
*/
|
||||
movq $__USER32_DS, 4*8(%rsp)
|
||||
movq $__USER32_CS, 1*8(%rsp)
|
||||
|
||||
jmp entry_SYSCALL_compat_after_hwframe
|
||||
ENDPROC(xen_syscall32_target)
|
||||
|
||||
/* 32-bit compat sysenter target */
|
||||
ENTRY(xen_sysenter_target)
|
||||
undo_xen_syscall
|
||||
mov 0*8(%rsp), %rcx
|
||||
mov 1*8(%rsp), %r11
|
||||
mov 5*8(%rsp), %rsp
|
||||
jmp entry_SYSENTER_compat
|
||||
ENDPROC(xen_sysenter_target)
|
||||
|
||||
|
|
|
@ -129,17 +129,10 @@ static inline void __init xen_efi_init(void)
|
|||
}
|
||||
#endif
|
||||
|
||||
/* Declare an asm function, along with symbols needed to make it
|
||||
inlineable */
|
||||
#define DECL_ASM(ret, name, ...) \
|
||||
__visible ret name(__VA_ARGS__); \
|
||||
extern char name##_end[] __visible; \
|
||||
extern char name##_reloc[] __visible
|
||||
|
||||
DECL_ASM(void, xen_irq_enable_direct, void);
|
||||
DECL_ASM(void, xen_irq_disable_direct, void);
|
||||
DECL_ASM(unsigned long, xen_save_fl_direct, void);
|
||||
DECL_ASM(void, xen_restore_fl_direct, unsigned long);
|
||||
__visible void xen_irq_enable_direct(void);
|
||||
__visible void xen_irq_disable_direct(void);
|
||||
__visible unsigned long xen_save_fl_direct(void);
|
||||
__visible void xen_restore_fl_direct(unsigned long);
|
||||
|
||||
/* These are not functions, and cannot be called normally */
|
||||
__visible void xen_iret(void);
|
||||
|
|
|
@ -125,7 +125,6 @@ obj-$(CONFIG_ACCESSIBILITY) += accessibility/
|
|||
obj-$(CONFIG_ISDN) += isdn/
|
||||
obj-$(CONFIG_EDAC) += edac/
|
||||
obj-$(CONFIG_EISA) += eisa/
|
||||
obj-y += lguest/
|
||||
obj-$(CONFIG_CPU_FREQ) += cpufreq/
|
||||
obj-$(CONFIG_CPU_IDLE) += cpuidle/
|
||||
obj-y += mmc/
|
||||
|
|
|
@ -470,7 +470,7 @@ config VIRTIO_BLK
|
|||
depends on VIRTIO
|
||||
---help---
|
||||
This is the virtual block driver for virtio. It can be used with
|
||||
lguest or QEMU based VMMs (like KVM or Xen). Say Y or M.
|
||||
QEMU based VMMs (like KVM or Xen). Say Y or M.
|
||||
|
||||
config VIRTIO_BLK_SCSI
|
||||
bool "SCSI passthrough request for the Virtio block driver"
|
||||
|
|
|
@ -161,7 +161,7 @@ config VIRTIO_CONSOLE
|
|||
depends on VIRTIO && TTY
|
||||
select HVC_DRIVER
|
||||
help
|
||||
Virtio console for use with lguest and other hypervisors.
|
||||
Virtio console for use with hypervisors.
|
||||
|
||||
Also serves as a general-purpose serial device for data
|
||||
transfer between the guest and host. Character devices at
|
||||
|
|
|
@ -1130,7 +1130,7 @@ static const struct file_operations port_fops = {
|
|||
* We turn the characters into a scatter-gather list, add it to the
|
||||
* output queue and then kick the Host. Then we sit here waiting for
|
||||
* it to finish: inefficient in theory, but in practice
|
||||
* implementations will do it immediately (lguest's Launcher does).
|
||||
* implementations will do it immediately.
|
||||
*/
|
||||
static int put_chars(u32 vtermno, const char *buf, int count)
|
||||
{
|
||||
|
|
|
@ -1,13 +0,0 @@
|
|||
config LGUEST
|
||||
tristate "Linux hypervisor example code"
|
||||
depends on X86_32 && EVENTFD && TTY && PCI_DIRECT
|
||||
select HVC_DRIVER
|
||||
---help---
|
||||
This is a very simple module which allows you to run
|
||||
multiple instances of the same Linux kernel, using the
|
||||
"lguest" command found in the tools/lguest directory.
|
||||
|
||||
Note that "lguest" is pronounced to rhyme with "fell quest",
|
||||
not "rustyvisor". See tools/lguest/lguest.txt.
|
||||
|
||||
If unsure, say N. If curious, say M. If masochistic, say Y.
|
|
@ -1,26 +0,0 @@
|
|||
# Host requires the other files, which can be a module.
|
||||
obj-$(CONFIG_LGUEST) += lg.o
|
||||
lg-y = core.o hypercalls.o page_tables.o interrupts_and_traps.o \
|
||||
segments.o lguest_user.o
|
||||
|
||||
lg-$(CONFIG_X86_32) += x86/switcher_32.o x86/core.o
|
||||
|
||||
Preparation Preparation!: PREFIX=P
|
||||
Guest: PREFIX=G
|
||||
Drivers: PREFIX=D
|
||||
Launcher: PREFIX=L
|
||||
Host: PREFIX=H
|
||||
Switcher: PREFIX=S
|
||||
Mastery: PREFIX=M
|
||||
Beer:
|
||||
@for f in Preparation Guest Drivers Launcher Host Switcher Mastery; do echo "{==- $$f -==}"; make -s $$f; done; echo "{==-==}"
|
||||
Preparation Preparation! Guest Drivers Launcher Host Switcher Mastery:
|
||||
@sh ../../tools/lguest/extract $(PREFIX) `find ../../* -name '*.[chS]' -wholename '*lguest*'`
|
||||
Puppy:
|
||||
@clear
|
||||
@printf " __ \n (___()'\`;\n /, /\`\n \\\\\\\"--\\\\\\ \n"
|
||||
@sleep 2; clear; printf "\n\n Sit!\n\n"; sleep 1; clear
|
||||
@printf " __ \n ()'\`; \n /\\|\` \n / | \n(/_)_|_ \n"
|
||||
@sleep 2; clear; printf "\n\n Stand!\n\n"; sleep 1; clear
|
||||
@printf " __ \n ()'\`; \n /\\|\` \n /._.= \n /| / \n(_\_)_ \n"
|
||||
@sleep 2; clear; printf "\n\n Good puppy!\n\n"; sleep 1; clear
|
|
@ -1,47 +0,0 @@
|
|||
Welcome, friend reader, to lguest.
|
||||
|
||||
Lguest is an adventure, with you, the reader, as Hero. I can't think of many
|
||||
5000-line projects which offer both such capability and glimpses of future
|
||||
potential; it is an exciting time to be delving into the source!
|
||||
|
||||
But be warned; this is an arduous journey of several hours or more! And as we
|
||||
know, all true Heroes are driven by a Noble Goal. Thus I offer a Beer (or
|
||||
equivalent) to anyone I meet who has completed this documentation.
|
||||
|
||||
So get comfortable and keep your wits about you (both quick and humorous).
|
||||
Along your way to the Noble Goal, you will also gain masterly insight into
|
||||
lguest, and hypervisors and x86 virtualization in general.
|
||||
|
||||
Our Quest is in seven parts: (best read with C highlighting turned on)
|
||||
|
||||
I) Preparation
|
||||
- In which our potential hero is flown quickly over the landscape for a
|
||||
taste of its scope. Suitable for the armchair coders and other such
|
||||
persons of faint constitution.
|
||||
|
||||
II) Guest
|
||||
- Where we encounter the first tantalising wisps of code, and come to
|
||||
understand the details of the life of a Guest kernel.
|
||||
|
||||
III) Drivers
|
||||
- Whereby the Guest finds its voice and become useful, and our
|
||||
understanding of the Guest is completed.
|
||||
|
||||
IV) Launcher
|
||||
- Where we trace back to the creation of the Guest, and thus begin our
|
||||
understanding of the Host.
|
||||
|
||||
V) Host
|
||||
- Where we master the Host code, through a long and tortuous journey.
|
||||
Indeed, it is here that our hero is tested in the Bit of Despair.
|
||||
|
||||
VI) Switcher
|
||||
- Where our understanding of the intertwined nature of Guests and Hosts
|
||||
is completed.
|
||||
|
||||
VII) Mastery
|
||||
- Where our fully fledged hero grapples with the Great Question:
|
||||
"What next?"
|
||||
|
||||
make Preparation!
|
||||
Rusty Russell.
|
|
@ -1,398 +0,0 @@
|
|||
/*P:400
|
||||
* This contains run_guest() which actually calls into the Host<->Guest
|
||||
* Switcher and analyzes the return, such as determining if the Guest wants the
|
||||
* Host to do something. This file also contains useful helper routines.
|
||||
:*/
|
||||
#include <linux/module.h>
|
||||
#include <linux/stringify.h>
|
||||
#include <linux/stddef.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/sched/signal.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/freezer.h>
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/slab.h>
|
||||
#include <asm/paravirt.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/poll.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
#include "lg.h"
|
||||
|
||||
unsigned long switcher_addr;
|
||||
struct page **lg_switcher_pages;
|
||||
static struct vm_struct *switcher_text_vma;
|
||||
static struct vm_struct *switcher_stacks_vma;
|
||||
|
||||
/* This One Big lock protects all inter-guest data structures. */
|
||||
DEFINE_MUTEX(lguest_lock);
|
||||
|
||||
/*H:010
|
||||
* We need to set up the Switcher at a high virtual address. Remember the
|
||||
* Switcher is a few hundred bytes of assembler code which actually changes the
|
||||
* CPU to run the Guest, and then changes back to the Host when a trap or
|
||||
* interrupt happens.
|
||||
*
|
||||
* The Switcher code must be at the same virtual address in the Guest as the
|
||||
* Host since it will be running as the switchover occurs.
|
||||
*
|
||||
* Trying to map memory at a particular address is an unusual thing to do, so
|
||||
* it's not a simple one-liner.
|
||||
*/
|
||||
static __init int map_switcher(void)
|
||||
{
|
||||
int i, err;
|
||||
|
||||
/*
|
||||
* Map the Switcher in to high memory.
|
||||
*
|
||||
* It turns out that if we choose the address 0xFFC00000 (4MB under the
|
||||
* top virtual address), it makes setting up the page tables really
|
||||
* easy.
|
||||
*/
|
||||
|
||||
/* We assume Switcher text fits into a single page. */
|
||||
if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
|
||||
printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
|
||||
end_switcher_text - start_switcher_text);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
* We allocate an array of struct page pointers. map_vm_area() wants
|
||||
* this, rather than just an array of pages.
|
||||
*/
|
||||
lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
|
||||
* TOTAL_SWITCHER_PAGES,
|
||||
GFP_KERNEL);
|
||||
if (!lg_switcher_pages) {
|
||||
err = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now we actually allocate the pages. The Guest will see these pages,
|
||||
* so we make sure they're zeroed.
|
||||
*/
|
||||
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
|
||||
lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
|
||||
if (!lg_switcher_pages[i]) {
|
||||
err = -ENOMEM;
|
||||
goto free_some_pages;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy in the compiled-in Switcher code (from x86/switcher_32.S).
|
||||
* It goes in the first page, which we map in momentarily.
|
||||
*/
|
||||
memcpy(kmap(lg_switcher_pages[0]), start_switcher_text,
|
||||
end_switcher_text - start_switcher_text);
|
||||
kunmap(lg_switcher_pages[0]);
|
||||
|
||||
/*
|
||||
* We place the Switcher underneath the fixmap area, which is the
|
||||
* highest virtual address we can get. This is important, since we
|
||||
* tell the Guest it can't access this memory, so we want its ceiling
|
||||
* as high as possible.
|
||||
*/
|
||||
switcher_addr = FIXADDR_START - TOTAL_SWITCHER_PAGES*PAGE_SIZE;
|
||||
|
||||
/*
|
||||
* Now we reserve the "virtual memory area"s we want. We might
|
||||
* not get them in theory, but in practice it's worked so far.
|
||||
*
|
||||
* We want the switcher text to be read-only and executable, and
|
||||
* the stacks to be read-write and non-executable.
|
||||
*/
|
||||
switcher_text_vma = __get_vm_area(PAGE_SIZE, VM_ALLOC|VM_NO_GUARD,
|
||||
switcher_addr,
|
||||
switcher_addr + PAGE_SIZE);
|
||||
|
||||
if (!switcher_text_vma) {
|
||||
err = -ENOMEM;
|
||||
printk("lguest: could not map switcher pages high\n");
|
||||
goto free_pages;
|
||||
}
|
||||
|
||||
switcher_stacks_vma = __get_vm_area(SWITCHER_STACK_PAGES * PAGE_SIZE,
|
||||
VM_ALLOC|VM_NO_GUARD,
|
||||
switcher_addr + PAGE_SIZE,
|
||||
switcher_addr + TOTAL_SWITCHER_PAGES * PAGE_SIZE);
|
||||
if (!switcher_stacks_vma) {
|
||||
err = -ENOMEM;
|
||||
printk("lguest: could not map switcher pages high\n");
|
||||
goto free_text_vma;
|
||||
}
|
||||
|
||||
/*
|
||||
* This code actually sets up the pages we've allocated to appear at
|
||||
* switcher_addr. map_vm_area() takes the vma we allocated above, the
|
||||
* kind of pages we're mapping (kernel text pages and kernel writable
|
||||
* pages respectively), and a pointer to our array of struct pages.
|
||||
*/
|
||||
err = map_vm_area(switcher_text_vma, PAGE_KERNEL_RX, lg_switcher_pages);
|
||||
if (err) {
|
||||
printk("lguest: text map_vm_area failed: %i\n", err);
|
||||
goto free_vmas;
|
||||
}
|
||||
|
||||
err = map_vm_area(switcher_stacks_vma, PAGE_KERNEL,
|
||||
lg_switcher_pages + SWITCHER_TEXT_PAGES);
|
||||
if (err) {
|
||||
printk("lguest: stacks map_vm_area failed: %i\n", err);
|
||||
goto free_vmas;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now the Switcher is mapped at the right address, we can't fail!
|
||||
*/
|
||||
printk(KERN_INFO "lguest: mapped switcher at %p\n",
|
||||
switcher_text_vma->addr);
|
||||
/* And we succeeded... */
|
||||
return 0;
|
||||
|
||||
free_vmas:
|
||||
/* Undoes map_vm_area and __get_vm_area */
|
||||
vunmap(switcher_stacks_vma->addr);
|
||||
free_text_vma:
|
||||
vunmap(switcher_text_vma->addr);
|
||||
free_pages:
|
||||
i = TOTAL_SWITCHER_PAGES;
|
||||
free_some_pages:
|
||||
for (--i; i >= 0; i--)
|
||||
__free_pages(lg_switcher_pages[i], 0);
|
||||
kfree(lg_switcher_pages);
|
||||
out:
|
||||
return err;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
|
||||
static void unmap_switcher(void)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
/* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
|
||||
vunmap(switcher_text_vma->addr);
|
||||
vunmap(switcher_stacks_vma->addr);
|
||||
/* Now we just need to free the pages we copied the switcher into */
|
||||
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
|
||||
__free_pages(lg_switcher_pages[i], 0);
|
||||
kfree(lg_switcher_pages);
|
||||
}
|
||||
|
||||
/*H:032
|
||||
* Dealing With Guest Memory.
|
||||
*
|
||||
* Before we go too much further into the Host, we need to grok the routines
|
||||
* we use to deal with Guest memory.
|
||||
*
|
||||
* When the Guest gives us (what it thinks is) a physical address, we can use
|
||||
* the normal copy_from_user() & copy_to_user() on the corresponding place in
|
||||
* the memory region allocated by the Launcher.
|
||||
*
|
||||
* But we can't trust the Guest: it might be trying to access the Launcher
|
||||
* code. We have to check that the range is below the pfn_limit the Launcher
|
||||
* gave us. We have to make sure that addr + len doesn't give us a false
|
||||
* positive by overflowing, too.
|
||||
*/
|
||||
bool lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len)
|
||||
{
|
||||
return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
|
||||
}
|
||||
|
||||
/*
|
||||
* This routine copies memory from the Guest. Here we can see how useful the
|
||||
* kill_lguest() routine we met in the Launcher can be: we return a random
|
||||
* value (all zeroes) instead of needing to return an error.
|
||||
*/
|
||||
void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
|
||||
{
|
||||
if (!lguest_address_ok(cpu->lg, addr, bytes)
|
||||
|| copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
|
||||
/* copy_from_user should do this, but as we rely on it... */
|
||||
memset(b, 0, bytes);
|
||||
kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
|
||||
}
|
||||
}
|
||||
|
||||
/* This is the write (copy into Guest) version. */
|
||||
void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
|
||||
unsigned bytes)
|
||||
{
|
||||
if (!lguest_address_ok(cpu->lg, addr, bytes)
|
||||
|| copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
|
||||
kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/*H:030
|
||||
* Let's jump straight to the the main loop which runs the Guest.
|
||||
* Remember, this is called by the Launcher reading /dev/lguest, and we keep
|
||||
* going around and around until something interesting happens.
|
||||
*/
|
||||
int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
|
||||
{
|
||||
/* If the launcher asked for a register with LHREQ_GETREG */
|
||||
if (cpu->reg_read) {
|
||||
if (put_user(*cpu->reg_read, user))
|
||||
return -EFAULT;
|
||||
cpu->reg_read = NULL;
|
||||
return sizeof(*cpu->reg_read);
|
||||
}
|
||||
|
||||
/* We stop running once the Guest is dead. */
|
||||
while (!cpu->lg->dead) {
|
||||
unsigned int irq;
|
||||
bool more;
|
||||
|
||||
/* First we run any hypercalls the Guest wants done. */
|
||||
if (cpu->hcall)
|
||||
do_hypercalls(cpu);
|
||||
|
||||
/* Do we have to tell the Launcher about a trap? */
|
||||
if (cpu->pending.trap) {
|
||||
if (copy_to_user(user, &cpu->pending,
|
||||
sizeof(cpu->pending)))
|
||||
return -EFAULT;
|
||||
return sizeof(cpu->pending);
|
||||
}
|
||||
|
||||
/*
|
||||
* All long-lived kernel loops need to check with this horrible
|
||||
* thing called the freezer. If the Host is trying to suspend,
|
||||
* it stops us.
|
||||
*/
|
||||
try_to_freeze();
|
||||
|
||||
/* Check for signals */
|
||||
if (signal_pending(current))
|
||||
return -ERESTARTSYS;
|
||||
|
||||
/*
|
||||
* Check if there are any interrupts which can be delivered now:
|
||||
* if so, this sets up the hander to be executed when we next
|
||||
* run the Guest.
|
||||
*/
|
||||
irq = interrupt_pending(cpu, &more);
|
||||
if (irq < LGUEST_IRQS)
|
||||
try_deliver_interrupt(cpu, irq, more);
|
||||
|
||||
/*
|
||||
* Just make absolutely sure the Guest is still alive. One of
|
||||
* those hypercalls could have been fatal, for example.
|
||||
*/
|
||||
if (cpu->lg->dead)
|
||||
break;
|
||||
|
||||
/*
|
||||
* If the Guest asked to be stopped, we sleep. The Guest's
|
||||
* clock timer will wake us.
|
||||
*/
|
||||
if (cpu->halted) {
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
/*
|
||||
* Just before we sleep, make sure no interrupt snuck in
|
||||
* which we should be doing.
|
||||
*/
|
||||
if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
|
||||
set_current_state(TASK_RUNNING);
|
||||
else
|
||||
schedule();
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* OK, now we're ready to jump into the Guest. First we put up
|
||||
* the "Do Not Disturb" sign:
|
||||
*/
|
||||
local_irq_disable();
|
||||
|
||||
/* Actually run the Guest until something happens. */
|
||||
lguest_arch_run_guest(cpu);
|
||||
|
||||
/* Now we're ready to be interrupted or moved to other CPUs */
|
||||
local_irq_enable();
|
||||
|
||||
/* Now we deal with whatever happened to the Guest. */
|
||||
lguest_arch_handle_trap(cpu);
|
||||
}
|
||||
|
||||
/* Special case: Guest is 'dead' but wants a reboot. */
|
||||
if (cpu->lg->dead == ERR_PTR(-ERESTART))
|
||||
return -ERESTART;
|
||||
|
||||
/* The Guest is dead => "No such file or directory" */
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
/*H:000
|
||||
* Welcome to the Host!
