drm/nouveau/clk/gk20a: convert parameters to Khz

Perform computations in Khz instead of Mhz for better precision.

Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This commit is contained in:
Alexandre Courbot 2015-10-28 17:36:06 +09:00 committed by Ben Skeggs
parent 71757abf2e
commit af6313d61a
1 changed files with 17 additions and 15 deletions

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a * Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"), * copy of this software and associated documentation files (the "Software"),
@ -28,7 +28,8 @@
#include <core/tegra.h> #include <core/tegra.h>
#include <subdev/timer.h> #include <subdev/timer.h>
#define MHZ (1000 * 1000) #define KHZ (1000)
#define MHZ (KHZ * 1000)
#define MASK(w) ((1 << w) - 1) #define MASK(w) ((1 << w) - 1)
@ -97,7 +98,7 @@ static const u8 pl_to_div[] = {
/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
}; };
/* All frequencies in Mhz */ /* All frequencies in Khz */
struct gk20a_clk_pllg_params { struct gk20a_clk_pllg_params {
u32 min_vco, max_vco; u32 min_vco, max_vco;
u32 min_u, max_u; u32 min_u, max_u;
@ -107,8 +108,8 @@ struct gk20a_clk_pllg_params {
}; };
static const struct gk20a_clk_pllg_params gk20a_pllg_params = { static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
.min_vco = 1000, .max_vco = 2064, .min_vco = 1000000, .max_vco = 2064000,
.min_u = 12, .max_u = 38, .min_u = 12000, .max_u = 38000,
.min_m = 1, .max_m = 255, .min_m = 1, .max_m = 255,
.min_n = 8, .max_n = 255, .min_n = 8, .max_n = 255,
.min_pl = 1, .max_pl = 32, .min_pl = 1, .max_pl = 32,
@ -159,8 +160,8 @@ gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
u32 delta, lwv, best_delta = ~0; u32 delta, lwv, best_delta = ~0;
u32 pl; u32 pl;
target_clk_f = rate * 2 / MHZ; target_clk_f = rate * 2 / KHZ;
ref_clk_f = clk->parent_rate / MHZ; ref_clk_f = clk->parent_rate / KHZ;
max_vco_f = clk->params->max_vco; max_vco_f = clk->params->max_vco;
min_vco_f = clk->params->min_vco; min_vco_f = clk->params->min_vco;
@ -249,17 +250,18 @@ found_match:
if (best_delta != 0) if (best_delta != 0)
nvkm_debug(subdev, nvkm_debug(subdev,
"no best match for target @ %dMHz on gpc_pll", "no best match for target @ %dMHz on gpc_pll",
target_clk_f); target_clk_f / KHZ);
clk->m = best_m; clk->m = best_m;
clk->n = best_n; clk->n = best_n;
clk->pl = best_pl; clk->pl = best_pl;
target_freq = gk20a_pllg_calc_rate(clk) / MHZ; target_freq = gk20a_pllg_calc_rate(clk);
nvkm_debug(subdev, nvkm_debug(subdev,
"actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n", "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]); target_freq / MHZ, clk->m, clk->n, clk->pl,
pl_to_div[clk->pl]);
return 0; return 0;
} }
@ -360,7 +362,7 @@ _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
/* slide down to NDIV_LO */ /* slide down to NDIV_LO */
n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco, n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
clk->parent_rate / MHZ); clk->parent_rate / KHZ);
if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) { if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
int ret = gk20a_pllg_slide(clk, n_lo); int ret = gk20a_pllg_slide(clk, n_lo);
@ -393,7 +395,7 @@ _gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
clk->m, clk->n, clk->pl); clk->m, clk->n, clk->pl);
n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco, n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
clk->parent_rate / MHZ); clk->parent_rate / KHZ);
val = clk->m << GPCPLL_COEFF_M_SHIFT; val = clk->m << GPCPLL_COEFF_M_SHIFT;
val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT; val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
val |= clk->pl << GPCPLL_COEFF_P_SHIFT; val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
@ -452,7 +454,7 @@ gk20a_pllg_disable(struct gk20a_clk *clk)
coeff = nvkm_rd32(device, GPCPLL_COEFF); coeff = nvkm_rd32(device, GPCPLL_COEFF);
m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
n_lo = DIV_ROUND_UP(m * clk->params->min_vco, n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
clk->parent_rate / MHZ); clk->parent_rate / KHZ);
gk20a_pllg_slide(clk, n_lo); gk20a_pllg_slide(clk, n_lo);
} }
@ -663,7 +665,7 @@ gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
clk->parent_rate = clk_get_rate(tdev->clk); clk->parent_rate = clk_get_rate(tdev->clk);
ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base); ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n", nvkm_info(&clk->base.subdev, "parent clock rate: %d Khz\n",
clk->parent_rate / MHZ); clk->parent_rate / KHZ);
return ret; return ret;
} }