|
||||
*
|
||||
* By this point your brain has been tickled by the Guest code and numbed by
|
||||
* the Launcher code; prepare for it to be stretched by the Host code. This is
|
||||
* the heart. Let's begin at the initialization routine for the Host's lg
|
||||
* module.
|
||||
*/
|
||||
static int __init init(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
/* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
|
||||
if (get_kernel_rpl() != 0) {
|
||||
printk("lguest is afraid of being a guest\n");
|
||||
return -EPERM;
|
||||
}
|
||||
|
||||
/* First we put the Switcher up in very high virtual memory. */
|
||||
err = map_switcher();
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
/* We might need to reserve an interrupt vector. */
|
||||
err = init_interrupts();
|
||||
if (err)
|
||||
goto unmap;
|
||||
|
||||
/* /dev/lguest needs to be registered. */
|
||||
err = lguest_device_init();
|
||||
if (err)
|
||||
goto free_interrupts;
|
||||
|
||||
/* Finally we do some architecture-specific setup. */
|
||||
lguest_arch_host_init();
|
||||
|
||||
/* All good! */
|
||||
return 0;
|
||||
|
||||
free_interrupts:
|
||||
free_interrupts();
|
||||
unmap:
|
||||
unmap_switcher();
|
||||
out:
|
||||
return err;
|
||||
}
|
||||
|
||||
/* Cleaning up is just the same code, backwards. With a little French. */
|
||||
static void __exit fini(void)
|
||||
{
|
||||
lguest_device_remove();
|
||||
free_interrupts();
|
||||
unmap_switcher();
|
||||
|
||||
lguest_arch_host_fini();
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/*
|
||||
* The Host side of lguest can be a module. This is a nice way for people to
|
||||
* play with it.
|
||||
*/
|
||||
module_init(init);
|
||||
module_exit(fini);
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
|
|
@ -1,304 +0,0 @@
|
|||
/*P:500
|
||||
* Just as userspace programs request kernel operations through a system
|
||||
* call, the Guest requests Host operations through a "hypercall". You might
|
||||
* notice this nomenclature doesn't really follow any logic, but the name has
|
||||
* been around for long enough that we're stuck with it. As you'd expect, this
|
||||
* code is basically a one big switch statement.
|
||||
:*/
|
||||
|
||||
/* Copyright (C) 2006 Rusty Russell IBM Corporation
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <asm/page.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include "lg.h"
|
||||
|
||||
/*H:120
|
||||
* This is the core hypercall routine: where the Guest gets what it wants.
|
||||
* Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both.
|
||||
*/
|
||||
static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
|
||||
{
|
||||
switch (args->arg0) {
|
||||
case LHCALL_FLUSH_ASYNC:
|
||||
/*
|
||||
* This call does nothing, except by breaking out of the Guest
|
||||
* it makes us process all the asynchronous hypercalls.
|
||||
*/
|
||||
break;
|
||||
case LHCALL_SEND_INTERRUPTS:
|
||||
/*
|
||||
* This call does nothing too, but by breaking out of the Guest
|
||||
* it makes us process any pending interrupts.
|
||||
*/
|
||||
break;
|
||||
case LHCALL_LGUEST_INIT:
|
||||
/*
|
||||
* You can't get here unless you're already initialized. Don't
|
||||
* do that.
|
||||
*/
|
||||
kill_guest(cpu, "already have lguest_data");
|
||||
break;
|
||||
case LHCALL_SHUTDOWN: {
|
||||
char msg[128];
|
||||
/*
|
||||
* Shutdown is such a trivial hypercall that we do it in five
|
||||
* lines right here.
|
||||
*
|
||||
* If the lgread fails, it will call kill_guest() itself; the
|
||||
* kill_guest() with the message will be ignored.
|
||||
*/
|
||||
__lgread(cpu, msg, args->arg1, sizeof(msg));
|
||||
msg[sizeof(msg)-1] = '\0';
|
||||
kill_guest(cpu, "CRASH: %s", msg);
|
||||
if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
|
||||
cpu->lg->dead = ERR_PTR(-ERESTART);
|
||||
break;
|
||||
}
|
||||
case LHCALL_FLUSH_TLB:
|
||||
/* FLUSH_TLB comes in two flavors, depending on the argument: */
|
||||
if (args->arg1)
|
||||
guest_pagetable_clear_all(cpu);
|
||||
else
|
||||
guest_pagetable_flush_user(cpu);
|
||||
break;
|
||||
|
||||
/*
|
||||
* All these calls simply pass the arguments through to the right
|
||||
* routines.
|
||||
*/
|
||||
case LHCALL_NEW_PGTABLE:
|
||||
guest_new_pagetable(cpu, args->arg1);
|
||||
break;
|
||||
case LHCALL_SET_STACK:
|
||||
guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
|
||||
break;
|
||||
case LHCALL_SET_PTE:
|
||||
#ifdef CONFIG_X86_PAE
|
||||
guest_set_pte(cpu, args->arg1, args->arg2,
|
||||
__pte(args->arg3 | (u64)args->arg4 << 32));
|
||||
#else
|
||||
guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
|
||||
#endif
|
||||
break;
|
||||
case LHCALL_SET_PGD:
|
||||
guest_set_pgd(cpu->lg, args->arg1, args->arg2);
|
||||
break;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
case LHCALL_SET_PMD:
|
||||
guest_set_pmd(cpu->lg, args->arg1, args->arg2);
|
||||
break;
|
||||
#endif
|
||||
case LHCALL_SET_CLOCKEVENT:
|
||||
guest_set_clockevent(cpu, args->arg1);
|
||||
break;
|
||||
case LHCALL_HALT:
|
||||
/* Similarly, this sets the halted flag for run_guest(). */
|
||||
cpu->halted = 1;
|
||||
break;
|
||||
default:
|
||||
/* It should be an architecture-specific hypercall. */
|
||||
if (lguest_arch_do_hcall(cpu, args))
|
||||
kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
|
||||
}
|
||||
}
|
||||
|
||||
/*H:124
|
||||
* Asynchronous hypercalls are easy: we just look in the array in the
|
||||
* Guest's "struct lguest_data" to see if any new ones are marked "ready".
|
||||
*
|
||||
* We are careful to do these in order: obviously we respect the order the
|
||||
* Guest put them in the ring, but we also promise the Guest that they will
|
||||
* happen before any normal hypercall (which is why we check this before
|
||||
* checking for a normal hcall).
|
||||
*/
|
||||
static void do_async_hcalls(struct lg_cpu *cpu)
|
||||
{
|
||||
unsigned int i;
|
||||
u8 st[LHCALL_RING_SIZE];
|
||||
|
||||
/* For simplicity, we copy the entire call status array in at once. */
|
||||
if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
|
||||
return;
|
||||
|
||||
/* We process "struct lguest_data"s hcalls[] ring once. */
|
||||
for (i = 0; i < ARRAY_SIZE(st); i++) {
|
||||
struct hcall_args args;
|
||||
/*
|
||||
* We remember where we were up to from last time. This makes
|
||||
* sure that the hypercalls are done in the order the Guest
|
||||
* places them in the ring.
|
||||
*/
|
||||
unsigned int n = cpu->next_hcall;
|
||||
|
||||
/* 0xFF means there's no call here (yet). */
|
||||
if (st[n] == 0xFF)
|
||||
break;
|
||||
|
||||
/*
|
||||
* OK, we have hypercall. Increment the "next_hcall" cursor,
|
||||
* and wrap back to 0 if we reach the end.
|
||||
*/
|
||||
if (++cpu->next_hcall == LHCALL_RING_SIZE)
|
||||
cpu->next_hcall = 0;
|
||||
|
||||
/*
|
||||
* Copy the hypercall arguments into a local copy of the
|
||||
* hcall_args struct.
|
||||
*/
|
||||
if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
|
||||
sizeof(struct hcall_args))) {
|
||||
kill_guest(cpu, "Fetching async hypercalls");
|
||||
break;
|
||||
}
|
||||
|
||||
/* Do the hypercall, same as a normal one. */
|
||||
do_hcall(cpu, &args);
|
||||
|
||||
/* Mark the hypercall done. */
|
||||
if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
|
||||
kill_guest(cpu, "Writing result for async hypercall");
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stop doing hypercalls if they want to notify the Launcher:
|
||||
* it needs to service this first.
|
||||
*/
|
||||
if (cpu->pending.trap)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Last of all, we look at what happens first of all. The very first time the
|
||||
* Guest makes a hypercall, we end up here to set things up:
|
||||
*/
|
||||
static void initialize(struct lg_cpu *cpu)
|
||||
{
|
||||
/*
|
||||
* You can't do anything until you're initialized. The Guest knows the
|
||||
* rules, so we're unforgiving here.
|
||||
*/
|
||||
if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
|
||||
kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
|
||||
return;
|
||||
}
|
||||
|
||||
if (lguest_arch_init_hypercalls(cpu))
|
||||
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
|
||||
|
||||
/*
|
||||
* The Guest tells us where we're not to deliver interrupts by putting
|
||||
* the instruction address into "struct lguest_data".
|
||||
*/
|
||||
if (get_user(cpu->lg->noirq_iret, &cpu->lg->lguest_data->noirq_iret))
|
||||
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
|
||||
|
||||
/*
|
||||
* We write the current time into the Guest's data page once so it can
|
||||
* set its clock.
|
||||
*/
|
||||
write_timestamp(cpu);
|
||||
|
||||
/* page_tables.c will also do some setup. */
|
||||
page_table_guest_data_init(cpu);
|
||||
|
||||
/*
|
||||
* This is the one case where the above accesses might have been the
|
||||
* first write to a Guest page. This may have caused a copy-on-write
|
||||
* fault, but the old page might be (read-only) in the Guest
|
||||
* pagetable.
|
||||
*/
|
||||
guest_pagetable_clear_all(cpu);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/*M:013
|
||||
* If a Guest reads from a page (so creates a mapping) that it has never
|
||||
* written to, and then the Launcher writes to it (ie. the output of a virtual
|
||||
* device), the Guest will still see the old page. In practice, this never
|
||||
* happens: why would the Guest read a page which it has never written to? But
|
||||
* a similar scenario might one day bite us, so it's worth mentioning.
|
||||
*
|
||||
* Note that if we used a shared anonymous mapping in the Launcher instead of
|
||||
* mapping /dev/zero private, we wouldn't worry about cop-on-write. And we
|
||||
* need that to switch the Launcher to processes (away from threads) anyway.
|
||||
:*/
|
||||
|
||||
/*H:100
|
||||
* Hypercalls
|
||||
*
|
||||
* Remember from the Guest, hypercalls come in two flavors: normal and
|
||||
* asynchronous. This file handles both of types.
|
||||
*/
|
||||
void do_hypercalls(struct lg_cpu *cpu)
|
||||
{
|
||||
/* Not initialized yet? This hypercall must do it. */
|
||||
if (unlikely(!cpu->lg->lguest_data)) {
|
||||
/* Set up the "struct lguest_data" */
|
||||
initialize(cpu);
|
||||
/* Hcall is done. */
|
||||
cpu->hcall = NULL;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* The Guest has initialized.
|
||||
*
|
||||
* Look in the hypercall ring for the async hypercalls:
|
||||
*/
|
||||
do_async_hcalls(cpu);
|
||||
|
||||
/*
|
||||
* If we stopped reading the hypercall ring because the Guest did a
|
||||
* NOTIFY to the Launcher, we want to return now. Otherwise we do
|
||||
* the hypercall.
|
||||
*/
|
||||
if (!cpu->pending.trap) {
|
||||
do_hcall(cpu, cpu->hcall);
|
||||
/*
|
||||
* Tricky point: we reset the hcall pointer to mark the
|
||||
* hypercall as "done". We use the hcall pointer rather than
|
||||
* the trap number to indicate a hypercall is pending.
|
||||
* Normally it doesn't matter: the Guest will run again and
|
||||
* update the trap number before we come back here.
|
||||
*
|
||||
* However, if we are signalled or the Guest sends I/O to the
|
||||
* Launcher, the run_guest() loop will exit without running the
|
||||
* Guest. When it comes back it would try to re-run the
|
||||
* hypercall. Finding that bug sucked.
|
||||
*/
|
||||
cpu->hcall = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This routine supplies the Guest with time: it's used for wallclock time at
|
||||
* initial boot and as a rough time source if the TSC isn't available.
|
||||
*/
|
||||
void write_timestamp(struct lg_cpu *cpu)
|
||||
{
|
||||
struct timespec now;
|
||||
ktime_get_real_ts(&now);
|
||||
if (copy_to_user(&cpu->lg->lguest_data->time,
|
||||
&now, sizeof(struct timespec)))
|
||||
kill_guest(cpu, "Writing timestamp");
|
||||
}
|
|
@ -1,706 +0,0 @@
|
|||
/*P:800
|
||||
* Interrupts (traps) are complicated enough to earn their own file.
|
||||
* There are three classes of interrupts:
|
||||
*
|
||||
* 1) Real hardware interrupts which occur while we're running the Guest,
|
||||
* 2) Interrupts for virtual devices attached to the Guest, and
|
||||
* 3) Traps and faults from the Guest.
|
||||
*
|
||||
* Real hardware interrupts must be delivered to the Host, not the Guest.
|
||||
* Virtual interrupts must be delivered to the Guest, but we make them look
|
||||
* just like real hardware would deliver them. Traps from the Guest can be set
|
||||
* up to go directly back into the Guest, but sometimes the Host wants to see
|
||||
* them first, so we also have a way of "reflecting" them into the Guest as if
|
||||
* they had been delivered to it directly.
|
||||
:*/
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include "lg.h"
|
||||
|
||||
/* Allow Guests to use a non-128 (ie. non-Linux) syscall trap. */
|
||||
static unsigned int syscall_vector = IA32_SYSCALL_VECTOR;
|
||||
module_param(syscall_vector, uint, 0444);
|
||||
|
||||
/* The address of the interrupt handler is split into two bits: */
|
||||
static unsigned long idt_address(u32 lo, u32 hi)
|
||||
{
|
||||
return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
|
||||
}
|
||||
|
||||
/*
|
||||
* The "type" of the interrupt handler is a 4 bit field: we only support a
|
||||
* couple of types.
|
||||
*/
|
||||
static int idt_type(u32 lo, u32 hi)
|
||||
{
|
||||
return (hi >> 8) & 0xF;
|
||||
}
|
||||
|
||||
/* An IDT entry can't be used unless the "present" bit is set. */
|
||||
static bool idt_present(u32 lo, u32 hi)
|
||||
{
|
||||
return (hi & 0x8000);
|
||||
}
|
||||
|
||||
/*
|
||||
* We need a helper to "push" a value onto the Guest's stack, since that's a
|
||||
* big part of what delivering an interrupt does.
|
||||
*/
|
||||
static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
|
||||
{
|
||||
/* Stack grows upwards: move stack then write value. */
|
||||
*gstack -= 4;
|
||||
lgwrite(cpu, *gstack, u32, val);
|
||||
}
|
||||
|
||||
/*H:210
|
||||
* The push_guest_interrupt_stack() routine saves Guest state on the stack for
|
||||
* an interrupt or trap. The mechanics of delivering traps and interrupts to
|
||||
* the Guest are the same, except some traps have an "error code" which gets
|
||||
* pushed onto the stack as well: the caller tells us if this is one.
|
||||
*
|
||||
* We set up the stack just like the CPU does for a real interrupt, so it's
|
||||
* identical for the Guest (and the standard "iret" instruction will undo
|
||||
* it).
|
||||
*/
|
||||
static void push_guest_interrupt_stack(struct lg_cpu *cpu, bool has_err)
|
||||
{
|
||||
unsigned long gstack, origstack;
|
||||
u32 eflags, ss, irq_enable;
|
||||
unsigned long virtstack;
|
||||
|
||||
/*
|
||||
* There are two cases for interrupts: one where the Guest is already
|
||||
* in the kernel, and a more complex one where the Guest is in
|
||||
* userspace. We check the privilege level to find out.
|
||||
*/
|
||||
if ((cpu->regs->ss&0x3) != GUEST_PL) {
|
||||
/*
|
||||
* The Guest told us their kernel stack with the SET_STACK
|
||||
* hypercall: both the virtual address and the segment.
|
||||
*/
|
||||
virtstack = cpu->esp1;
|
||||
ss = cpu->ss1;
|
||||
|
||||
origstack = gstack = guest_pa(cpu, virtstack);
|
||||
/*
|
||||
* We push the old stack segment and pointer onto the new
|
||||
* stack: when the Guest does an "iret" back from the interrupt
|
||||
* handler the CPU will notice they're dropping privilege
|
||||
* levels and expect these here.
|
||||
*/
|
||||
push_guest_stack(cpu, &gstack, cpu->regs->ss);
|
||||
push_guest_stack(cpu, &gstack, cpu->regs->esp);
|
||||
} else {
|
||||
/* We're staying on the same Guest (kernel) stack. */
|
||||
virtstack = cpu->regs->esp;
|
||||
ss = cpu->regs->ss;
|
||||
|
||||
origstack = gstack = guest_pa(cpu, virtstack);
|
||||
}
|
||||
|
||||
/*
|
||||
* Remember that we never let the Guest actually disable interrupts, so
|
||||
* the "Interrupt Flag" bit is always set. We copy that bit from the
|
||||
* Guest's "irq_enabled" field into the eflags word: we saw the Guest
|
||||
* copy it back in "lguest_iret".
|
||||
*/
|
||||
eflags = cpu->regs->eflags;
|
||||
if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
|
||||
&& !(irq_enable & X86_EFLAGS_IF))
|
||||
eflags &= ~X86_EFLAGS_IF;
|
||||
|
||||
/*
|
||||
* An interrupt is expected to push three things on the stack: the old
|
||||
* "eflags" word, the old code segment, and the old instruction
|
||||
* pointer.
|
||||
*/
|
||||
push_guest_stack(cpu, &gstack, eflags);
|
||||
push_guest_stack(cpu, &gstack, cpu->regs->cs);
|
||||
push_guest_stack(cpu, &gstack, cpu->regs->eip);
|
||||
|
||||
/* For the six traps which supply an error code, we push that, too. */
|
||||
if (has_err)
|
||||
push_guest_stack(cpu, &gstack, cpu->regs->errcode);
|
||||
|
||||
/* Adjust the stack pointer and stack segment. */
|
||||
cpu->regs->ss = ss;
|
||||
cpu->regs->esp = virtstack + (gstack - origstack);
|
||||
}
|
||||
|
||||
/*
|
||||
* This actually makes the Guest start executing the given interrupt/trap
|
||||
* handler.
|
||||
*
|
||||
* "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
|
||||
* interrupt or trap. It's split into two parts for traditional reasons: gcc
|
||||
* on i386 used to be frightened by 64 bit numbers.
|
||||
*/
|
||||
static void guest_run_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi)
|
||||
{
|
||||
/* If we're already in the kernel, we don't change stacks. */
|
||||
if ((cpu->regs->ss&0x3) != GUEST_PL)
|
||||
cpu->regs->ss = cpu->esp1;
|
||||
|
||||
/*
|
||||
* Set the code segment and the address to execute.
|
||||
*/
|
||||
cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
|
||||
cpu->regs->eip = idt_address(lo, hi);
|
||||
|
||||
/*
|
||||
* Trapping always clears these flags:
|
||||
* TF: Trap flag
|
||||
* VM: Virtual 8086 mode
|
||||
* RF: Resume
|
||||
* NT: Nested task.
|
||||
*/
|
||||
cpu->regs->eflags &=
|
||||
~(X86_EFLAGS_TF|X86_EFLAGS_VM|X86_EFLAGS_RF|X86_EFLAGS_NT);
|
||||
|
||||
/*
|
||||
* There are two kinds of interrupt handlers: 0xE is an "interrupt
|
||||
* gate" which expects interrupts to be disabled on entry.
|
||||
*/
|
||||
if (idt_type(lo, hi) == 0xE)
|
||||
if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
|
||||
kill_guest(cpu, "Disabling interrupts");
|
||||
}
|
||||
|
||||
/* This restores the eflags word which was pushed on the stack by a trap */
|
||||
static void restore_eflags(struct lg_cpu *cpu)
|
||||
{
|
||||
/* This is the physical address of the stack. */
|
||||
unsigned long stack_pa = guest_pa(cpu, cpu->regs->esp);
|
||||
|
||||
/*
|
||||
* Stack looks like this:
|
||||
* Address Contents
|
||||
* esp EIP
|
||||
* esp + 4 CS
|
||||
* esp + 8 EFLAGS
|
||||
*/
|
||||
cpu->regs->eflags = lgread(cpu, stack_pa + 8, u32);
|
||||
cpu->regs->eflags &=
|
||||
~(X86_EFLAGS_TF|X86_EFLAGS_VM|X86_EFLAGS_RF|X86_EFLAGS_NT);
|
||||
}
|
||||
|
||||
/*H:205
|
||||
* Virtual Interrupts.
|
||||
*
|
||||
* interrupt_pending() returns the first pending interrupt which isn't blocked
|
||||
* by the Guest. It is called before every entry to the Guest, and just before
|
||||
* we go to sleep when the Guest has halted itself.
|
||||
*/
|
||||
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
|
||||
{
|
||||
unsigned int irq;
|
||||
DECLARE_BITMAP(blk, LGUEST_IRQS);
|
||||
|
||||
/* If the Guest hasn't even initialized yet, we can do nothing. */
|
||||
if (!cpu->lg->lguest_data)
|
||||
return LGUEST_IRQS;
|
||||
|
||||
/*
|
||||
* Take our "irqs_pending" array and remove any interrupts the Guest
|
||||
* wants blocked: the result ends up in "blk".
|
||||
*/
|
||||
if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
|
||||
sizeof(blk)))
|
||||
return LGUEST_IRQS;
|
||||
bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
|
||||
|
||||
/* Find the first interrupt. */
|
||||
irq = find_first_bit(blk, LGUEST_IRQS);
|
||||
*more = find_next_bit(blk, LGUEST_IRQS, irq+1);
|
||||
|
||||
return irq;
|
||||
}
|
||||
|
||||
/*
|
||||
* This actually diverts the Guest to running an interrupt handler, once an
|
||||
* interrupt has been identified by interrupt_pending().
|
||||
*/
|
||||
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
|
||||
{
|
||||
struct desc_struct *idt;
|
||||
|
||||
BUG_ON(irq >= LGUEST_IRQS);
|
||||
|
||||
/* If they're halted, interrupts restart them. */
|
||||
if (cpu->halted) {
|
||||
/* Re-enable interrupts. */
|
||||
if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
|
||||
kill_guest(cpu, "Re-enabling interrupts");
|
||||
cpu->halted = 0;
|
||||
} else {
|
||||
/* Otherwise we check if they have interrupts disabled. */
|
||||
u32 irq_enabled;
|
||||
if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
|
||||
irq_enabled = 0;
|
||||
if (!irq_enabled) {
|
||||
/* Make sure they know an IRQ is pending. */
|
||||
put_user(X86_EFLAGS_IF,
|
||||
&cpu->lg->lguest_data->irq_pending);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Look at the IDT entry the Guest gave us for this interrupt. The
|
||||
* first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
|
||||
* over them.
|
||||
*/
|
||||
idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
|
||||
/* If they don't have a handler (yet?), we just ignore it */
|
||||
if (idt_present(idt->a, idt->b)) {
|
||||
/* OK, mark it no longer pending and deliver it. */
|
||||
clear_bit(irq, cpu->irqs_pending);
|
||||
|
||||
/*
|
||||
* They may be about to iret, where they asked us never to
|
||||
* deliver interrupts. In this case, we can emulate that iret
|
||||
* then immediately deliver the interrupt. This is basically
|
||||
* a noop: the iret would pop the interrupt frame and restore
|
||||
* eflags, and then we'd set it up again. So just restore the
|
||||
* eflags word and jump straight to the handler in this case.
|
||||
*
|
||||
* Denys Vlasenko points out that this isn't quite right: if
|
||||
* the iret was returning to userspace, then that interrupt
|
||||
* would reset the stack pointer (which the Guest told us
|
||||
* about via LHCALL_SET_STACK). But unless the Guest is being
|
||||
* *really* weird, that will be the same as the current stack
|
||||
* anyway.
|
||||
*/
|
||||
if (cpu->regs->eip == cpu->lg->noirq_iret) {
|
||||
restore_eflags(cpu);
|
||||
} else {
|
||||
/*
|
||||
* set_guest_interrupt() takes a flag to say whether
|
||||
* this interrupt pushes an error code onto the stack
|
||||
* as well: virtual interrupts never do.
|
||||
*/
|
||||
push_guest_interrupt_stack(cpu, false);
|
||||
}
|
||||
/* Actually make Guest cpu jump to handler. */
|
||||
guest_run_interrupt(cpu, idt->a, idt->b);
|
||||
}
|
||||
|
||||
/*
|
||||
* Every time we deliver an interrupt, we update the timestamp in the
|
||||
* Guest's lguest_data struct. It would be better for the Guest if we
|
||||
* did this more often, but it can actually be quite slow: doing it
|
||||
* here is a compromise which means at least it gets updated every
|
||||
* timer interrupt.
|
||||
*/
|
||||
write_timestamp(cpu);
|
||||
|
||||
/*
|
||||
* If there are no other interrupts we want to deliver, clear
|
||||
* the pending flag.
|
||||
*/
|
||||
if (!more)
|
||||
put_user(0, &cpu->lg->lguest_data->irq_pending);
|
||||
}
|
||||
|
||||
/* And this is the routine when we want to set an interrupt for the Guest. */
|
||||
void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
|
||||
{
|
||||
/*
|
||||
* Next time the Guest runs, the core code will see if it can deliver
|
||||
* this interrupt.
|
||||
*/
|
||||
set_bit(irq, cpu->irqs_pending);
|
||||
|
||||
/*
|
||||
* Make sure it sees it; it might be asleep (eg. halted), or running
|
||||
* the Guest right now, in which case kick_process() will knock it out.
|
||||
*/
|
||||
if (!wake_up_process(cpu->tsk))
|
||||
kick_process(cpu->tsk);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/*
|
||||
* Linux uses trap 128 for system calls. Plan9 uses 64, and Ron Minnich sent
|
||||
* me a patch, so we support that too. It'd be a big step for lguest if half
|
||||
* the Plan 9 user base were to start using it.
|
||||
*
|
||||
* Actually now I think of it, it's possible that Ron *is* half the Plan 9
|
||||
* userbase. Oh well.
|
||||
*/
|
||||
bool could_be_syscall(unsigned int num)
|
||||
{
|
||||
/* Normal Linux IA32_SYSCALL_VECTOR or reserved vector? */
|
||||
return num == IA32_SYSCALL_VECTOR || num == syscall_vector;
|
||||
}
|
||||
|
||||
/* The syscall vector it wants must be unused by Host. */
|
||||
bool check_syscall_vector(struct lguest *lg)
|
||||
{
|
||||
u32 vector;
|
||||
|
||||
if (get_user(vector, &lg->lguest_data->syscall_vec))
|
||||
return false;
|
||||
|
||||
return could_be_syscall(vector);
|
||||
}
|
||||
|
||||
int init_interrupts(void)
|
||||
{
|
||||
/* If they want some strange system call vector, reserve it now */
|
||||
if (syscall_vector != IA32_SYSCALL_VECTOR) {
|
||||
if (test_bit(syscall_vector, used_vectors) ||
|
||||
vector_used_by_percpu_irq(syscall_vector)) {
|
||||
printk(KERN_ERR "lg: couldn't reserve syscall %u\n",
|
||||
syscall_vector);
|
||||
return -EBUSY;
|
||||
}
|
||||
set_bit(syscall_vector, used_vectors);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void free_interrupts(void)
|
||||
{
|
||||
if (syscall_vector != IA32_SYSCALL_VECTOR)
|
||||
clear_bit(syscall_vector, used_vectors);
|
||||
}
|
||||
|
||||
/*H:220
|
||||
* Now we've got the routines to deliver interrupts, delivering traps like
|
||||
* page fault is easy. The only trick is that Intel decided that some traps
|
||||
* should have error codes:
|
||||
*/
|
||||
static bool has_err(unsigned int trap)
|
||||
{
|
||||
return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
|
||||
}
|
||||
|
||||
/* deliver_trap() returns true if it could deliver the trap. */
|
||||
bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
|
||||
{
|
||||
/*
|
||||
* Trap numbers are always 8 bit, but we set an impossible trap number
|
||||
* for traps inside the Switcher, so check that here.
|
||||
*/
|
||||
if (num >= ARRAY_SIZE(cpu->arch.idt))
|
||||
return false;
|
||||
|
||||
/*
|
||||
* Early on the Guest hasn't set the IDT entries (or maybe it put a
|
||||
* bogus one in): if we fail here, the Guest will be killed.
|
||||
*/
|
||||
if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
|
||||
return false;
|
||||
push_guest_interrupt_stack(cpu, has_err(num));
|
||||
guest_run_interrupt(cpu, cpu->arch.idt[num].a,
|
||||
cpu->arch.idt[num].b);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*H:250
|
||||
* Here's the hard part: returning to the Host every time a trap happens
|
||||
* and then calling deliver_trap() and re-entering the Guest is slow.
|
||||
* Particularly because Guest userspace system calls are traps (usually trap
|
||||
* 128).
|
||||
*
|
||||
* So we'd like to set up the IDT to tell the CPU to deliver traps directly
|
||||
* into the Guest. This is possible, but the complexities cause the size of
|
||||
* this file to double! However, 150 lines of code is worth writing for taking
|
||||
* system calls down from 1750ns to 270ns. Plus, if lguest didn't do it, all
|
||||
* the other hypervisors would beat it up at lunchtime.
|
||||
*
|
||||
* This routine indicates if a particular trap number could be delivered
|
||||
* directly.
|
||||
*
|
||||
* Unfortunately, Linux 4.6 started using an interrupt gate instead of a
|
||||
* trap gate for syscalls, so this trick is ineffective. See Mastery for
|
||||
* how we could do this anyway...
|
||||
*/
|
||||
static bool direct_trap(unsigned int num)
|
||||
{
|
||||
/*
|
||||
* Hardware interrupts don't go to the Guest at all (except system
|
||||
* call).
|
||||
*/
|
||||
if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
|
||||
return false;
|
||||
|
||||
/*
|
||||
* The Host needs to see page faults (for shadow paging and to save the
|
||||
* fault address), general protection faults (in/out emulation) and
|
||||
* device not available (TS handling) and of course, the hypercall trap.
|
||||
*/
|
||||
return num != 14 && num != 13 && num != 7 && num != LGUEST_TRAP_ENTRY;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/*M:005
|
||||
* The Guest has the ability to turn its interrupt gates into trap gates,
|
||||
* if it is careful. The Host will let trap gates can go directly to the
|
||||
* Guest, but the Guest needs the interrupts atomically disabled for an
|
||||
* interrupt gate. The Host could provide a mechanism to register more
|
||||
* "no-interrupt" regions, and the Guest could point the trap gate at
|
||||
* instructions within that region, where it can safely disable interrupts.
|
||||
*/
|
||||
|
||||
/*M:006
|
||||
* The Guests do not use the sysenter (fast system call) instruction,
|
||||
* because it's hardcoded to enter privilege level 0 and so can't go direct.
|
||||
* It's about twice as fast as the older "int 0x80" system call, so it might
|
||||
* still be worthwhile to handle it in the Switcher and lcall down to the
|
||||
* Guest. The sysenter semantics are hairy tho: search for that keyword in
|
||||
* entry.S
|
||||
:*/
|
||||
|
||||
/*H:260
|
||||
* When we make traps go directly into the Guest, we need to make sure
|
||||
* the kernel stack is valid (ie. mapped in the page tables). Otherwise, the
|
||||
* CPU trying to deliver the trap will fault while trying to push the interrupt
|
||||
* words on the stack: this is called a double fault, and it forces us to kill
|
||||
* the Guest.
|
||||
*
|
||||
* Which is deeply unfair, because (literally!) it wasn't the Guests' fault.
|
||||
*/
|
||||
void pin_stack_pages(struct lg_cpu *cpu)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
/*
|
||||
* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
|
||||
* two pages of stack space.
|
||||
*/
|
||||
for (i = 0; i < cpu->lg->stack_pages; i++)
|
||||
/*
|
||||
* The stack grows *upwards*, so the address we're given is the
|
||||
* start of the page after the kernel stack. Subtract one to
|
||||
* get back onto the first stack page, and keep subtracting to
|
||||
* get to the rest of the stack pages.
|
||||
*/
|
||||
pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Direct traps also mean that we need to know whenever the Guest wants to use
|
||||
* a different kernel stack, so we can change the guest TSS to use that
|
||||
* stack. The TSS entries expect a virtual address, so unlike most addresses
|
||||
* the Guest gives us, the "esp" (stack pointer) value here is virtual, not
|
||||
* physical.
|
||||
*
|
||||
* In Linux each process has its own kernel stack, so this happens a lot: we
|
||||
* change stacks on each context switch.
|
||||
*/
|
||||
void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
|
||||
{
|
||||
/*
|
||||
* You're not allowed a stack segment with privilege level 0: bad Guest!
|
||||
*/
|
||||
if ((seg & 0x3) != GUEST_PL)
|
||||
kill_guest(cpu, "bad stack segment %i", seg);
|
||||
/* We only expect one or two stack pages. */
|
||||
if (pages > 2)
|
||||
kill_guest(cpu, "bad stack pages %u", pages);
|
||||
/* Save where the stack is, and how many pages */
|
||||
cpu->ss1 = seg;
|
||||
cpu->esp1 = esp;
|
||||
cpu->lg->stack_pages = pages;
|
||||
/* Make sure the new stack pages are mapped */
|
||||
pin_stack_pages(cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* All this reference to mapping stacks leads us neatly into the other complex
|
||||
* part of the Host: page table handling.
|
||||
*/
|
||||
|
||||
/*H:235
|
||||
* This is the routine which actually checks the Guest's IDT entry and
|
||||
* transfers it into the entry in "struct lguest":
|
||||
*/
|
||||
static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
|
||||
unsigned int num, u32 lo, u32 hi)
|
||||
{
|
||||
u8 type = idt_type(lo, hi);
|
||||
|
||||
/* We zero-out a not-present entry */
|
||||
if (!idt_present(lo, hi)) {
|
||||
trap->a = trap->b = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* We only support interrupt and trap gates. */
|
||||
if (type != 0xE && type != 0xF)
|
||||
kill_guest(cpu, "bad IDT type %i", type);
|
||||
|
||||
/*
|
||||
* We only copy the handler address, present bit, privilege level and
|
||||
* type. The privilege level controls where the trap can be triggered
|
||||
* manually with an "int" instruction. This is usually GUEST_PL,
|
||||
* except for system calls which userspace can use.
|
||||
*/
|
||||
trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
|
||||
trap->b = (hi&0xFFFFEF00);
|
||||
}
|
||||
|
||||
/*H:230
|
||||
* While we're here, dealing with delivering traps and interrupts to the
|
||||
* Guest, we might as well complete the picture: how the Guest tells us where
|
||||
* it wants them to go. This would be simple, except making traps fast
|
||||
* requires some tricks.
|
||||
*
|
||||
* We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
|
||||
* LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here.
|
||||
*/
|
||||
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
|
||||
{
|
||||
/*
|
||||
* Guest never handles: NMI, doublefault, spurious interrupt or
|
||||
* hypercall. We ignore when it tries to set them.
|
||||
*/
|
||||
if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Mark the IDT as changed: next time the Guest runs we'll know we have
|
||||
* to copy this again.
|
||||
*/
|
||||
cpu->changed |= CHANGED_IDT;
|
||||
|
||||
/* Check that the Guest doesn't try to step outside the bounds. */
|
||||
if (num >= ARRAY_SIZE(cpu->arch.idt))
|
||||
kill_guest(cpu, "Setting idt entry %u", num);
|
||||
else
|
||||
set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
|
||||
}
|
||||
|
||||
/*
|
||||
* The default entry for each interrupt points into the Switcher routines which
|
||||
* simply return to the Host. The run_guest() loop will then call
|
||||
* deliver_trap() to bounce it back into the Guest.
|
||||
*/
|
||||
static void default_idt_entry(struct desc_struct *idt,
|
||||
int trap,
|
||||
const unsigned long handler,
|
||||
const struct desc_struct *base)
|
||||
{
|
||||
/* A present interrupt gate. */
|
||||
u32 flags = 0x8e00;
|
||||
|
||||
/*
|
||||
* Set the privilege level on the entry for the hypercall: this allows
|
||||
* the Guest to use the "int" instruction to trigger it.
|
||||
*/
|
||||
if (trap == LGUEST_TRAP_ENTRY)
|
||||
flags |= (GUEST_PL << 13);
|
||||
else if (base)
|
||||
/*
|
||||
* Copy privilege level from what Guest asked for. This allows
|
||||
* debug (int 3) traps from Guest userspace, for example.
|
||||
*/
|
||||
flags |= (base->b & 0x6000);
|
||||
|
||||
/* Now pack it into the IDT entry in its weird format. */
|
||||
idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
|
||||
idt->b = (handler&0xFFFF0000) | flags;
|
||||
}
|
||||
|
||||
/* When the Guest first starts, we put default entries into the IDT. */
|
||||
void setup_default_idt_entries(struct lguest_ro_state *state,
|
||||
const unsigned long *def)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(state->guest_idt); i++)
|
||||
default_idt_entry(&state->guest_idt[i], i, def[i], NULL);
|
||||
}
|
||||
|
||||
/*H:240
|
||||
* We don't use the IDT entries in the "struct lguest" directly, instead
|
||||
* we copy them into the IDT which we've set up for Guests on this CPU, just
|
||||
* before we run the Guest. This routine does that copy.
|
||||
*/
|
||||
void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
|
||||
const unsigned long *def)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
/*
|
||||
* We can simply copy the direct traps, otherwise we use the default
|
||||
* ones in the Switcher: they will return to the Host.
|
||||
*/
|
||||
for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
|
||||
const struct desc_struct *gidt = &cpu->arch.idt[i];
|
||||
|
||||
/* If no Guest can ever override this trap, leave it alone. */
|
||||
if (!direct_trap(i))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Only trap gates (type 15) can go direct to the Guest.
|
||||
* Interrupt gates (type 14) disable interrupts as they are
|
||||
* entered, which we never let the Guest do. Not present
|
||||
* entries (type 0x0) also can't go direct, of course.
|
||||
*
|
||||
* If it can't go direct, we still need to copy the priv. level:
|
||||
* they might want to give userspace access to a software
|
||||
* interrupt.
|
||||
*/
|
||||
if (idt_type(gidt->a, gidt->b) == 0xF)
|
||||
idt[i] = *gidt;
|
||||
else
|
||||
default_idt_entry(&idt[i], i, def[i], gidt);
|
||||
}
|
||||
}
|
||||
|
||||
/*H:200
|
||||
* The Guest Clock.
|
||||
*
|
||||
* There are two sources of virtual interrupts. We saw one in lguest_user.c:
|
||||
* the Launcher sending interrupts for virtual devices. The other is the Guest
|
||||
* timer interrupt.
|
||||
*
|
||||
* The Guest uses the LHCALL_SET_CLOCKEVENT hypercall to tell us how long to
|
||||
* the next timer interrupt (in nanoseconds). We use the high-resolution timer
|
||||
* infrastructure to set a callback at that time.
|
||||
*
|
||||
* 0 means "turn off the clock".
|
||||
*/
|
||||
void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
|
||||
{
|
||||
ktime_t expires;
|
||||
|
||||
if (unlikely(delta == 0)) {
|
||||
/* Clock event device is shutting down. */
|
||||
hrtimer_cancel(&cpu->hrt);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* We use wallclock time here, so the Guest might not be running for
|
||||
* all the time between now and the timer interrupt it asked for. This
|
||||
* is almost always the right thing to do.
|
||||
*/
|
||||
expires = ktime_add_ns(ktime_get_real(), delta);
|
||||
hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
|
||||
}
|
||||
|
||||
/* This is the function called when the Guest's timer expires. */
|
||||
static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
|
||||
{
|
||||
struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
|
||||
|
||||
/* Remember the first interrupt is the timer interrupt. */
|
||||
set_interrupt(cpu, 0);
|
||||
return HRTIMER_NORESTART;
|
||||
}
|
||||
|
||||
/* This sets up the timer for this Guest. */
|
||||
void init_clockdev(struct lg_cpu *cpu)
|
||||
{
|
||||
hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
|
||||
cpu->hrt.function = clockdev_fn;
|
||||
}
|
|
@ -1,258 +0,0 @@
|
|||
#ifndef _LGUEST_H
|
||||
#define _LGUEST_H
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <linux/types.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/stringify.h>
|
||||
#include <linux/lguest.h>
|
||||
#include <linux/lguest_launcher.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/hrtimer.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <asm/lguest.h>
|
||||
|
||||
struct pgdir {
|
||||
unsigned long gpgdir;
|
||||
bool switcher_mapped;
|
||||
int last_host_cpu;
|
||||
pgd_t *pgdir;
|
||||
};
|
||||
|
||||
/* We have two pages shared with guests, per cpu. */
|
||||
struct lguest_pages {
|
||||
/* This is the stack page mapped rw in guest */
|
||||
char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
|
||||
struct lguest_regs regs;
|
||||
|
||||
/* This is the host state & guest descriptor page, ro in guest */
|
||||
struct lguest_ro_state state;
|
||||
} __attribute__((aligned(PAGE_SIZE)));
|
||||
|
||||
#define CHANGED_IDT 1
|
||||
#define CHANGED_GDT 2
|
||||
#define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
|
||||
#define CHANGED_ALL 3
|
||||
|
||||
struct lg_cpu {
|
||||
unsigned int id;
|
||||
struct lguest *lg;
|
||||
struct task_struct *tsk;
|
||||
struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
|
||||
|
||||
u32 cr2;
|
||||
u32 esp1;
|
||||
u16 ss1;
|
||||
|
||||
/* Bitmap of what has changed: see CHANGED_* above. */
|
||||
int changed;
|
||||
|
||||
/* Pending operation. */
|
||||
struct lguest_pending pending;
|
||||
|
||||
unsigned long *reg_read; /* register from LHREQ_GETREG */
|
||||
|
||||
/* At end of a page shared mapped over lguest_pages in guest. */
|
||||
unsigned long regs_page;
|
||||
struct lguest_regs *regs;
|
||||
|
||||
struct lguest_pages *last_pages;
|
||||
|
||||
/* Initialization mode: linear map everything. */
|
||||
bool linear_pages;
|
||||
int cpu_pgd; /* Which pgd this cpu is currently using */
|
||||
|
||||
/* If a hypercall was asked for, this points to the arguments. */
|
||||
struct hcall_args *hcall;
|
||||
u32 next_hcall;
|
||||
|
||||
/* Virtual clock device */
|
||||
struct hrtimer hrt;
|
||||
|
||||
/* Did the Guest tell us to halt? */
|
||||
int halted;
|
||||
|
||||
/* Pending virtual interrupts */
|
||||
DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
|
||||
|
||||
struct lg_cpu_arch arch;
|
||||
};
|
||||
|
||||
/* The private info the thread maintains about the guest. */
|
||||
struct lguest {
|
||||
struct lguest_data __user *lguest_data;
|
||||
struct lg_cpu cpus[NR_CPUS];
|
||||
unsigned int nr_cpus;
|
||||
|
||||
/* Valid guest memory pages must be < this. */
|
||||
u32 pfn_limit;
|
||||
|
||||
/* Device memory is >= pfn_limit and < device_limit. */
|
||||
u32 device_limit;
|
||||
|
||||
/*
|
||||
* This provides the offset to the base of guest-physical memory in the
|
||||
* Launcher.
|
||||
*/
|
||||
void __user *mem_base;
|
||||
unsigned long kernel_address;
|
||||
|
||||
struct pgdir pgdirs[4];
|
||||
|
||||
unsigned long noirq_iret;
|
||||
|
||||
unsigned int stack_pages;
|
||||
u32 tsc_khz;
|
||||
|
||||
/* Dead? */
|
||||
const char *dead;
|
||||
};
|
||||
|
||||
extern struct mutex lguest_lock;
|
||||
|
||||
/* core.c: */
|
||||
bool lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len);
|
||||
void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
|
||||
void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
|
||||
extern struct page **lg_switcher_pages;
|
||||
|
||||
/*H:035
|
||||
* Using memory-copy operations like that is usually inconvient, so we
|
||||
* have the following helper macros which read and write a specific type (often
|
||||
* an unsigned long).
|
||||
*
|
||||
* This reads into a variable of the given type then returns that.
|
||||
*/
|
||||
#define lgread(cpu, addr, type) \
|
||||
({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
|
||||
|
||||
/* This checks that the variable is of the given type, then writes it out. */
|
||||
#define lgwrite(cpu, addr, type, val) \
|
||||
do { \
|
||||
typecheck(type, val); \
|
||||
__lgwrite((cpu), (addr), &(val), sizeof(val)); \
|
||||
} while(0)
|
||||
/* (end of memory access helper routines) :*/
|
||||
|
||||
int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
|
||||
|
||||
/*
|
||||
* Helper macros to obtain the first 12 or the last 20 bits, this is only the
|
||||
* first step in the migration to the kernel types. pte_pfn is already defined
|
||||
* in the kernel.
|
||||
*/
|
||||
#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
|
||||
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
|
||||
#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
|
||||
#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT)
|
||||
|
||||
/* interrupts_and_traps.c: */
|
||||
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more);
|
||||
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more);
|
||||
void set_interrupt(struct lg_cpu *cpu, unsigned int irq);
|
||||
bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
|
||||
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
|
||||
u32 low, u32 hi);
|
||||
void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
|
||||
void pin_stack_pages(struct lg_cpu *cpu);
|
||||
void setup_default_idt_entries(struct lguest_ro_state *state,
|
||||
const unsigned long *def);
|
||||
void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
|
||||
const unsigned long *def);
|
||||
void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
|
||||
bool send_notify_to_eventfd(struct lg_cpu *cpu);
|
||||
void init_clockdev(struct lg_cpu *cpu);
|
||||
bool check_syscall_vector(struct lguest *lg);
|
||||
bool could_be_syscall(unsigned int num);
|
||||
int init_interrupts(void);
|
||||
void free_interrupts(void);
|
||||
|
||||
/* segments.c: */
|
||||
void setup_default_gdt_entries(struct lguest_ro_state *state);
|
||||
void setup_guest_gdt(struct lg_cpu *cpu);
|
||||
void load_guest_gdt_entry(struct lg_cpu *cpu, unsigned int i,
|
||||
u32 low, u32 hi);
|
||||
void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
|
||||
void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
|
||||
void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
|
||||
|
||||
/* page_tables.c: */
|
||||
int init_guest_pagetable(struct lguest *lg);
|
||||
void free_guest_pagetable(struct lguest *lg);
|
||||
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
|
||||
void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i);
|
||||
#ifdef CONFIG_X86_PAE
|
||||
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
|
||||
#endif
|
||||
void guest_pagetable_clear_all(struct lg_cpu *cpu);
|
||||
void guest_pagetable_flush_user(struct lg_cpu *cpu);
|
||||
void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
|
||||
unsigned long vaddr, pte_t val);
|
||||
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
|
||||
bool demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode,
|
||||
unsigned long *iomem);
|
||||
void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
|
||||
bool __guest_pa(struct lg_cpu *cpu, unsigned long vaddr, unsigned long *paddr);
|
||||
unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
|
||||
void page_table_guest_data_init(struct lg_cpu *cpu);
|
||||
|
||||
/* <arch>/core.c: */
|
||||
void lguest_arch_host_init(void);
|
||||
void lguest_arch_host_fini(void);
|
||||
void lguest_arch_run_guest(struct lg_cpu *cpu);
|
||||
void lguest_arch_handle_trap(struct lg_cpu *cpu);
|
||||
int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
|
||||
int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
|
||||
void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
|
||||
unsigned long *lguest_arch_regptr(struct lg_cpu *cpu, size_t reg_off, bool any);
|
||||
|
||||
/* <arch>/switcher.S: */
|
||||
extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
|
||||
|
||||
/* lguest_user.c: */
|
||||
int lguest_device_init(void);
|
||||
void lguest_device_remove(void);
|
||||
|
||||
/* hypercalls.c: */
|
||||
void do_hypercalls(struct lg_cpu *cpu);
|
||||
void write_timestamp(struct lg_cpu *cpu);
|
||||
|
||||
/*L:035
|
||||
* Let's step aside for the moment, to study one important routine that's used
|
||||
* widely in the Host code.
|
||||
*
|
||||
* There are many cases where the Guest can do something invalid, like pass crap
|
||||
* to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
|
||||
* acceptable to simply terminate the Guest and give the Launcher a nicely
|
||||
* formatted reason. It's also simpler for the Guest itself, which doesn't
|
||||
* need to check most hypercalls for "success"; if you're still running, it
|
||||
* succeeded.
|
||||
*
|
||||
* Once this is called, the Guest will never run again, so most Host code can
|
||||
* call this then continue as if nothing had happened. This means many
|
||||
* functions don't have to explicitly return an error code, which keeps the
|
||||
* code simple.
|
||||
*
|
||||
* It also means that this can be called more than once: only the first one is
|
||||
* remembered. The only trick is that we still need to kill the Guest even if
|
||||
* we can't allocate memory to store the reason. Linux has a neat way of
|
||||
* packing error codes into invalid pointers, so we use that here.
|
||||
*
|
||||
* Like any macro which uses an "if", it is safely wrapped in a run-once "do {
|
||||
* } while(0)".
|
||||
*/
|
||||
#define kill_guest(cpu, fmt...) \
|
||||
do { \
|
||||
if (!(cpu)->lg->dead) { \
|
||||
(cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt); \
|
||||
if (!(cpu)->lg->dead) \
|
||||
(cpu)->lg->dead = ERR_PTR(-ENOMEM); \
|
||||
} \
|
||||
} while(0)
|
||||
/* (End of aside) :*/
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif /* _LGUEST_H */
|
|
@ -1,446 +0,0 @@
|
|||
/*P:200 This contains all the /dev/lguest code, whereby the userspace
|
||||
* launcher controls and communicates with the Guest. For example,
|
||||
* the first write will tell us the Guest's memory layout and entry
|
||||
* point. A read will run the Guest until something happens, such as
|
||||
* a signal or the Guest accessing a device.
|
||||
:*/
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/sched/mm.h>
|
||||
#include <linux/file.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/export.h>
|
||||
#include "lg.h"
|
||||
|
||||
/*L:052
|
||||
The Launcher can get the registers, and also set some of them.
|
||||
*/
|
||||
static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input)
|
||||
{
|
||||
unsigned long which;
|
||||
|
||||
/* We re-use the ptrace structure to specify which register to read. */
|
||||
if (get_user(which, input) != 0)
|
||||
return -EFAULT;
|
||||
|
||||
/*
|
||||
* We set up the cpu register pointer, and their next read will
|
||||
* actually get the value (instead of running the guest).
|
||||
*
|
||||
* The last argument 'true' says we can access any register.
|
||||
*/
|
||||
cpu->reg_read = lguest_arch_regptr(cpu, which, true);
|
||||
if (!cpu->reg_read)
|
||||
return -ENOENT;
|
||||
|
||||
/* And because this is a write() call, we return the length used. */
|
||||
return sizeof(unsigned long) * 2;
|
||||
}
|
||||
|
||||
static int setreg(struct lg_cpu *cpu, const unsigned long __user *input)
|
||||
{
|
||||
unsigned long which, value, *reg;
|
||||
|
||||
/* We re-use the ptrace structure to specify which register to read. */
|
||||
if (get_user(which, input) != 0)
|
||||
return -EFAULT;
|
||||
input++;
|
||||
if (get_user(value, input) != 0)
|
||||
return -EFAULT;
|
||||
|
||||
/* The last argument 'false' means we can't access all registers. */
|
||||
reg = lguest_arch_regptr(cpu, which, false);
|
||||
if (!reg)
|
||||
return -ENOENT;
|
||||
|
||||
*reg = value;
|
||||
|
||||
/* And because this is a write() call, we return the length used. */
|
||||
return sizeof(unsigned long) * 3;
|
||||
}
|
||||
|
||||
/*L:050
|
||||
* Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
|
||||
* number to /dev/lguest.
|
||||
*/
|
||||
static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
|
||||
{
|
||||
unsigned long irq;
|
||||
|
||||
if (get_user(irq, input) != 0)
|
||||
return -EFAULT;
|
||||
if (irq >= LGUEST_IRQS)
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Next time the Guest runs, the core code will see if it can deliver
|
||||
* this interrupt.
|
||||
*/
|
||||
set_interrupt(cpu, irq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*L:053
|
||||
* Deliver a trap: this is used by the Launcher if it can't emulate
|
||||
* an instruction.
|
||||
*/
|
||||
static int trap(struct lg_cpu *cpu, const unsigned long __user *input)
|
||||
{
|
||||
unsigned long trapnum;
|
||||
|
||||
if (get_user(trapnum, input) != 0)
|
||||
return -EFAULT;
|
||||
|
||||
if (!deliver_trap(cpu, trapnum))
|
||||
return -EINVAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*L:040
|
||||
* Once our Guest is initialized, the Launcher makes it run by reading
|
||||
* from /dev/lguest.
|
||||
*/
|
||||
static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
|
||||
{
|
||||
struct lguest *lg = file->private_data;
|
||||
struct lg_cpu *cpu;
|
||||
unsigned int cpu_id = *o;
|
||||
|
||||
/* You must write LHREQ_INITIALIZE first! */
|
||||
if (!lg)
|
||||
return -EINVAL;
|
||||
|
||||
/* Watch out for arbitrary vcpu indexes! */
|
||||
if (cpu_id >= lg->nr_cpus)
|
||||
return -EINVAL;
|
||||
|
||||
cpu = &lg->cpus[cpu_id];
|
||||
|
||||
/* If you're not the task which owns the Guest, go away. */
|
||||
if (current != cpu->tsk)
|
||||
return -EPERM;
|
||||
|
||||
/* If the Guest is already dead, we indicate why */
|
||||
if (lg->dead) {
|
||||
size_t len;
|
||||
|
||||
/* lg->dead either contains an error code, or a string. */
|
||||
if (IS_ERR(lg->dead))
|
||||
return PTR_ERR(lg->dead);
|
||||
|
||||
/* We can only return as much as the buffer they read with. */
|
||||
len = min(size, strlen(lg->dead)+1);
|
||||
if (copy_to_user(user, lg->dead, len) != 0)
|
||||
return -EFAULT;
|
||||
return len;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we returned from read() last time because the Guest sent I/O,
|
||||
* clear the flag.
|
||||
*/
|
||||
if (cpu->pending.trap)
|
||||
cpu->pending.trap = 0;
|
||||
|
||||
/* Run the Guest until something interesting happens. */
|
||||
return run_guest(cpu, (unsigned long __user *)user);
|
||||
}
|
||||
|
||||
/*L:025
|
||||
* This actually initializes a CPU. For the moment, a Guest is only
|
||||
* uniprocessor, so "id" is always 0.
|
||||
*/
|
||||
static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
|
||||
{
|
||||
/* We have a limited number of CPUs in the lguest struct. */
|
||||
if (id >= ARRAY_SIZE(cpu->lg->cpus))
|
||||
return -EINVAL;
|
||||
|
||||
/* Set up this CPU's id, and pointer back to the lguest struct. */
|
||||
cpu->id = id;
|
||||
cpu->lg = container_of(cpu, struct lguest, cpus[id]);
|
||||
cpu->lg->nr_cpus++;
|
||||
|
||||
/* Each CPU has a timer it can set. */
|
||||
init_clockdev(cpu);
|
||||
|
||||
/*
|
||||
* We need a complete page for the Guest registers: they are accessible
|
||||
* to the Guest and we can only grant it access to whole pages.
|
||||
*/
|
||||
cpu->regs_page = get_zeroed_page(GFP_KERNEL);
|
||||
if (!cpu->regs_page)
|
||||
return -ENOMEM;
|
||||
|
||||
/* We actually put the registers at the end of the page. */
|
||||
cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
|
||||
|
||||
/*
|
||||
* Now we initialize the Guest's registers, handing it the start
|
||||
* address.
|
||||
*/
|
||||
lguest_arch_setup_regs(cpu, start_ip);
|
||||
|
||||
/*
|
||||
* We keep a pointer to the Launcher task (ie. current task) for when
|
||||
* other Guests want to wake this one (eg. console input).
|
||||
*/
|
||||
cpu->tsk = current;
|
||||
|
||||
/*
|
||||
* We need to keep a pointer to the Launcher's memory map, because if
|
||||
* the Launcher dies we need to clean it up. If we don't keep a
|
||||
* reference, it is destroyed before close() is called.
|
||||
*/
|
||||
cpu->mm = get_task_mm(cpu->tsk);
|
||||
|
||||
/*
|
||||
* We remember which CPU's pages this Guest used last, for optimization
|
||||
* when the same Guest runs on the same CPU twice.
|
||||
*/
|
||||
cpu->last_pages = NULL;
|
||||
|
||||
/* No error == success. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*L:020
|
||||
* The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
|
||||
* addition to the LHREQ_INITIALIZE value). These are:
|
||||
*
|
||||
* base: The start of the Guest-physical memory inside the Launcher memory.
|
||||
*
|
||||
* pfnlimit: The highest (Guest-physical) page number the Guest should be
|
||||
* allowed to access. The Guest memory lives inside the Launcher, so it sets
|
||||
* this to ensure the Guest can only reach its own memory.
|
||||
*
|
||||
* start: The first instruction to execute ("eip" in x86-speak).
|
||||
*/
|
||||
static int initialize(struct file *file, const unsigned long __user *input)
|
||||
{
|
||||
/* "struct lguest" contains all we (the Host) know about a Guest. */
|
||||
struct lguest *lg;
|
||||
int err;
|
||||
unsigned long args[4];
|
||||
|
||||
/*
|
||||
* We grab the Big Lguest lock, which protects against multiple
|
||||
* simultaneous initializations.
|
||||
*/
|
||||
mutex_lock(&lguest_lock);
|
||||
/* You can't initialize twice! Close the device and start again... */
|
||||
if (file->private_data) {
|
||||
err = -EBUSY;
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
if (copy_from_user(args, input, sizeof(args)) != 0) {
|
||||
err = -EFAULT;
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
lg = kzalloc(sizeof(*lg), GFP_KERNEL);
|
||||
if (!lg) {
|
||||
err = -ENOMEM;
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
/* Populate the easy fields of our "struct lguest" */
|
||||
lg->mem_base = (void __user *)args[0];
|
||||
lg->pfn_limit = args[1];
|
||||
lg->device_limit = args[3];
|
||||
|
||||
/* This is the first cpu (cpu 0) and it will start booting at args[2] */
|
||||
err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
|
||||
if (err)
|
||||
goto free_lg;
|
||||
|
||||
/*
|
||||
* Initialize the Guest's shadow page tables. This allocates
|
||||
* memory, so can fail.
|
||||
*/
|
||||
err = init_guest_pagetable(lg);
|
||||
if (err)
|
||||
goto free_regs;
|
||||
|
||||
/* We keep our "struct lguest" in the file's private_data. */
|
||||
file->private_data = lg;
|
||||
|
||||
mutex_unlock(&lguest_lock);
|
||||
|
||||
/* And because this is a write() call, we return the length used. */
|
||||
return sizeof(args);
|
||||
|
||||
free_regs:
|
||||
/* FIXME: This should be in free_vcpu */
|
||||
free_page(lg->cpus[0].regs_page);
|
||||
free_lg:
|
||||
kfree(lg);
|
||||
unlock:
|
||||
mutex_unlock(&lguest_lock);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*L:010
|
||||
* The first operation the Launcher does must be a write. All writes
|
||||
* start with an unsigned long number: for the first write this must be
|
||||
* LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
|
||||
* writes of other values to send interrupts or set up receipt of notifications.
|
||||
*
|
||||
* Note that we overload the "offset" in the /dev/lguest file to indicate what
|
||||
* CPU number we're dealing with. Currently this is always 0 since we only
|
||||
* support uniprocessor Guests, but you can see the beginnings of SMP support
|
||||
* here.
|
||||
*/
|
||||
static ssize_t write(struct file *file, const char __user *in,
|
||||
size_t size, loff_t *off)
|
||||
{
|
||||
/*
|
||||
* Once the Guest is initialized, we hold the "struct lguest" in the
|
||||
* file private data.
|
||||
*/
|
||||
struct lguest *lg = file->private_data;
|
||||
const unsigned long __user *input = (const unsigned long __user *)in;
|
||||
unsigned long req;
|
||||
struct lg_cpu *uninitialized_var(cpu);
|
||||
unsigned int cpu_id = *off;
|
||||
|
||||
/* The first value tells us what this request is. */
|
||||
if (get_user(req, input) != 0)
|
||||
return -EFAULT;
|
||||
input++;
|
||||
|
||||
/* If you haven't initialized, you must do that first. */
|
||||
if (req != LHREQ_INITIALIZE) {
|
||||
if (!lg || (cpu_id >= lg->nr_cpus))
|
||||
return -EINVAL;
|
||||
cpu = &lg->cpus[cpu_id];
|
||||
|
||||
/* Once the Guest is dead, you can only read() why it died. */
|
||||
if (lg->dead)
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
switch (req) {
|
||||
case LHREQ_INITIALIZE:
|
||||
return initialize(file, input);
|
||||
case LHREQ_IRQ:
|
||||
return user_send_irq(cpu, input);
|
||||
case LHREQ_GETREG:
|
||||
return getreg_setup(cpu, input);
|
||||
case LHREQ_SETREG:
|
||||
return setreg(cpu, input);
|
||||
case LHREQ_TRAP:
|
||||
return trap(cpu, input);
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
static int open(struct inode *inode, struct file *file)
|
||||
{
|
||||
file->private_data = NULL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*L:060
|
||||
* The final piece of interface code is the close() routine. It reverses
|
||||
* everything done in initialize(). This is usually called because the
|
||||
* Launcher exited.
|
||||
*
|
||||
* Note that the close routine returns 0 or a negative error number: it can't
|
||||
* really fail, but it can whine. I blame Sun for this wart, and K&R C for
|
||||
* letting them do it.
|
||||
:*/
|
||||
static int close(struct inode *inode, struct file *file)
|
||||
{
|
||||
struct lguest *lg = file->private_data;
|
||||
unsigned int i;
|
||||
|
||||
/* If we never successfully initialized, there's nothing to clean up */
|
||||
if (!lg)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* We need the big lock, to protect from inter-guest I/O and other
|
||||
* Launchers initializing guests.
|
||||
*/
|
||||
mutex_lock(&lguest_lock);
|
||||
|
||||
/* Free up the shadow page tables for the Guest. */
|
||||
free_guest_pagetable(lg);
|
||||
|
||||
for (i = 0; i < lg->nr_cpus; i++) {
|
||||
/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
|
||||
hrtimer_cancel(&lg->cpus[i].hrt);
|
||||
/* We can free up the register page we allocated. */
|
||||
free_page(lg->cpus[i].regs_page);
|
||||
/*
|
||||
* Now all the memory cleanups are done, it's safe to release
|
||||
* the Launcher's memory management structure.
|
||||
*/
|
||||
mmput(lg->cpus[i].mm);
|
||||
}
|
||||
|
||||
/*
|
||||
* If lg->dead doesn't contain an error code it will be NULL or a
|
||||
* kmalloc()ed string, either of which is ok to hand to kfree().
|
||||
*/
|
||||
if (!IS_ERR(lg->dead))
|
||||
kfree(lg->dead);
|
||||
/* Free the memory allocated to the lguest_struct */
|
||||
kfree(lg);
|
||||
/* Release lock and exit. */
|
||||
mutex_unlock(&lguest_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*L:000
|
||||
* Welcome to our journey through the Launcher!
|
||||
*
|
||||
* The Launcher is the Host userspace program which sets up, runs and services
|
||||
* the Guest. In fact, many comments in the Drivers which refer to "the Host"
|
||||
* doing things are inaccurate: the Launcher does all the device handling for
|
||||
* the Guest, but the Guest can't know that.
|
||||
*
|
||||
* Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
|
||||
* shall see more of that later.
|
||||
*
|
||||
* We begin our understanding with the Host kernel interface which the Launcher
|
||||
* uses: reading and writing a character device called /dev/lguest. All the
|
||||
* work happens in the read(), write() and close() routines:
|
||||
*/
|
||||
static const struct file_operations lguest_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.open = open,
|
||||
.release = close,
|
||||
.write = write,
|
||||
.read = read,
|
||||
.llseek = default_llseek,
|
||||
};
|
||||
/*:*/
|
||||
|
||||
/*
|
||||
* This is a textbook example of a "misc" character device. Populate a "struct
|
||||
* miscdevice" and register it with misc_register().
|
||||
*/
|
||||
static struct miscdevice lguest_dev = {
|
||||
.minor = MISC_DYNAMIC_MINOR,
|
||||
.name = "lguest",
|
||||
.fops = &lguest_fops,
|
||||
};
|
||||
|
||||
int __init lguest_device_init(void)
|
||||
{
|
||||
return misc_register(&lguest_dev);
|
||||
}
|
||||
|
||||
void __exit lguest_device_remove(void)
|
||||
{
|
||||
misc_deregister(&lguest_dev);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -1,228 +0,0 @@
|
|||
/*P:600
|
||||
* The x86 architecture has segments, which involve a table of descriptors
|
||||
* which can be used to do funky things with virtual address interpretation.
|
||||
* We originally used to use segments so the Guest couldn't alter the
|
||||
* Guest<->Host Switcher, and then we had to trim Guest segments, and restore
|
||||
* for userspace per-thread segments, but trim again for on userspace->kernel
|
||||
* transitions... This nightmarish creation was contained within this file,
|
||||
* where we knew not to tread without heavy armament and a change of underwear.
|
||||
*
|
||||
* In these modern times, the segment handling code consists of simple sanity
|
||||
* checks, and the worst you'll experience reading this code is butterfly-rash
|
||||
* from frolicking through its parklike serenity.
|
||||
:*/
|
||||
#include "lg.h"
|
||||
|
||||
/*H:600
|
||||
* Segments & The Global Descriptor Table
|
||||
*
|
||||
* (That title sounds like a bad Nerdcore group. Not to suggest that there are
|
||||
* any good Nerdcore groups, but in high school a friend of mine had a band
|
||||
* called Joe Fish and the Chips, so there are definitely worse band names).
|
||||
*
|
||||
* To refresh: the GDT is a table of 8-byte values describing segments. Once
|
||||
* set up, these segments can be loaded into one of the 6 "segment registers".
|
||||
*
|
||||
* GDT entries are passed around as "struct desc_struct"s, which like IDT
|
||||
* entries are split into two 32-bit members, "a" and "b". One day, someone
|
||||
* will clean that up, and be declared a Hero. (No pressure, I'm just saying).
|
||||
*
|
||||
* Anyway, the GDT entry contains a base (the start address of the segment), a
|
||||
* limit (the size of the segment - 1), and some flags. Sounds simple, and it
|
||||
* would be, except those zany Intel engineers decided that it was too boring
|
||||
* to put the base at one end, the limit at the other, and the flags in
|
||||
* between. They decided to shotgun the bits at random throughout the 8 bytes,
|
||||
* like so:
|
||||
*
|
||||
* 0 16 40 48 52 56 63
|
||||
* [ limit part 1 ][ base part 1 ][ flags ][li][fl][base ]
|
||||
* mit ags part 2
|
||||
* part 2
|
||||
*
|
||||
* As a result, this file contains a certain amount of magic numeracy. Let's
|
||||
* begin.
|
||||
*/
|
||||
|
||||
/*
|
||||
* There are several entries we don't let the Guest set. The TSS entry is the
|
||||
* "Task State Segment" which controls all kinds of delicate things. The
|
||||
* LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
|
||||
* the Guest can't be trusted to deal with double faults.
|
||||
*/
|
||||
static bool ignored_gdt(unsigned int num)
|
||||
{
|
||||
return (num == GDT_ENTRY_TSS
|
||||
|| num == GDT_ENTRY_LGUEST_CS
|
||||
|| num == GDT_ENTRY_LGUEST_DS
|
||||
|| num == GDT_ENTRY_DOUBLEFAULT_TSS);
|
||||
}
|
||||
|
||||
/*H:630
|
||||
* Once the Guest gave us new GDT entries, we fix them up a little. We
|
||||
* don't care if they're invalid: the worst that can happen is a General
|
||||
* Protection Fault in the Switcher when it restores a Guest segment register
|
||||
* which tries to use that entry. Then we kill the Guest for causing such a
|
||||
* mess: the message will be "unhandled trap 256".
|
||||
*/
|
||||
static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = start; i < end; i++) {
|
||||
/*
|
||||
* We never copy these ones to real GDT, so we don't care what
|
||||
* they say
|
||||
*/
|
||||
if (ignored_gdt(i))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Segment descriptors contain a privilege level: the Guest is
|
||||
* sometimes careless and leaves this as 0, even though it's
|
||||
* running at privilege level 1. If so, we fix it here.
|
||||
*/
|
||||
if (cpu->arch.gdt[i].dpl == 0)
|
||||
cpu->arch.gdt[i].dpl |= GUEST_PL;
|
||||
|
||||
/*
|
||||
* Each descriptor has an "accessed" bit. If we don't set it
|
||||
* now, the CPU will try to set it when the Guest first loads
|
||||
* that entry into a segment register. But the GDT isn't
|
||||
* writable by the Guest, so bad things can happen.
|
||||
*/
|
||||
cpu->arch.gdt[i].type |= 0x1;
|
||||
}
|
||||
}
|
||||
|
||||
/*H:610
|
||||
* Like the IDT, we never simply use the GDT the Guest gives us. We keep
|
||||
* a GDT for each CPU, and copy across the Guest's entries each time we want to
|
||||
* run the Guest on that CPU.
|
||||
*
|
||||
* This routine is called at boot or modprobe time for each CPU to set up the
|
||||
* constant GDT entries: the ones which are the same no matter what Guest we're
|
||||
* running.
|
||||
*/
|
||||
void setup_default_gdt_entries(struct lguest_ro_state *state)
|
||||
{
|
||||
struct desc_struct *gdt = state->guest_gdt;
|
||||
unsigned long tss = (unsigned long)&state->guest_tss;
|
||||
|
||||
/* The Switcher segments are full 0-4G segments, privilege level 0 */
|
||||
gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
|
||||
gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
|
||||
|
||||
/*
|
||||
* The TSS segment refers to the TSS entry for this particular CPU.
|
||||
*/
|
||||
gdt[GDT_ENTRY_TSS].a = 0;
|
||||
gdt[GDT_ENTRY_TSS].b = 0;
|
||||
|
||||
gdt[GDT_ENTRY_TSS].limit0 = 0x67;
|
||||
gdt[GDT_ENTRY_TSS].base0 = tss & 0xFFFF;
|
||||
gdt[GDT_ENTRY_TSS].base1 = (tss >> 16) & 0xFF;
|
||||
gdt[GDT_ENTRY_TSS].base2 = tss >> 24;
|
||||
gdt[GDT_ENTRY_TSS].type = 0x9; /* 32-bit TSS (available) */
|
||||
gdt[GDT_ENTRY_TSS].p = 0x1; /* Entry is present */
|
||||
gdt[GDT_ENTRY_TSS].dpl = 0x0; /* Privilege level 0 */
|
||||
gdt[GDT_ENTRY_TSS].s = 0x0; /* system segment */
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* This routine sets up the initial Guest GDT for booting. All entries start
|
||||
* as 0 (unusable).
|
||||
*/
|
||||
void setup_guest_gdt(struct lg_cpu *cpu)
|
||||
{
|
||||
/*
|
||||
* Start with full 0-4G segments...except the Guest is allowed to use
|
||||
* them, so set the privilege level appropriately in the flags.
|
||||
*/
|
||||
cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
|
||||
cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
|
||||
cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].dpl |= GUEST_PL;
|
||||
cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].dpl |= GUEST_PL;
|
||||
}
|
||||
|
||||
/*H:650
|
||||
* An optimization of copy_gdt(), for just the three "thead-local storage"
|
||||
* entries.
|
||||
*/
|
||||
void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = GDT_ENTRY_TLS_MIN; i <= GDT_ENTRY_TLS_MAX; i++)
|
||||
gdt[i] = cpu->arch.gdt[i];
|
||||
}
|
||||
|
||||
/*H:640
|
||||
* When the Guest is run on a different CPU, or the GDT entries have changed,
|
||||
* copy_gdt() is called to copy the Guest's GDT entries across to this CPU's
|
||||
* GDT.
|
||||
*/
|
||||
void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
/*
|
||||
* The default entries from setup_default_gdt_entries() are not
|
||||
* replaced. See ignored_gdt() above.
|
||||
*/
|
||||
for (i = 0; i < GDT_ENTRIES; i++)
|
||||
if (!ignored_gdt(i))
|
||||
gdt[i] = cpu->arch.gdt[i];
|
||||
}
|
||||
|
||||
/*H:620
|
||||
* This is where the Guest asks us to load a new GDT entry
|
||||
* (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in.
|
||||
*/
|
||||
void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
|
||||
{
|
||||
/*
|
||||
* We assume the Guest has the same number of GDT entries as the
|
||||
* Host, otherwise we'd have to dynamically allocate the Guest GDT.
|
||||
*/
|
||||
if (num >= ARRAY_SIZE(cpu->arch.gdt)) {
|
||||
kill_guest(cpu, "too many gdt entries %i", num);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Set it up, then fix it. */
|
||||
cpu->arch.gdt[num].a = lo;
|
||||
cpu->arch.gdt[num].b = hi;
|
||||
fixup_gdt_table(cpu, num, num+1);
|
||||
/*
|
||||
* Mark that the GDT changed so the core knows it has to copy it again,
|
||||
* even if the Guest is run on the same CPU.
|
||||
*/
|
||||
cpu->changed |= CHANGED_GDT;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the fast-track version for just changing the three TLS entries.
|
||||
* Remember that this happens on every context switch, so it's worth
|
||||
* optimizing. But wouldn't it be neater to have a single hypercall to cover
|
||||
* both cases?
|
||||
*/
|
||||
void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
|
||||
{
|
||||
struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
|
||||
|
||||
__lgread(cpu, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
|
||||
fixup_gdt_table(cpu, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
|
||||
/* Note that just the TLS entries have changed. */
|
||||
cpu->changed |= CHANGED_GDT_TLS;
|
||||
}
|
||||
|
||||
/*H:660
|
||||
* With this, we have finished the Host.
|
||||
*
|
||||
* Five of the seven parts of our task are complete. You have made it through
|
||||
* the Bit of Despair (I think that's somewhere in the page table code,
|
||||
* myself).
|
||||
*
|
||||
* Next, we examine "make Switcher". It's short, but intense.
|
||||
*/
|
|
@ -1,724 +0,0 @@
|
|||
/*
|
||||
* Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
|
||||
* Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
||||
* NON INFRINGEMENT. See the GNU General Public License for more
|
||||
* details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
/*P:450
|
||||
* This file contains the x86-specific lguest code. It used to be all
|
||||
* mixed in with drivers/lguest/core.c but several foolhardy code slashers
|
||||
* wrestled most of the dependencies out to here in preparation for porting
|
||||
* lguest to other architectures (see what I mean by foolhardy?).
|
||||
*
|
||||
* This also contains a couple of non-obvious setup and teardown pieces which
|
||||
* were implemented after days of debugging pain.
|
||||
:*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/start_kernel.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/console.h>
|
||||
#include <linux/screen_info.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/lguest.h>
|
||||
#include <linux/lguest_launcher.h>
|
||||
#include <asm/paravirt.h>
|
||||
#include <asm/param.h>
|
||||
#include <asm/page.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/desc.h>
|
||||
#include <asm/setup.h>
|
||||
#include <asm/lguest.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/fpu/internal.h>
|
||||
#include <asm/tlbflush.h>
|
||||
#include "../lg.h"
|
||||
|
||||
static int cpu_had_pge;
|
||||
|
||||
static struct {
|
||||
unsigned long offset;
|
||||
unsigned short segment;
|
||||
} lguest_entry;
|
||||
|
||||
/* Offset from where switcher.S was compiled to where we've copied it */
|
||||
static unsigned long switcher_offset(void)
|
||||
{
|
||||
return switcher_addr - (unsigned long)start_switcher_text;
|
||||
}
|
||||
|
||||
/* This cpu's struct lguest_pages (after the Switcher text page) */
|
||||
static struct lguest_pages *lguest_pages(unsigned int cpu)
|
||||
{
|
||||
return &(((struct lguest_pages *)(switcher_addr + PAGE_SIZE))[cpu]);
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(struct lg_cpu *, lg_last_cpu);
|
||||
|
||||
/*S:010
|
||||
* We approach the Switcher.
|
||||
*
|
||||
* Remember that each CPU has two pages which are visible to the Guest when it
|
||||
* runs on that CPU. This has to contain the state for that Guest: we copy the
|
||||
* state in just before we run the Guest.
|
||||
*
|
||||
* Each Guest has "changed" flags which indicate what has changed in the Guest
|
||||
* since it last ran. We saw this set in interrupts_and_traps.c and
|
||||
* segments.c.
|
||||
*/
|
||||
static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
|
||||
{
|
||||
/*
|
||||
* Copying all this data can be quite expensive. We usually run the
|
||||
* same Guest we ran last time (and that Guest hasn't run anywhere else
|
||||
* meanwhile). If that's not the case, we pretend everything in the
|
||||
* Guest has changed.
|
||||
*/
|
||||
if (__this_cpu_read(lg_last_cpu) != cpu || cpu->last_pages != pages) {
|
||||
__this_cpu_write(lg_last_cpu, cpu);
|
||||
cpu->last_pages = pages;
|
||||
cpu->changed = CHANGED_ALL;
|
||||
}
|
||||
|
||||
/*
|
||||
* These copies are pretty cheap, so we do them unconditionally: */
|
||||
/* Save the current Host top-level page directory.
|
||||
*/
|
||||
pages->state.host_cr3 = __pa(current->mm->pgd);
|
||||
/*
|
||||
* Set up the Guest's page tables to see this CPU's pages (and no
|
||||
* other CPU's pages).
|
||||
*/
|
||||
map_switcher_in_guest(cpu, pages);
|
||||
/*
|
||||
* Set up the two "TSS" members which tell the CPU what stack to use
|
||||
* for traps which do directly into the Guest (ie. traps at privilege
|
||||
* level 1).
|
||||
*/
|
||||
pages->state.guest_tss.sp1 = cpu->esp1;
|
||||
pages->state.guest_tss.ss1 = cpu->ss1;
|
||||
|
||||
/* Copy direct-to-Guest trap entries. */
|
||||
if (cpu->changed & CHANGED_IDT)
|
||||
copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
|
||||
|
||||
/* Copy all GDT entries which the Guest can change. */
|
||||
if (cpu->changed & CHANGED_GDT)
|
||||
copy_gdt(cpu, pages->state.guest_gdt);
|
||||
/* If only the TLS entries have changed, copy them. */
|
||||
else if (cpu->changed & CHANGED_GDT_TLS)
|
||||
copy_gdt_tls(cpu, pages->state.guest_gdt);
|
||||
|
||||
/* Mark the Guest as unchanged for next time. */
|
||||
cpu->changed = 0;
|
||||
}
|
||||
|
||||
/* Finally: the code to actually call into the Switcher to run the Guest. */
|
||||
static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
|
||||
{
|
||||
/* This is a dummy value we need for GCC's sake. */
|
||||
unsigned int clobber;
|
||||
|
||||
/*
|
||||
* Copy the guest-specific information into this CPU's "struct
|
||||
* lguest_pages".
|
||||
*/
|
||||
copy_in_guest_info(cpu, pages);
|
||||
|
||||
/*
|
||||
* Set the trap number to 256 (impossible value). If we fault while
|
||||
* switching to the Guest (bad segment registers or bug), this will
|
||||
* cause us to abort the Guest.
|
||||
*/
|
||||
cpu->regs->trapnum = 256;
|
||||
|
||||
/*
|
||||
* Now: we push the "eflags" register on the stack, then do an "lcall".
|
||||
* This is how we change from using the kernel code segment to using
|
||||
* the dedicated lguest code segment, as well as jumping into the
|
||||
* Switcher.
|
||||
*
|
||||
* The lcall also pushes the old code segment (KERNEL_CS) onto the
|
||||
* stack, then the address of this call. This stack layout happens to
|
||||
* exactly match the stack layout created by an interrupt...
|
||||
*/
|
||||
asm volatile("pushf; lcall *%4"
|
||||
/*
|
||||
* This is how we tell GCC that %eax ("a") and %ebx ("b")
|
||||
* are changed by this routine. The "=" means output.
|
||||
*/
|
||||
: "=a"(clobber), "=b"(clobber)
|
||||
/*
|
||||
* %eax contains the pages pointer. ("0" refers to the
|
||||
* 0-th argument above, ie "a"). %ebx contains the
|
||||
* physical address of the Guest's top-level page
|
||||
* directory.
|
||||
*/
|
||||
: "0"(pages),
|
||||
"1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir)),
|
||||
"m"(lguest_entry)
|
||||
/*
|
||||
* We tell gcc that all these registers could change,
|
||||
* which means we don't have to save and restore them in
|
||||
* the Switcher.
|
||||
*/
|
||||
: "memory", "%edx", "%ecx", "%edi", "%esi");
|
||||
}
|
||||
/*:*/
|
||||
|
||||
unsigned long *lguest_arch_regptr(struct lg_cpu *cpu, size_t reg_off, bool any)
|
||||
{
|
||||
switch (reg_off) {
|
||||
case offsetof(struct pt_regs, bx):
|
||||
return &cpu->regs->ebx;
|
||||
case offsetof(struct pt_regs, cx):
|
||||
return &cpu->regs->ecx;
|
||||
case offsetof(struct pt_regs, dx):
|
||||
return &cpu->regs->edx;
|
||||
case offsetof(struct pt_regs, si):
|
||||
return &cpu->regs->esi;
|
||||
case offsetof(struct pt_regs, di):
|
||||
return &cpu->regs->edi;
|
||||
case offsetof(struct pt_regs, bp):
|
||||
return &cpu->regs->ebp;
|
||||
case offsetof(struct pt_regs, ax):
|
||||
return &cpu->regs->eax;
|
||||
case offsetof(struct pt_regs, ip):
|
||||
return &cpu->regs->eip;
|
||||
case offsetof(struct pt_regs, sp):
|
||||
return &cpu->regs->esp;
|
||||
}
|
||||
|
||||
/* Launcher can read these, but we don't allow any setting. */
|
||||
if (any) {
|
||||
switch (reg_off) {
|
||||
case offsetof(struct pt_regs, ds):
|
||||
return &cpu->regs->ds;
|
||||
case offsetof(struct pt_regs, es):
|
||||
return &cpu->regs->es;
|
||||
case offsetof(struct pt_regs, fs):
|
||||
return &cpu->regs->fs;
|
||||
case offsetof(struct pt_regs, gs):
|
||||
return &cpu->regs->gs;
|
||||
case offsetof(struct pt_regs, cs):
|
||||
return &cpu->regs->cs;
|
||||
case offsetof(struct pt_regs, flags):
|
||||
return &cpu->regs->eflags;
|
||||
case offsetof(struct pt_regs, ss):
|
||||
return &cpu->regs->ss;
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*M:002
|
||||
* There are hooks in the scheduler which we can register to tell when we
|
||||
* get kicked off the CPU (preempt_notifier_register()). This would allow us
|
||||
* to lazily disable SYSENTER which would regain some performance, and should
|
||||
* also simplify copy_in_guest_info(). Note that we'd still need to restore
|
||||
* things when we exit to Launcher userspace, but that's fairly easy.
|
||||
*
|
||||
* We could also try using these hooks for PGE, but that might be too expensive.
|
||||
*
|
||||
* The hooks were designed for KVM, but we can also put them to good use.
|
||||
:*/
|
||||
|
||||
/*H:040
|
||||
* This is the i386-specific code to setup and run the Guest. Interrupts
|
||||
* are disabled: we own the CPU.
|
||||
*/
|
||||
void lguest_arch_run_guest(struct lg_cpu *cpu)
|
||||
{
|
||||
/*
|
||||
* SYSENTER is an optimized way of doing system calls. We can't allow
|
||||
* it because it always jumps to privilege level 0. A normal Guest
|
||||
* won't try it because we don't advertise it in CPUID, but a malicious
|
||||
* Guest (or malicious Guest userspace program) could, so we tell the
|
||||
* CPU to disable it before running the Guest.
|
||||
*/
|
||||
if (boot_cpu_has(X86_FEATURE_SEP))
|
||||
wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
|
||||
|
||||
/*
|
||||
* Now we actually run the Guest. It will return when something
|
||||
* interesting happens, and we can examine its registers to see what it
|
||||
* was doing.
|
||||
*/
|
||||
run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
|
||||
|
||||
/*
|
||||
* Note that the "regs" structure contains two extra entries which are
|
||||
* not really registers: a trap number which says what interrupt or
|
||||
* trap made the switcher code come back, and an error code which some
|
||||
* traps set.
|
||||
*/
|
||||
|
||||
/* Restore SYSENTER if it's supposed to be on. */
|
||||
if (boot_cpu_has(X86_FEATURE_SEP))
|
||||
wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
|
||||
|
||||
/*
|
||||
* If the Guest page faulted, then the cr2 register will tell us the
|
||||
* bad virtual address. We have to grab this now, because once we
|
||||
* re-enable interrupts an interrupt could fault and thus overwrite
|
||||
* cr2, or we could even move off to a different CPU.
|
||||
*/
|
||||
if (cpu->regs->trapnum == 14)
|
||||
cpu->arch.last_pagefault = read_cr2();
|
||||
/*
|
||||
* Similarly, if we took a trap because the Guest used the FPU,
|
||||
* we have to restore the FPU it expects to see.
|
||||
* fpu__restore() may sleep and we may even move off to
|
||||
* a different CPU. So all the critical stuff should be done
|
||||
* before this.
|
||||
*/
|
||||
else if (cpu->regs->trapnum == 7 && !fpregs_active())
|
||||
fpu__restore(¤t->thread.fpu);
|
||||
}
|
||||
|
||||
/*H:130
|
||||
* Now we've examined the hypercall code; our Guest can make requests.
|
||||
* Our Guest is usually so well behaved; it never tries to do things it isn't
|
||||
* allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual
|
||||
* infrastructure isn't quite complete, because it doesn't contain replacements
|
||||
* for the Intel I/O instructions. As a result, the Guest sometimes fumbles
|
||||
* across one during the boot process as it probes for various things which are
|
||||
* usually attached to a PC.
|
||||
*
|
||||
* When the Guest uses one of these instructions, we get a trap (General
|
||||
* Protection Fault) and come here. We queue this to be sent out to the
|
||||
* Launcher to handle.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The eip contains the *virtual* address of the Guest's instruction:
|
||||
* we copy the instruction here so the Launcher doesn't have to walk
|
||||
* the page tables to decode it. We handle the case (eg. in a kernel
|
||||
* module) where the instruction is over two pages, and the pages are
|
||||
* virtually but not physically contiguous.
|
||||
*
|
||||
* The longest possible x86 instruction is 15 bytes, but we don't handle
|
||||
* anything that strange.
|
||||
*/
|
||||
static void copy_from_guest(struct lg_cpu *cpu,
|
||||
void *dst, unsigned long vaddr, size_t len)
|
||||
{
|
||||
size_t to_page_end = PAGE_SIZE - (vaddr % PAGE_SIZE);
|
||||
unsigned long paddr;
|
||||
|
||||
BUG_ON(len > PAGE_SIZE);
|
||||
|
||||
/* If it goes over a page, copy in two parts. */
|
||||
if (len > to_page_end) {
|
||||
/* But make sure the next page is mapped! */
|
||||
if (__guest_pa(cpu, vaddr + to_page_end, &paddr))
|
||||
copy_from_guest(cpu, dst + to_page_end,
|
||||
vaddr + to_page_end,
|
||||
len - to_page_end);
|
||||
else
|
||||
/* Otherwise fill with zeroes. */
|
||||
memset(dst + to_page_end, 0, len - to_page_end);
|
||||
len = to_page_end;
|
||||
}
|
||||
|
||||
/* This will kill the guest if it isn't mapped, but that
|
||||
* shouldn't happen. */
|
||||
__lgread(cpu, dst, guest_pa(cpu, vaddr), len);
|
||||
}
|
||||
|
||||
|
||||
static void setup_emulate_insn(struct lg_cpu *cpu)
|
||||
{
|
||||
cpu->pending.trap = 13;
|
||||
copy_from_guest(cpu, cpu->pending.insn, cpu->regs->eip,
|
||||
sizeof(cpu->pending.insn));
|
||||
}
|
||||
|
||||
static void setup_iomem_insn(struct lg_cpu *cpu, unsigned long iomem_addr)
|
||||
{
|
||||
cpu->pending.trap = 14;
|
||||
cpu->pending.addr = iomem_addr;
|
||||
copy_from_guest(cpu, cpu->pending.insn, cpu->regs->eip,
|
||||
sizeof(cpu->pending.insn));
|
||||
}
|
||||
|
||||
/*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
|
||||
void lguest_arch_handle_trap(struct lg_cpu *cpu)
|
||||
{
|
||||
unsigned long iomem_addr;
|
||||
|
||||
switch (cpu->regs->trapnum) {
|
||||
case 13: /* We've intercepted a General Protection Fault. */
|
||||
/* Hand to Launcher to emulate those pesky IN and OUT insns */
|
||||
if (cpu->regs->errcode == 0) {
|
||||
setup_emulate_insn(cpu);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 14: /* We've intercepted a Page Fault. */
|
||||
/*
|
||||
* The Guest accessed a virtual address that wasn't mapped.
|
||||
* This happens a lot: we don't actually set up most of the page
|
||||
* tables for the Guest at all when we start: as it runs it asks
|
||||
* for more and more, and we set them up as required. In this
|
||||
* case, we don't even tell the Guest that the fault happened.
|
||||
*
|
||||
* The errcode tells whether this was a read or a write, and
|
||||
* whether kernel or userspace code.
|
||||
*/
|
||||
if (demand_page(cpu, cpu->arch.last_pagefault,
|
||||
cpu->regs->errcode, &iomem_addr))
|
||||
return;
|
||||
|
||||
/* Was this an access to memory mapped IO? */
|
||||
if (iomem_addr) {
|
||||
/* Tell Launcher, let it handle it. */
|
||||
setup_iomem_insn(cpu, iomem_addr);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* OK, it's really not there (or not OK): the Guest needs to
|
||||
* know. We write out the cr2 value so it knows where the
|
||||
* fault occurred.
|
||||
*
|
||||
* Note that if the Guest were really messed up, this could
|
||||
* happen before it's done the LHCALL_LGUEST_INIT hypercall, so
|
||||
* lg->lguest_data could be NULL
|
||||
*/
|
||||
if (cpu->lg->lguest_data &&
|
||||
put_user(cpu->arch.last_pagefault,
|
||||
&cpu->lg->lguest_data->cr2))
|
||||
kill_guest(cpu, "Writing cr2");
|
||||
break;
|
||||
case 7: /* We've intercepted a Device Not Available fault. */
|
||||
/* No special handling is needed here. */
|
||||
break;
|
||||
case 32 ... 255:
|
||||
/* This might be a syscall. */
|
||||
if (could_be_syscall(cpu->regs->trapnum))
|
||||
break;
|
||||
|
||||
/*
|
||||
* Other values mean a real interrupt occurred, in which case
|
||||
* the Host handler has already been run. We just do a
|
||||
* friendly check if another process should now be run, then
|
||||
* return to run the Guest again.
|
||||
*/
|
||||
cond_resched();
|
||||
return;
|
||||
case LGUEST_TRAP_ENTRY:
|
||||
/*
|
||||
* Our 'struct hcall_args' maps directly over our regs: we set
|
||||
* up the pointer now to indicate a hypercall is pending.
|
||||
*/
|
||||
cpu->hcall = (struct hcall_args *)cpu->regs;
|
||||
return;
|
||||
}
|
||||
|
||||
/* We didn't handle the trap, so it needs to go to the Guest. */
|
||||
if (!deliver_trap(cpu, cpu->regs->trapnum))
|
||||
/*
|
||||
* If the Guest doesn't have a handler (either it hasn't
|
||||
* registered any yet, or it's one of the faults we don't let
|
||||
* it handle), it dies with this cryptic error message.
|
||||
*/
|
||||
kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
|
||||
cpu->regs->trapnum, cpu->regs->eip,
|
||||
cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
|
||||
: cpu->regs->errcode);
|
||||
}
|
||||
|
||||
/*
|
||||
* Now we can look at each of the routines this calls, in increasing order of
|
||||
* complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
|
||||
* deliver_trap() and demand_page(). After all those, we'll be ready to
|
||||
* examine the Switcher, and our philosophical understanding of the Host/Guest
|
||||
* duality will be complete.
|
||||
:*/
|
||||
static void adjust_pge(void *on)
|
||||
{
|
||||
if (on)
|
||||
cr4_set_bits(X86_CR4_PGE);
|
||||
else
|
||||
cr4_clear_bits(X86_CR4_PGE);
|
||||
}
|
||||
|
||||
/*H:020
|
||||
* Now the Switcher is mapped and every thing else is ready, we need to do
|
||||
* some more i386-specific initialization.
|
||||
*/
|
||||
void __init lguest_arch_host_init(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Most of the x86/switcher_32.S doesn't care that it's been moved; on
|
||||
* Intel, jumps are relative, and it doesn't access any references to
|
||||
* external code or data.
|
||||
*
|
||||
* The only exception is the interrupt handlers in switcher.S: their
|
||||
* addresses are placed in a table (default_idt_entries), so we need to
|
||||
* update the table with the new addresses. switcher_offset() is a
|
||||
* convenience function which returns the distance between the
|
||||
* compiled-in switcher code and the high-mapped copy we just made.
|
||||
*/
|
||||
for (i = 0; i < IDT_ENTRIES; i++)
|
||||
default_idt_entries[i] += switcher_offset();
|
||||
|
||||
/*
|
||||
* Set up the Switcher's per-cpu areas.
|
||||
*
|
||||
* Each CPU gets two pages of its own within the high-mapped region
|
||||
* (aka. "struct lguest_pages"). Much of this can be initialized now,
|
||||
* but some depends on what Guest we are running (which is set up in
|
||||
* copy_in_guest_info()).
|
||||
*/
|
||||
for_each_possible_cpu(i) {
|
||||
/* lguest_pages() returns this CPU's two pages. */
|
||||
struct lguest_pages *pages = lguest_pages(i);
|
||||
/* This is a convenience pointer to make the code neater. */
|
||||
struct lguest_ro_state *state = &pages->state;
|
||||
|
||||
/*
|
||||
* The Global Descriptor Table: the Host has a different one
|
||||
* for each CPU. We keep a descriptor for the GDT which says
|
||||
* where it is and how big it is (the size is actually the last
|
||||
* byte, not the size, hence the "-1").
|
||||
*/
|
||||
state->host_gdt_desc.size = GDT_SIZE-1;
|
||||
state->host_gdt_desc.address = (long)get_cpu_gdt_rw(i);
|
||||
|
||||
/*
|
||||
* All CPUs on the Host use the same Interrupt Descriptor
|
||||
* Table, so we just use store_idt(), which gets this CPU's IDT
|
||||
* descriptor.
|
||||
*/
|
||||
store_idt(&state->host_idt_desc);
|
||||
|
||||
/*
|
||||
* The descriptors for the Guest's GDT and IDT can be filled
|
||||
* out now, too. We copy the GDT & IDT into ->guest_gdt and
|
||||
* ->guest_idt before actually running the Guest.
|
||||
*/
|
||||
state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
|
||||
state->guest_idt_desc.address = (long)&state->guest_idt;
|
||||
state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
|
||||
state->guest_gdt_desc.address = (long)&state->guest_gdt;
|
||||
|
||||
/*
|
||||
* We know where we want the stack to be when the Guest enters
|
||||
* the Switcher: in pages->regs. The stack grows upwards, so
|
||||
* we start it at the end of that structure.
|
||||
*/
|
||||
state->guest_tss.sp0 = (long)(&pages->regs + 1);
|
||||
/*
|
||||
* And this is the GDT entry to use for the stack: we keep a
|
||||
* couple of special LGUEST entries.
|
||||
*/
|
||||
state->guest_tss.ss0 = LGUEST_DS;
|
||||
|
||||
/*
|
||||
* x86 can have a finegrained bitmap which indicates what I/O
|
||||
* ports the process can use. We set it to the end of our
|
||||
* structure, meaning "none".
|
||||
*/
|
||||
state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
|
||||
|
||||
/*
|
||||
* Some GDT entries are the same across all Guests, so we can
|
||||
* set them up now.
|
||||
*/
|
||||
setup_default_gdt_entries(state);
|
||||
/* Most IDT entries are the same for all Guests, too.*/
|
||||
setup_default_idt_entries(state, default_idt_entries);
|
||||
|
||||
/*
|
||||
* The Host needs to be able to use the LGUEST segments on this
|
||||
* CPU, too, so put them in the Host GDT.
|
||||
*/
|
||||
get_cpu_gdt_rw(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
|
||||
get_cpu_gdt_rw(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
|
||||
}
|
||||
|
||||
/*
|
||||
* In the Switcher, we want the %cs segment register to use the
|
||||
* LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
|
||||
* it will be undisturbed when we switch. To change %cs and jump we
|
||||
* need this structure to feed to Intel's "lcall" instruction.
|
||||
*/
|
||||
lguest_entry.offset = (long)switch_to_guest + switcher_offset();
|
||||
lguest_entry.segment = LGUEST_CS;
|
||||
|
||||
/*
|
||||
* Finally, we need to turn off "Page Global Enable". PGE is an
|
||||
* optimization where page table entries are specially marked to show
|
||||
* they never change. The Host kernel marks all the kernel pages this
|
||||
* way because it's always present, even when userspace is running.
|
||||
*
|
||||
* Lguest breaks this: unbeknownst to the rest of the Host kernel, we
|
||||
* switch to the Guest kernel. If you don't disable this on all CPUs,
|
||||
* you'll get really weird bugs that you'll chase for two days.
|
||||
*
|
||||
* I used to turn PGE off every time we switched to the Guest and back
|
||||
* on when we return, but that slowed the Switcher down noticibly.
|
||||
*/
|
||||
|
||||
/*
|
||||
* We don't need the complexity of CPUs coming and going while we're
|
||||
* doing this.
|
||||
*/
|
||||
get_online_cpus();
|
||||
if (boot_cpu_has(X86_FEATURE_PGE)) { /* We have a broader idea of "global". */
|
||||
/* Remember that this was originally set (for cleanup). */
|
||||
cpu_had_pge = 1;
|
||||
/*
|
||||
* adjust_pge is a helper function which sets or unsets the PGE
|
||||
* bit on its CPU, depending on the argument (0 == unset).
|
||||
*/
|
||||
on_each_cpu(adjust_pge, (void *)0, 1);
|
||||
/* Turn off the feature in the global feature set. */
|
||||
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
|
||||
}
|
||||
put_online_cpus();
|
||||
}
|
||||
/*:*/
|
||||
|
||||
void __exit lguest_arch_host_fini(void)
|
||||
{
|
||||
/* If we had PGE before we started, turn it back on now. */
|
||||
get_online_cpus();
|
||||
if (cpu_had_pge) {
|
||||
set_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
|
||||
/* adjust_pge's argument "1" means set PGE. */
|
||||
on_each_cpu(adjust_pge, (void *)1, 1);
|
||||
}
|
||||
put_online_cpus();
|
||||
}
|
||||
|
||||
|
||||
/*H:122 The i386-specific hypercalls simply farm out to the right functions. */
|
||||
int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
|
||||
{
|
||||
switch (args->arg0) {
|
||||
case LHCALL_LOAD_GDT_ENTRY:
|
||||
load_guest_gdt_entry(cpu, args->arg1, args->arg2, args->arg3);
|
||||
break;
|
||||
case LHCALL_LOAD_IDT_ENTRY:
|
||||
load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
|
||||
break;
|
||||
case LHCALL_LOAD_TLS:
|
||||
guest_load_tls(cpu, args->arg1);
|
||||
break;
|
||||
default:
|
||||
/* Bad Guest. Bad! */
|
||||
return -EIO;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*H:126 i386-specific hypercall initialization: */
|
||||
int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
|
||||
{
|
||||
u32 tsc_speed;
|
||||
|
||||
/*
|
||||
* The pointer to the Guest's "struct lguest_data" is the only argument.
|
||||
* We check that address now.
|
||||
*/
|
||||
if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
|
||||
sizeof(*cpu->lg->lguest_data)))
|
||||
return -EFAULT;
|
||||
|
||||
/*
|
||||
* Having checked it, we simply set lg->lguest_data to point straight
|
||||
* into the Launcher's memory at the right place and then use
|
||||
* copy_to_user/from_user from now on, instead of lgread/write. I put
|
||||
* this in to show that I'm not immune to writing stupid
|
||||
* optimizations.
|
||||
*/
|
||||
cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
|
||||
|
||||
/*
|
||||
* We insist that the Time Stamp Counter exist and doesn't change with
|
||||
* cpu frequency. Some devious chip manufacturers decided that TSC
|
||||
* changes could be handled in software. I decided that time going
|
||||
* backwards might be good for benchmarks, but it's bad for users.
|
||||
*
|
||||
* We also insist that the TSC be stable: the kernel detects unreliable
|
||||
* TSCs for its own purposes, and we use that here.
|
||||
*/
|
||||
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
|
||||
tsc_speed = tsc_khz;
|
||||
else
|
||||
tsc_speed = 0;
|
||||
if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
|
||||
return -EFAULT;
|
||||
|
||||
/* The interrupt code might not like the system call vector. */
|
||||
if (!check_syscall_vector(cpu->lg))
|
||||
kill_guest(cpu, "bad syscall vector");
|
||||
|
||||
return 0;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/*L:030
|
||||
* Most of the Guest's registers are left alone: we used get_zeroed_page() to
|
||||
* allocate the structure, so they will be 0.
|
||||
*/
|
||||
void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
|
||||
{
|
||||
struct lguest_regs *regs = cpu->regs;
|
||||
|
||||
/*
|
||||
* There are four "segment" registers which the Guest needs to boot:
|
||||
* The "code segment" register (cs) refers to the kernel code segment
|
||||
* __KERNEL_CS, and the "data", "extra" and "stack" segment registers
|
||||
* refer to the kernel data segment __KERNEL_DS.
|
||||
*
|
||||
* The privilege level is packed into the lower bits. The Guest runs
|
||||
* at privilege level 1 (GUEST_PL).
|
||||
*/
|
||||
regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
|
||||
regs->cs = __KERNEL_CS|GUEST_PL;
|
||||
|
||||
/*
|
||||
* The "eflags" register contains miscellaneous flags. Bit 1 (0x002)
|
||||
* is supposed to always be "1". Bit 9 (0x200) controls whether
|
||||
* interrupts are enabled. We always leave interrupts enabled while
|
||||
* running the Guest.
|
||||
*/
|
||||
regs->eflags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
|
||||
|
||||
/*
|
||||
* The "Extended Instruction Pointer" register says where the Guest is
|
||||
* running.
|
||||
*/
|
||||
regs->eip = start;
|
||||
|
||||
/*
|
||||
* %esi points to our boot information, at physical address 0, so don't
|
||||
* touch it.
|
||||
*/
|
||||
|
||||
/* There are a couple of GDT entries the Guest expects at boot. */
|
||||
setup_guest_gdt(cpu);
|
||||
}
|
|
@ -1,388 +0,0 @@
|
|||
/*P:900
|
||||
* This is the Switcher: code which sits at 0xFFC00000 (or 0xFFE00000) astride
|
||||
* both the Host and Guest to do the low-level Guest<->Host switch. It is as
|
||||
* simple as it can be made, but it's naturally very specific to x86.
|
||||
*
|
||||
* You have now completed Preparation. If this has whet your appetite; if you
|
||||
* are feeling invigorated and refreshed then the next, more challenging stage
|
||||
* can be found in "make Guest".
|
||||
:*/
|
||||
|
||||
/*M:012
|
||||
* Lguest is meant to be simple: my rule of thumb is that 1% more LOC must
|
||||
* gain at least 1% more performance. Since neither LOC nor performance can be
|
||||
* measured beforehand, it generally means implementing a feature then deciding
|
||||
* if it's worth it. And once it's implemented, who can say no?
|
||||
*
|
||||
* This is why I haven't implemented this idea myself. I want to, but I
|
||||
* haven't. You could, though.
|
||||
*
|
||||
* The main place where lguest performance sucks is Guest page faulting. When
|
||||
* a Guest userspace process hits an unmapped page we switch back to the Host,
|
||||
* walk the page tables, find it's not mapped, switch back to the Guest page
|
||||
* fault handler, which calls a hypercall to set the page table entry, then
|
||||
* finally returns to userspace. That's two round-trips.
|
||||
*
|
||||
* If we had a small walker in the Switcher, we could quickly check the Guest
|
||||
* page table and if the page isn't mapped, immediately reflect the fault back
|
||||
* into the Guest. This means the Switcher would have to know the top of the
|
||||
* Guest page table and the page fault handler address.
|
||||
*
|
||||
* For simplicity, the Guest should only handle the case where the privilege
|
||||
* level of the fault is 3 and probably only not present or write faults. It
|
||||
* should also detect recursive faults, and hand the original fault to the
|
||||
* Host (which is actually really easy).
|
||||
*
|
||||
* Two questions remain. Would the performance gain outweigh the complexity?
|
||||
* And who would write the verse documenting it?
|
||||
:*/
|
||||
|
||||
/*M:011
|
||||
* Lguest64 handles NMI. This gave me NMI envy (until I looked at their
|
||||
* code). It's worth doing though, since it would let us use oprofile in the
|
||||
* Host when a Guest is running.
|
||||
:*/
|
||||
|
||||
/*S:100
|
||||
* Welcome to the Switcher itself!
|
||||
*
|
||||
* This file contains the low-level code which changes the CPU to run the Guest
|
||||
* code, and returns to the Host when something happens. Understand this, and
|
||||
* you understand the heart of our journey.
|
||||
*
|
||||
* Because this is in assembler rather than C, our tale switches from prose to
|
||||
* verse. First I tried limericks:
|
||||
*
|
||||
* There once was an eax reg,
|
||||
* To which our pointer was fed,
|
||||
* It needed an add,
|
||||
* Which asm-offsets.h had
|
||||
* But this limerick is hurting my head.
|
||||
*
|
||||
* Next I tried haikus, but fitting the required reference to the seasons in
|
||||
* every stanza was quickly becoming tiresome:
|
||||
*
|
||||
* The %eax reg
|
||||
* Holds "struct lguest_pages" now:
|
||||
* Cherry blossoms fall.
|
||||
*
|
||||
* Then I started with Heroic Verse, but the rhyming requirement leeched away
|
||||
* the content density and led to some uniquely awful oblique rhymes:
|
||||
*
|
||||
* These constants are coming from struct offsets
|
||||
* For use within the asm switcher text.
|
||||
*
|
||||
* Finally, I settled for something between heroic hexameter, and normal prose
|
||||
* with inappropriate linebreaks. Anyway, it aint no Shakespeare.
|
||||
*/
|
||||
|
||||
// Not all kernel headers work from assembler
|
||||
// But these ones are needed: the ENTRY() define
|
||||
// And constants extracted from struct offsets
|
||||
// To avoid magic numbers and breakage:
|
||||
// Should they change the compiler can't save us
|
||||
// Down here in the depths of assembler code.
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
#include <asm/page.h>
|
||||
#include <asm/segment.h>
|
||||
#include <asm/lguest.h>
|
||||
|
||||
// We mark the start of the code to copy
|
||||
// It's placed in .text tho it's never run here
|
||||
// You'll see the trick macro at the end
|
||||
// Which interleaves data and text to effect.
|
||||
.text
|
||||
ENTRY(start_switcher_text)
|
||||
|
||||
// When we reach switch_to_guest we have just left
|
||||
// The safe and comforting shores of C code
|
||||
// %eax has the "struct lguest_pages" to use
|
||||
// Where we save state and still see it from the Guest
|
||||
// And %ebx holds the Guest shadow pagetable:
|
||||
// Once set we have truly left Host behind.
|
||||
ENTRY(switch_to_guest)
|
||||
// We told gcc all its regs could fade,
|
||||
// Clobbered by our journey into the Guest
|
||||
// We could have saved them, if we tried
|
||||
// But time is our master and cycles count.
|
||||
|
||||
// Segment registers must be saved for the Host
|
||||
// We push them on the Host stack for later
|
||||
pushl %es
|
||||
pushl %ds
|
||||
pushl %gs
|
||||
pushl %fs
|
||||
// But the compiler is fickle, and heeds
|
||||
// No warning of %ebp clobbers
|
||||
// When frame pointers are used. That register
|
||||
// Must be saved and restored or chaos strikes.
|
||||
pushl %ebp
|
||||
// The Host's stack is done, now save it away
|
||||
// In our "struct lguest_pages" at offset
|
||||
// Distilled into asm-offsets.h
|
||||
movl %esp, LGUEST_PAGES_host_sp(%eax)
|
||||
|
||||
// All saved and there's now five steps before us:
|
||||
// Stack, GDT, IDT, TSS
|
||||
// Then last of all the page tables are flipped.
|
||||
|
||||
// Yet beware that our stack pointer must be
|
||||
// Always valid lest an NMI hits
|
||||
// %edx does the duty here as we juggle
|
||||
// %eax is lguest_pages: our stack lies within.
|
||||
movl %eax, %edx
|
||||
addl $LGUEST_PAGES_regs, %edx
|
||||
movl %edx, %esp
|
||||
|
||||
// The Guest's GDT we so carefully
|
||||
// Placed in the "struct lguest_pages" before
|
||||
lgdt LGUEST_PAGES_guest_gdt_desc(%eax)
|
||||
|
||||
// The Guest's IDT we did partially
|
||||
// Copy to "struct lguest_pages" as well.
|
||||
lidt LGUEST_PAGES_guest_idt_desc(%eax)
|
||||
|
||||
// The TSS entry which controls traps
|
||||
// Must be loaded up with "ltr" now:
|
||||
// The GDT entry that TSS uses
|
||||
// Changes type when we load it: damn Intel!
|
||||
// For after we switch over our page tables
|
||||
// That entry will be read-only: we'd crash.
|
||||
movl $(GDT_ENTRY_TSS*8), %edx
|
||||
ltr %dx
|
||||
|
||||
// Look back now, before we take this last step!
|
||||
// The Host's TSS entry was also marked used;
|
||||
// Let's clear it again for our return.
|
||||
// The GDT descriptor of the Host
|
||||
// Points to the table after two "size" bytes
|
||||
movl (LGUEST_PAGES_host_gdt_desc+2)(%eax), %edx
|
||||
// Clear "used" from type field (byte 5, bit 2)
|
||||
andb $0xFD, (GDT_ENTRY_TSS*8 + 5)(%edx)
|
||||
|
||||
// Once our page table's switched, the Guest is live!
|
||||
// The Host fades as we run this final step.
|
||||
// Our "struct lguest_pages" is now read-only.
|
||||
movl %ebx, %cr3
|
||||
|
||||
// The page table change did one tricky thing:
|
||||
// The Guest's register page has been mapped
|
||||
// Writable under our %esp (stack) --
|
||||
// We can simply pop off all Guest regs.
|
||||
popl %eax
|
||||
popl %ebx
|
||||
popl %ecx
|
||||
popl %edx
|
||||
popl %esi
|
||||
popl %edi
|
||||
popl %ebp
|
||||
popl %gs
|
||||
popl %fs
|
||||
popl %ds
|
||||
popl %es
|
||||
|
||||
// Near the base of the stack lurk two strange fields
|
||||
// Which we fill as we exit the Guest
|
||||
// These are the trap number and its error
|
||||
// We can simply step past them on our way.
|
||||
addl $8, %esp
|
||||
|
||||
// The last five stack slots hold return address
|
||||
// And everything needed to switch privilege
|
||||
// From Switcher's level 0 to Guest's 1,
|
||||
// And the stack where the Guest had last left it.
|
||||
// Interrupts are turned back on: we are Guest.
|
||||
iret
|
||||
|
||||
// We tread two paths to switch back to the Host
|
||||
// Yet both must save Guest state and restore Host
|
||||
// So we put the routine in a macro.
|
||||
#define SWITCH_TO_HOST \
|
||||
/* We save the Guest state: all registers first \
|
||||
* Laid out just as "struct lguest_regs" defines */ \
|
||||
pushl %es; \
|
||||
pushl %ds; \
|
||||
pushl %fs; \
|
||||
pushl %gs; \
|
||||
pushl %ebp; \
|
||||
pushl %edi; \
|
||||
pushl %esi; \
|
||||
pushl %edx; \
|
||||
pushl %ecx; \
|
||||
pushl %ebx; \
|
||||
pushl %eax; \
|
||||
/* Our stack and our code are using segments \
|
||||
* Set in the TSS and IDT \
|
||||
* Yet if we were to touch data we'd use \
|
||||
* Whatever data segment the Guest had. \
|
||||
* Load the lguest ds segment for now. */ \
|
||||
movl $(LGUEST_DS), %eax; \
|
||||
movl %eax, %ds; \
|
||||
/* So where are we? Which CPU, which struct? \
|
||||
* The stack is our clue: our TSS starts \
|
||||
* It at the end of "struct lguest_pages". \
|
||||
* Or we may have stumbled while restoring \
|
||||
* Our Guest segment regs while in switch_to_guest, \
|
||||
* The fault pushed atop that part-unwound stack. \
|
||||
* If we round the stack down to the page start \
|
||||
* We're at the start of "struct lguest_pages". */ \
|
||||
movl %esp, %eax; \
|
||||
andl $(~(1 << PAGE_SHIFT - 1)), %eax; \
|
||||
/* Save our trap number: the switch will obscure it \
|
||||
* (In the Host the Guest regs are not mapped here) \
|
||||
* %ebx holds it safe for deliver_to_host */ \
|
||||
movl LGUEST_PAGES_regs_trapnum(%eax), %ebx; \
|
||||
/* The Host GDT, IDT and stack! \
|
||||
* All these lie safely hidden from the Guest: \
|
||||
* We must return to the Host page tables \
|
||||
* (Hence that was saved in struct lguest_pages) */ \
|
||||
movl LGUEST_PAGES_host_cr3(%eax), %edx; \
|
||||
movl %edx, %cr3; \
|
||||
/* As before, when we looked back at the Host \
|
||||
* As we left and marked TSS unused \
|
||||
* So must we now for the Guest left behind. */ \
|
||||
andb $0xFD, (LGUEST_PAGES_guest_gdt+GDT_ENTRY_TSS*8+5)(%eax); \
|
||||
/* Switch to Host's GDT, IDT. */ \
|
||||
lgdt LGUEST_PAGES_host_gdt_desc(%eax); \
|
||||
lidt LGUEST_PAGES_host_idt_desc(%eax); \
|
||||
/* Restore the Host's stack where its saved regs lie */ \
|
||||
movl LGUEST_PAGES_host_sp(%eax), %esp; \
|
||||
/* Last the TSS: our Host is returned */ \
|
||||
movl $(GDT_ENTRY_TSS*8), %edx; \
|
||||
ltr %dx; \
|
||||
/* Restore now the regs saved right at the first. */ \
|
||||
popl %ebp; \
|
||||
popl %fs; \
|
||||
popl %gs; \
|
||||
popl %ds; \
|
||||
popl %es
|
||||
|
||||
// The first path is trod when the Guest has trapped:
|
||||
// (Which trap it was has been pushed on the stack).
|
||||
// We need only switch back, and the Host will decode
|
||||
// Why we came home, and what needs to be done.
|
||||
return_to_host:
|
||||
SWITCH_TO_HOST
|
||||
iret
|
||||
|
||||
// We are lead to the second path like so:
|
||||
// An interrupt, with some cause external
|
||||
// Has ajerked us rudely from the Guest's code
|
||||
// Again we must return home to the Host
|
||||
deliver_to_host:
|
||||
SWITCH_TO_HOST
|
||||
// But now we must go home via that place
|
||||
// Where that interrupt was supposed to go
|
||||
// Had we not been ensconced, running the Guest.
|
||||
// Here we see the trickness of run_guest_once():
|
||||
// The Host stack is formed like an interrupt
|
||||
// With EIP, CS and EFLAGS layered.
|
||||
// Interrupt handlers end with "iret"
|
||||
// And that will take us home at long long last.
|
||||
|
||||
// But first we must find the handler to call!
|
||||
// The IDT descriptor for the Host
|
||||
// Has two bytes for size, and four for address:
|
||||
// %edx will hold it for us for now.
|
||||
movl (LGUEST_PAGES_host_idt_desc+2)(%eax), %edx
|
||||
// We now know the table address we need,
|
||||
// And saved the trap's number inside %ebx.
|
||||
// Yet the pointer to the handler is smeared
|
||||
// Across the bits of the table entry.
|
||||
// What oracle can tell us how to extract
|
||||
// From such a convoluted encoding?
|
||||
// I consulted gcc, and it gave
|
||||
// These instructions, which I gladly credit:
|
||||
leal (%edx,%ebx,8), %eax
|
||||
movzwl (%eax),%edx
|
||||
movl 4(%eax), %eax
|
||||
xorw %ax, %ax
|
||||
orl %eax, %edx
|
||||
// Now the address of the handler's in %edx
|
||||
// We call it now: its "iret" drops us home.
|
||||
jmp *%edx
|
||||
|
||||
// Every interrupt can come to us here
|
||||
// But we must truly tell each apart.
|
||||
// They number two hundred and fifty six
|
||||
// And each must land in a different spot,
|
||||
// Push its number on stack, and join the stream.
|
||||
|
||||
// And worse, a mere six of the traps stand apart
|
||||
// And push on their stack an addition:
|
||||
// An error number, thirty two bits long
|
||||
// So we punish the other two fifty
|
||||
// And make them push a zero so they match.
|
||||
|
||||
// Yet two fifty six entries is long
|
||||
// And all will look most the same as the last
|
||||
// So we create a macro which can make
|
||||
// As many entries as we need to fill.
|
||||
|
||||
// Note the change to .data then .text:
|
||||
// We plant the address of each entry
|
||||
// Into a (data) table for the Host
|
||||
// To know where each Guest interrupt should go.
|
||||
.macro IRQ_STUB N TARGET
|
||||
.data; .long 1f; .text; 1:
|
||||
// Trap eight, ten through fourteen and seventeen
|
||||
// Supply an error number. Else zero.
|
||||
.if (\N <> 8) && (\N < 10 || \N > 14) && (\N <> 17)
|
||||
pushl $0
|
||||
.endif
|
||||
pushl $\N
|
||||
jmp \TARGET
|
||||
ALIGN
|
||||
.endm
|
||||
|
||||
// This macro creates numerous entries
|
||||
// Using GAS macros which out-power C's.
|
||||
.macro IRQ_STUBS FIRST LAST TARGET
|
||||
irq=\FIRST
|
||||
.rept \LAST-\FIRST+1
|
||||
IRQ_STUB irq \TARGET
|
||||
irq=irq+1
|
||||
.endr
|
||||
.endm
|
||||
|
||||
// Here's the marker for our pointer table
|
||||
// Laid in the data section just before
|
||||
// Each macro places the address of code
|
||||
// Forming an array: each one points to text
|
||||
// Which handles interrupt in its turn.
|
||||
.data
|
||||
.global default_idt_entries
|
||||
default_idt_entries:
|
||||
.text
|
||||
// The first two traps go straight back to the Host
|
||||
IRQ_STUBS 0 1 return_to_host
|
||||
// We'll say nothing, yet, about NMI
|
||||
IRQ_STUB 2 handle_nmi
|
||||
// Other traps also return to the Host
|
||||
IRQ_STUBS 3 31 return_to_host
|
||||
// All interrupts go via their handlers
|
||||
IRQ_STUBS 32 127 deliver_to_host
|
||||
// 'Cept system calls coming from userspace
|
||||
// Are to go to the Guest, never the Host.
|
||||
IRQ_STUB 128 return_to_host
|
||||
IRQ_STUBS 129 255 deliver_to_host
|
||||
|
||||
// The NMI, what a fabulous beast
|
||||
// Which swoops in and stops us no matter that
|
||||
// We're suspended between heaven and hell,
|
||||
// (Or more likely between the Host and Guest)
|
||||
// When in it comes! We are dazed and confused
|
||||
// So we do the simplest thing which one can.
|
||||
// Though we've pushed the trap number and zero
|
||||
// We discard them, return, and hope we live.
|
||||
handle_nmi:
|
||||
addl $8, %esp
|
||||
iret
|
||||
|
||||
// We are done; all that's left is Mastery
|
||||
// And "make Mastery" is a journey long
|
||||
// Designed to make your fingers itch to code.
|
||||
|
||||
// Here ends the text, the file and poem.
|
||||
ENTRY(end_switcher_text)
|
|
@ -333,7 +333,7 @@ config VIRTIO_NET
|
|||
depends on VIRTIO
|
||||
---help---
|
||||
This is the virtual network driver for virtio. It can be used with
|
||||
lguest or QEMU based VMMs (like KVM or Xen). Say Y or M.
|
||||
QEMU based VMMs (like KVM or Xen). Say Y or M.
|
||||
|
||||
config NLMON
|
||||
tristate "Virtual netlink monitoring device"
|
||||
|
|
|
@ -4,7 +4,7 @@ config HVC_DRIVER
|
|||
bool
|
||||
help
|
||||
Generic "hypervisor virtual console" infrastructure for various
|
||||
hypervisors (pSeries, iSeries, Xen, lguest).
|
||||
hypervisors (pSeries, iSeries, Xen).
|
||||
It will automatically be selected if one of the back-end console drivers
|
||||
is selected.
|
||||
|
||||
|
|
|
@ -2,8 +2,8 @@ config VIRTIO
|
|||
tristate
|
||||
---help---
|
||||
This option is selected by any driver which implements the virtio
|
||||
bus, such as CONFIG_VIRTIO_PCI, CONFIG_VIRTIO_MMIO, CONFIG_LGUEST,
|
||||
CONFIG_RPMSG or CONFIG_S390_GUEST.
|
||||
bus, such as CONFIG_VIRTIO_PCI, CONFIG_VIRTIO_MMIO, CONFIG_RPMSG
|
||||
or CONFIG_S390_GUEST.
|
||||
|
||||
menu "Virtio drivers"
|
||||
|
||||
|
|
|
@ -915,6 +915,9 @@ extern void ioport_unmap(void __iomem *p);
|
|||
#endif /* CONFIG_GENERIC_IOMAP */
|
||||
#endif /* CONFIG_HAS_IOPORT_MAP */
|
||||
|
||||
/*
|
||||
* Convert a virtual cached pointer to an uncached pointer
|
||||
*/
|
||||
#ifndef xlate_dev_kmem_ptr
|
||||
#define xlate_dev_kmem_ptr xlate_dev_kmem_ptr
|
||||
static inline void *xlate_dev_kmem_ptr(void *addr)
|
||||
|
@ -954,6 +957,14 @@ static inline void *bus_to_virt(unsigned long address)
|
|||
|
||||
#ifndef memset_io
|
||||
#define memset_io memset_io
|
||||
/**
|
||||
* memset_io Set a range of I/O memory to a constant value
|
||||
* @addr: The beginning of the I/O-memory range to set
|
||||
* @val: The value to set the memory to
|
||||
* @count: The number of bytes to set
|
||||
*
|
||||
* Set a range of I/O memory to a given value.
|
||||
*/
|
||||
static inline void memset_io(volatile void __iomem *addr, int value,
|
||||
size_t size)
|
||||
{
|
||||
|
@ -963,6 +974,14 @@ static inline void memset_io(volatile void __iomem *addr, int value,
|
|||
|
||||
#ifndef memcpy_fromio
|
||||
#define memcpy_fromio memcpy_fromio
|
||||
/**
|
||||
* memcpy_fromio Copy a block of data from I/O memory
|
||||
* @dst: The (RAM) destination for the copy
|
||||
* @src: The (I/O memory) source for the data
|
||||
* @count: The number of bytes to copy
|
||||
*
|
||||
* Copy a block of data from I/O memory.
|
||||
*/
|
||||
static inline void memcpy_fromio(void *buffer,
|
||||
const volatile void __iomem *addr,
|
||||
size_t size)
|
||||
|
@ -973,6 +992,14 @@ static inline void memcpy_fromio(void *buffer,
|
|||
|
||||
#ifndef memcpy_toio
|
||||
#define memcpy_toio memcpy_toio
|
||||
/**
|
||||
* memcpy_toio Copy a block of data into I/O memory
|
||||
* @dst: The (I/O memory) destination for the copy
|
||||
* @src: The (RAM) source for the data
|
||||
* @count: The number of bytes to copy
|
||||
*
|
||||
* Copy a block of data to I/O memory.
|
||||
*/
|
||||
static inline void memcpy_toio(volatile void __iomem *addr, const void *buffer,
|
||||
size_t size)
|
||||
{
|
||||
|
|
|
@ -686,6 +686,31 @@
|
|||
#define BUG_TABLE
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ORC_UNWINDER
|
||||
#define ORC_UNWIND_TABLE \
|
||||
. = ALIGN(4); \
|
||||
.orc_unwind_ip : AT(ADDR(.orc_unwind_ip) - LOAD_OFFSET) { \
|
||||
VMLINUX_SYMBOL(__start_orc_unwind_ip) = .; \
|
||||
KEEP(*(.orc_unwind_ip)) \
|
||||
VMLINUX_SYMBOL(__stop_orc_unwind_ip) = .; \
|
||||
} \
|
||||
. = ALIGN(6); \
|
||||
.orc_unwind : AT(ADDR(.orc_unwind) - LOAD_OFFSET) { \
|
||||
VMLINUX_SYMBOL(__start_orc_unwind) = .; \
|
||||
KEEP(*(.orc_unwind)) \
|
||||
VMLINUX_SYMBOL(__stop_orc_unwind) = .; \
|
||||
} \
|
||||
. = ALIGN(4); \
|
||||
.orc_lookup : AT(ADDR(.orc_lookup) - LOAD_OFFSET) { \
|
||||
VMLINUX_SYMBOL(orc_lookup) = .; \
|
||||
. += (((SIZEOF(.text) + LOOKUP_BLOCK_SIZE - 1) / \
|
||||
LOOKUP_BLOCK_SIZE) + 1) * 4; \
|
||||
VMLINUX_SYMBOL(orc_lookup_end) = .; \
|
||||
}
|
||||
#else
|
||||
#define ORC_UNWIND_TABLE
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_PM_TRACE
|
||||
#define TRACEDATA \
|
||||
. = ALIGN(4); \
|
||||
|
@ -872,7 +897,7 @@
|
|||
DATA_DATA \
|
||||
CONSTRUCTORS \
|
||||
} \
|
||||
BUG_TABLE
|
||||
BUG_TABLE \
|
||||
|
||||
#define INIT_TEXT_SECTION(inittext_align) \
|
||||
. = ALIGN(inittext_align); \
|
||||
|
|
|
@ -201,17 +201,6 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_STACK_VALIDATION
|
||||
#define annotate_unreachable() ({ \
|
||||
asm("%c0:\t\n" \
|
||||
".pushsection .discard.unreachable\t\n" \
|
||||
".long %c0b - .\t\n" \
|
||||
".popsection\t\n" : : "i" (__LINE__)); \
|
||||
})
|
||||
#else
|
||||
#define annotate_unreachable()
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Mark a position in code as unreachable. This can be used to
|
||||
* suppress control flow warnings after asm blocks that transfer
|
||||
|
|
|
@ -185,8 +185,34 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
|
|||
#endif
|
||||
|
||||
/* Unreachable code */
|
||||
#ifdef CONFIG_STACK_VALIDATION
|
||||
#define annotate_reachable() ({ \
|
||||
asm("%c0:\n\t" \
|
||||
".pushsection .discard.reachable\n\t" \
|
||||
".long %c0b - .\n\t" \
|
||||
".popsection\n\t" : : "i" (__LINE__)); \
|
||||
})
|
||||
#define annotate_unreachable() ({ \
|
||||
asm("%c0:\n\t" \
|
||||
".pushsection .discard.unreachable\n\t" \
|
||||
".long %c0b - .\n\t" \
|
||||
".popsection\n\t" : : "i" (__LINE__)); \
|
||||
})
|
||||
#define ASM_UNREACHABLE \
|
||||
"999:\n\t" \
|
||||
".pushsection .discard.unreachable\n\t" \
|
||||
".long 999b - .\n\t" \
|
||||
".popsection\n\t"
|
||||
#else
|
||||
#define annotate_reachable()
|
||||
#define annotate_unreachable()
|
||||
#endif
|
||||
|
||||
#ifndef ASM_UNREACHABLE
|
||||
# define ASM_UNREACHABLE
|
||||
#endif
|
||||
#ifndef unreachable
|
||||
# define unreachable() do { } while (1)
|
||||
# define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
|
|
@ -1,73 +0,0 @@
|
|||
/*
|
||||
* Things the lguest guest needs to know. Note: like all lguest interfaces,
|
||||
* this is subject to wild and random change between versions.
|
||||
*/
|
||||
#ifndef _LINUX_LGUEST_H
|
||||
#define _LINUX_LGUEST_H
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <linux/time.h>
|
||||
#include <asm/irq.h>
|
||||
#include <asm/lguest_hcall.h>
|
||||
|
||||
#define LG_CLOCK_MIN_DELTA 100UL
|
||||
#define LG_CLOCK_MAX_DELTA ULONG_MAX
|
||||
|
||||
/*G:031
|
||||
* The second method of communicating with the Host is to via "struct
|
||||
* lguest_data". Once the Guest's initialization hypercall tells the Host where
|
||||
* this is, the Guest and Host both publish information in it.
|
||||
:*/
|
||||
struct lguest_data {
|
||||
/*
|
||||
* 512 == enabled (same as eflags in normal hardware). The Guest
|
||||
* changes interrupts so often that a hypercall is too slow.
|
||||
*/
|
||||
unsigned int irq_enabled;
|
||||
/* Fine-grained interrupt disabling by the Guest */
|
||||
DECLARE_BITMAP(blocked_interrupts, LGUEST_IRQS);
|
||||
|
||||
/*
|
||||
* The Host writes the virtual address of the last page fault here,
|
||||
* which saves the Guest a hypercall. CR2 is the native register where
|
||||
* this address would normally be found.
|
||||
*/
|
||||
unsigned long cr2;
|
||||
|
||||
/* Wallclock time set by the Host. */
|
||||
struct timespec time;
|
||||
|
||||
/*
|
||||
* Interrupt pending set by the Host. The Guest should do a hypercall
|
||||
* if it re-enables interrupts and sees this set (to X86_EFLAGS_IF).
|
||||
*/
|
||||
int irq_pending;
|
||||
|
||||
/*
|
||||
* Async hypercall ring. Instead of directly making hypercalls, we can
|
||||
* place them in here for processing the next time the Host wants.
|
||||
* This batching can be quite efficient.
|
||||
*/
|
||||
|
||||
/* 0xFF == done (set by Host), 0 == pending (set by Guest). */
|
||||
u8 hcall_status[LHCALL_RING_SIZE];
|
||||
/* The actual registers for the hypercalls. */
|
||||
struct hcall_args hcalls[LHCALL_RING_SIZE];
|
||||
|
||||
/* Fields initialized by the Host at boot: */
|
||||
/* Memory not to try to access */
|
||||
unsigned long reserve_mem;
|
||||
/* KHz for the TSC clock. */
|
||||
u32 tsc_khz;
|
||||
|
||||
/* Fields initialized by the Guest at boot: */
|
||||
/* Instruction to suppress interrupts even if enabled */
|
||||
unsigned long noirq_iret;
|
||||
/* Address above which page tables are all identical. */
|
||||
unsigned long kernel_address;
|
||||
/* The vector to try to use for system calls (0x40 or 0x80). */
|
||||
unsigned int syscall_vec;
|
||||
};
|
||||
extern struct lguest_data lguest_data;
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif /* _LINUX_LGUEST_H */
|
|
@ -1,44 +0,0 @@
|
|||
#ifndef _LINUX_LGUEST_LAUNCHER
|
||||
#define _LINUX_LGUEST_LAUNCHER
|
||||
/* Everything the "lguest" userspace program needs to know. */
|
||||
#include <linux/types.h>
|
||||
|
||||
/*D:010
|
||||
* Drivers
|
||||
*
|
||||
* The Guest needs devices to do anything useful. Since we don't let it touch
|
||||
* real devices (think of the damage it could do!) we provide virtual devices.
|
||||
* We emulate a PCI bus with virtio devices on it; we used to have our own
|
||||
* lguest bus which was far simpler, but this tests the virtio 1.0 standard.
|
||||
*
|
||||
* Virtio devices are also used by kvm, so we can simply reuse their optimized
|
||||
* device drivers. And one day when everyone uses virtio, my plan will be
|
||||
* complete. Bwahahahah!
|
||||
*/
|
||||
|
||||
/* Write command first word is a request. */
|
||||
enum lguest_req
|
||||
{
|
||||
LHREQ_INITIALIZE, /* + base, pfnlimit, start */
|
||||
LHREQ_GETDMA, /* No longer used */
|
||||
LHREQ_IRQ, /* + irq */
|
||||
LHREQ_BREAK, /* No longer used */
|
||||
LHREQ_EVENTFD, /* No longer used. */
|
||||
LHREQ_GETREG, /* + offset within struct pt_regs (then read value). */
|
||||
LHREQ_SETREG, /* + offset within struct pt_regs, value. */
|
||||
LHREQ_TRAP, /* + trap number to deliver to guest. */
|
||||
};
|
||||
|
||||
/*
|
||||
* This is what read() of the lguest fd populates. trap ==
|
||||
* LGUEST_TRAP_ENTRY for an LHCALL_NOTIFY (addr is the
|
||||
* argument), 14 for a page fault in the MMIO region (addr is
|
||||
* the trap address, insn is the instruction), or 13 for a GPF
|
||||
* (insn is the instruction).
|
||||
*/
|
||||
struct lguest_pending {
|
||||
__u8 trap;
|
||||
__u8 insn[7];
|
||||
__u32 addr;
|
||||
};
|
||||
#endif /* _LINUX_LGUEST_LAUNCHER */
|
|
@ -1,7 +1,7 @@
|
|||
#ifndef _UAPI_LINUX_VIRTIO_RING_H
|
||||
#define _UAPI_LINUX_VIRTIO_RING_H
|
||||
/* An interface for efficient virtio implementation, currently for use by KVM
|
||||
* and lguest, but hopefully others soon. Do NOT change this since it will
|
||||
/* An interface for efficient virtio implementation, currently for use by KVM,
|
||||
* but hopefully others soon. Do NOT change this since it will
|
||||
* break existing servers and clients.
|
||||
*
|
||||
* This header is BSD licensed so anyone can use the definitions to implement
|
||||
|
|
|
@ -374,6 +374,9 @@ config STACK_VALIDATION
|
|||
pointers (if CONFIG_FRAME_POINTER is enabled). This helps ensure
|
||||
that runtime stack traces are more reliable.
|
||||
|
||||
This is also a prerequisite for generation of ORC unwind data, which
|
||||
is needed for CONFIG_ORC_UNWINDER.
|
||||
|
||||
For more information, see
|
||||
tools/objtool/Documentation/stack-validation.txt.
|
||||
|
||||
|
@ -1128,7 +1131,7 @@ config LOCKDEP
|
|||
bool
|
||||
depends on DEBUG_KERNEL && TRACE_IRQFLAGS_SUPPORT && STACKTRACE_SUPPORT && LOCKDEP_SUPPORT
|
||||
select STACKTRACE
|
||||
select FRAME_POINTER if !MIPS && !PPC && !ARM_UNWIND && !S390 && !MICROBLAZE && !ARC && !SCORE
|
||||
select FRAME_POINTER if !MIPS && !PPC && !ARM_UNWIND && !S390 && !MICROBLAZE && !ARC && !SCORE && !X86
|
||||
select KALLSYMS
|
||||
select KALLSYMS_ALL
|
||||
|
||||
|
@ -1547,7 +1550,7 @@ config FAULT_INJECTION_STACKTRACE_FILTER
|
|||
depends on FAULT_INJECTION_DEBUG_FS && STACKTRACE_SUPPORT
|
||||
depends on !X86_64
|
||||
select STACKTRACE
|
||||
select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM_UNWIND && !ARC && !SCORE
|
||||
select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM_UNWIND && !ARC && !SCORE && !X86
|
||||
help
|
||||
Provide stacktrace filter for fault-injection capabilities
|
||||
|
||||
|
@ -1556,7 +1559,7 @@ config LATENCYTOP
|
|||
depends on DEBUG_KERNEL
|
||||
depends on STACKTRACE_SUPPORT
|
||||
depends on PROC_FS
|
||||
select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM_UNWIND && !ARC
|
||||
select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM_UNWIND && !ARC && !X86
|
||||
select KALLSYMS
|
||||
select KALLSYMS_ALL
|
||||
select STACKTRACE
|
||||
|
|
|
@ -258,10 +258,14 @@ ifneq ($(SKIP_STACK_VALIDATION),1)
|
|||
|
||||
__objtool_obj := $(objtree)/tools/objtool/objtool
|
||||
|
||||
objtool_args = check
|
||||
objtool_args = $(if $(CONFIG_ORC_UNWINDER),orc generate,check)
|
||||
|
||||
ifndef CONFIG_FRAME_POINTER
|
||||
objtool_args += --no-fp
|
||||
endif
|
||||
ifdef CONFIG_GCOV_KERNEL
|
||||
objtool_args += --no-unreachable
|
||||
endif
|
||||
|
||||
# 'OBJECT_FILES_NON_STANDARD := y': skip objtool checking for a directory
|
||||
# 'OBJECT_FILES_NON_STANDARD_foo.o := 'y': skip objtool checking for a file
|
||||
|
@ -276,6 +280,11 @@ objtool_obj = $(if $(patsubst y%,, \
|
|||
endif # SKIP_STACK_VALIDATION
|
||||
endif # CONFIG_STACK_VALIDATION
|
||||
|
||||
# Rebuild all objects when objtool changes, or is enabled/disabled.
|
||||
objtool_dep = $(objtool_obj) \
|
||||
$(wildcard include/config/orc/unwinder.h \
|
||||
include/config/stack/validation.h)
|
||||
|
||||
define rule_cc_o_c
|
||||
$(call echo-cmd,checksrc) $(cmd_checksrc) \
|
||||
$(call cmd_and_fixdep,cc_o_c) \
|
||||
|
@ -298,13 +307,13 @@ cmd_undef_syms = echo
|
|||
endif
|
||||
|
||||
# Built-in and composite module parts
|
||||
$(obj)/%.o: $(src)/%.c $(recordmcount_source) $(objtool_obj) FORCE
|
||||
$(obj)/%.o: $(src)/%.c $(recordmcount_source) $(objtool_dep) FORCE
|
||||
$(call cmd,force_checksrc)
|
||||
$(call if_changed_rule,cc_o_c)
|
||||
|
||||
# Single-part modules are special since we need to mark them in $(MODVERDIR)
|
||||
|
||||
$(single-used-m): $(obj)/%.o: $(src)/%.c $(recordmcount_source) $(objtool_obj) FORCE
|
||||
$(single-used-m): $(obj)/%.o: $(src)/%.c $(recordmcount_source) $(objtool_dep) FORCE
|
||||
$(call cmd,force_checksrc)
|
||||
$(call if_changed_rule,cc_o_c)
|
||||
@{ echo $(@:.o=.ko); echo $@; \
|
||||
|
@ -399,7 +408,7 @@ cmd_modversions_S = \
|
|||
endif
|
||||
endif
|
||||
|
||||
$(obj)/%.o: $(src)/%.S $(objtool_obj) FORCE
|
||||
$(obj)/%.o: $(src)/%.S $(objtool_dep) FORCE
|
||||
$(call if_changed_rule,as_o_S)
|
||||
|
||||
targets += $(real-objs-y) $(real-objs-m) $(lib-y)
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue