Immutable branch between MFD, Regulator and Clk, due for v3.19

-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJUdKaZAAoJEFGvii+H/HdhPj8P/1Jl60LnYPozG0eu6+rNaLDj
 AL8bNLWh0pANQzpYstE4aHDmrEWTArJ37eIet6BrPN/nv/ej2DR7hgK7Eh8h4P1t
 2LtBpxCT3f/Md92iBTLa/bMFm4VuuT/GiOurb1vR9BtTyH1bD8ftmXwhmzHskBuT
 wK0lfdvLEMRI2YIkgnLcuto07kMAIbLAQ4TANWvnHL2XLGd0/aPn68q3jNgwPjgf
 ufi5/eV8y+M/oopYPjU4Mt4W5fOTCZ6yINsp3tkOhPk9G28wJSmAiDkm9bn7KVrz
 Jwy60tpO9Z2+kff62uMjcWvMEvnMcrfQJ3cGm+Si64DuM+s2hmWpA/rXeO+Ep7VX
 jk3aiYXkFmUfgFXz7qMhFEERXu4nwhSGgdbEZWRmG8rcSaS3KnBNDaSvZOOH2mCq
 8iQmMzSMDK6CnW2wIr+2AsrrizPEPrvMOs7GLiUiyXlOjkUSR1XjJ6HlIfXKiMYg
 bWliacyGm3v+K3g41u9ULHNmLi779SlsUrH+Z6NARN5kRKXvsPntDA+8em11euvt
 7h1/wyPpjvJi8Cj5VJzinh4l/9t9O2GNeDuKExuOnaRHoOhzGkFwwMBgUkEdb5lX
 1il7JIXb/MfrwDbd4EZ/G0Ju2icFOfuwCAjad0upBfGkU11zJEa/KozN1ymjq/bD
 whTJLra7D6P0E8DBdS/0
 =WTv4
 -----END PGP SIGNATURE-----

Merge branches 'ib-mfd-gpio-i2c-3.19', 'ib-mfd-iio-3.19' and 'ib-mfd-regulator-v3.19', tag 'ib-mfd-regulator-clk-v3.19' into ibs-for-mfd-merged

Immutable branch between MFD, Regulator and Clk, due for v3.19
This commit is contained in:
Lee Jones 2014-11-25 16:18:03 +00:00
25 changed files with 2753 additions and 82 deletions

View File

@ -1,5 +1,5 @@
* Samsung S2MPS11, S2MPS14 and S2MPU02 Voltage and Current Regulator
* Samsung S2MPS11, S2MPS13, S2MPS14 and S2MPU02 Voltage and Current Regulator
The Samsung S2MPS11 is a multi-function device which includes voltage and
current regulators, RTC, charger controller and other sub-blocks. It is
@ -7,8 +7,8 @@ interfaced to the host controller using an I2C interface. Each sub-block is
addressed by the host system using different I2C slave addresses.
Required properties:
- compatible: Should be "samsung,s2mps11-pmic" or "samsung,s2mps14-pmic"
or "samsung,s2mpu02-pmic".
- compatible: Should be "samsung,s2mps11-pmic" or "samsung,s2mps13-pmic"
or "samsung,s2mps14-pmic" or "samsung,s2mpu02-pmic".
- reg: Specifies the I2C slave address of the pmic block. It should be 0x66.
Optional properties:
@ -17,8 +17,8 @@ Optional properties:
- interrupts: Interrupt specifiers for interrupt sources.
Optional nodes:
- clocks: s2mps11 and s5m8767 provide three(AP/CP/BT) buffered 32.768 KHz
outputs, so to register these as clocks with common clock framework
- clocks: s2mps11, s2mps13 and s5m8767 provide three(AP/CP/BT) buffered 32.768
KHz outputs, so to register these as clocks with common clock framework
instantiate a sub-node named "clocks". It uses the common clock binding
documented in :
[Documentation/devicetree/bindings/clock/clock-bindings.txt]
@ -30,12 +30,12 @@ Optional nodes:
the clock which they consume.
Clock ID Devices
----------------------------------------------------------
32KhzAP 0 S2MPS11, S2MPS14, S5M8767
32KhzCP 1 S2MPS11, S5M8767
32KhzBT 2 S2MPS11, S2MPS14, S5M8767
32KhzAP 0 S2MPS11, S2MPS13, S2MPS14, S5M8767
32KhzCP 1 S2MPS11, S2MPS13, S5M8767
32KhzBT 2 S2MPS11, S2MPS13, S2MPS14, S5M8767
- compatible: Should be one of: "samsung,s2mps11-clk", "samsung,s2mps14-clk",
"samsung,s5m8767-clk"
- compatible: Should be one of: "samsung,s2mps11-clk", "samsung,s2mps13-clk",
"samsung,s2mps14-clk", "samsung,s5m8767-clk"
- regulators: The regulators of s2mps11 that have to be instantiated should be
included in a sub-node named 'regulators'. Regulator nodes included in this
@ -81,12 +81,14 @@ as per the datasheet of s2mps11.
- LDOn
- valid values for n are:
- S2MPS11: 1 to 38
- S2MPS13: 1 to 40
- S2MPS14: 1 to 25
- S2MPU02: 1 to 28
- Example: LDO1, LDO2, LDO28
- BUCKn
- valid values for n are:
- S2MPS11: 1 to 10
- S2MPS13: 1 to 10
- S2MPS14: 1 to 5
- S2MPU02: 1 to 7
- Example: BUCK1, BUCK2, BUCK9

View File

@ -23,6 +23,7 @@
#include <linux/clk-provider.h>
#include <linux/platform_device.h>
#include <linux/mfd/samsung/s2mps11.h>
#include <linux/mfd/samsung/s2mps13.h>
#include <linux/mfd/samsung/s2mps14.h>
#include <linux/mfd/samsung/s5m8767.h>
#include <linux/mfd/samsung/core.h>
@ -120,6 +121,24 @@ static struct clk_init_data s2mps11_clks_init[S2MPS11_CLKS_NUM] = {
},
};
static struct clk_init_data s2mps13_clks_init[S2MPS11_CLKS_NUM] = {
[S2MPS11_CLK_AP] = {
.name = "s2mps13_ap",
.ops = &s2mps11_clk_ops,
.flags = CLK_IS_ROOT,
},
[S2MPS11_CLK_CP] = {
.name = "s2mps13_cp",
.ops = &s2mps11_clk_ops,
.flags = CLK_IS_ROOT,
},
[S2MPS11_CLK_BT] = {
.name = "s2mps13_bt",
.ops = &s2mps11_clk_ops,
.flags = CLK_IS_ROOT,
},
};
static struct clk_init_data s2mps14_clks_init[S2MPS11_CLKS_NUM] = {
[S2MPS11_CLK_AP] = {
.name = "s2mps14_ap",
@ -184,6 +203,10 @@ static int s2mps11_clk_probe(struct platform_device *pdev)
s2mps11_reg = S2MPS11_REG_RTC_CTRL;
clks_init = s2mps11_clks_init;
break;
case S2MPS13X:
s2mps11_reg = S2MPS13_REG_RTCCTRL;
clks_init = s2mps13_clks_init;
break;
case S2MPS14X:
s2mps11_reg = S2MPS14_REG_RTCCTRL;
clks_init = s2mps14_clks_init;
@ -279,6 +302,7 @@ static int s2mps11_clk_remove(struct platform_device *pdev)
static const struct platform_device_id s2mps11_clk_id[] = {
{ "s2mps11-clk", S2MPS11X},
{ "s2mps13-clk", S2MPS13X},
{ "s2mps14-clk", S2MPS14X},
{ "s5m8767-clk", S5M8767X},
{ },

View File

@ -905,4 +905,16 @@ config GPIO_VIPERBOARD
River Tech's viperboard.h for detailed meaning
of the module parameters.
config GPIO_DLN2
tristate "Diolan DLN2 GPIO support"
depends on MFD_DLN2
select GPIOLIB_IRQCHIP
help
Select this option to enable GPIO driver for the Diolan DLN2
board.
This driver can also be built as a module. If so, the module
will be called gpio-dln2.
endif

View File

@ -26,6 +26,7 @@ obj-$(CONFIG_GPIO_CRYSTAL_COVE) += gpio-crystalcove.o
obj-$(CONFIG_GPIO_DA9052) += gpio-da9052.o
obj-$(CONFIG_GPIO_DA9055) += gpio-da9055.o
obj-$(CONFIG_GPIO_DAVINCI) += gpio-davinci.o
obj-$(CONFIG_GPIO_DLN2) += gpio-dln2.o
obj-$(CONFIG_GPIO_DWAPB) += gpio-dwapb.o
obj-$(CONFIG_GPIO_EM) += gpio-em.o
obj-$(CONFIG_GPIO_EP93XX) += gpio-ep93xx.o

553
drivers/gpio/gpio-dln2.c Normal file
View File

@ -0,0 +1,553 @@
/*
* Driver for the Diolan DLN-2 USB-GPIO adapter
*
* Copyright (c) 2014 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/gpio.h>
#include <linux/gpio/driver.h>
#include <linux/platform_device.h>
#include <linux/mfd/dln2.h>
#define DLN2_GPIO_ID 0x01
#define DLN2_GPIO_GET_PIN_COUNT DLN2_CMD(0x01, DLN2_GPIO_ID)
#define DLN2_GPIO_SET_DEBOUNCE DLN2_CMD(0x04, DLN2_GPIO_ID)
#define DLN2_GPIO_GET_DEBOUNCE DLN2_CMD(0x05, DLN2_GPIO_ID)
#define DLN2_GPIO_PORT_GET_VAL DLN2_CMD(0x06, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_GET_VAL DLN2_CMD(0x0B, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_SET_OUT_VAL DLN2_CMD(0x0C, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_GET_OUT_VAL DLN2_CMD(0x0D, DLN2_GPIO_ID)
#define DLN2_GPIO_CONDITION_MET_EV DLN2_CMD(0x0F, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_ENABLE DLN2_CMD(0x10, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_DISABLE DLN2_CMD(0x11, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_SET_DIRECTION DLN2_CMD(0x13, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_GET_DIRECTION DLN2_CMD(0x14, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_SET_EVENT_CFG DLN2_CMD(0x1E, DLN2_GPIO_ID)
#define DLN2_GPIO_PIN_GET_EVENT_CFG DLN2_CMD(0x1F, DLN2_GPIO_ID)
#define DLN2_GPIO_EVENT_NONE 0
#define DLN2_GPIO_EVENT_CHANGE 1
#define DLN2_GPIO_EVENT_LVL_HIGH 2
#define DLN2_GPIO_EVENT_LVL_LOW 3
#define DLN2_GPIO_EVENT_CHANGE_RISING 0x11
#define DLN2_GPIO_EVENT_CHANGE_FALLING 0x21
#define DLN2_GPIO_EVENT_MASK 0x0F
#define DLN2_GPIO_MAX_PINS 32
struct dln2_irq_work {
struct work_struct work;
struct dln2_gpio *dln2;
int pin;
int type;
};
struct dln2_gpio {
struct platform_device *pdev;
struct gpio_chip gpio;
/*
* Cache pin direction to save us one transfer, since the hardware has
* separate commands to read the in and out values.
*/
DECLARE_BITMAP(output_enabled, DLN2_GPIO_MAX_PINS);
DECLARE_BITMAP(irqs_masked, DLN2_GPIO_MAX_PINS);
DECLARE_BITMAP(irqs_enabled, DLN2_GPIO_MAX_PINS);
DECLARE_BITMAP(irqs_pending, DLN2_GPIO_MAX_PINS);
struct dln2_irq_work *irq_work;
};
struct dln2_gpio_pin {
__le16 pin;
};
struct dln2_gpio_pin_val {
__le16 pin __packed;
u8 value;
};
static int dln2_gpio_get_pin_count(struct platform_device *pdev)
{
int ret;
__le16 count;
int len = sizeof(count);
ret = dln2_transfer_rx(pdev, DLN2_GPIO_GET_PIN_COUNT, &count, &len);
if (ret < 0)
return ret;
if (len < sizeof(count))
return -EPROTO;
return le16_to_cpu(count);
}
static int dln2_gpio_pin_cmd(struct dln2_gpio *dln2, int cmd, unsigned pin)
{
struct dln2_gpio_pin req = {
.pin = cpu_to_le16(pin),
};
return dln2_transfer_tx(dln2->pdev, cmd, &req, sizeof(req));
}
static int dln2_gpio_pin_val(struct dln2_gpio *dln2, int cmd, unsigned int pin)
{
int ret;
struct dln2_gpio_pin req = {
.pin = cpu_to_le16(pin),
};
struct dln2_gpio_pin_val rsp;
int len = sizeof(rsp);
ret = dln2_transfer(dln2->pdev, cmd, &req, sizeof(req), &rsp, &len);
if (ret < 0)
return ret;
if (len < sizeof(rsp) || req.pin != rsp.pin)
return -EPROTO;
return rsp.value;
}
static int dln2_gpio_pin_get_in_val(struct dln2_gpio *dln2, unsigned int pin)
{
int ret;
ret = dln2_gpio_pin_val(dln2, DLN2_GPIO_PIN_GET_VAL, pin);
if (ret < 0)
return ret;
return !!ret;
}
static int dln2_gpio_pin_get_out_val(struct dln2_gpio *dln2, unsigned int pin)
{
int ret;
ret = dln2_gpio_pin_val(dln2, DLN2_GPIO_PIN_GET_OUT_VAL, pin);
if (ret < 0)
return ret;
return !!ret;
}
static void dln2_gpio_pin_set_out_val(struct dln2_gpio *dln2,
unsigned int pin, int value)
{
struct dln2_gpio_pin_val req = {
.pin = cpu_to_le16(pin),
.value = value,
};
dln2_transfer_tx(dln2->pdev, DLN2_GPIO_PIN_SET_OUT_VAL, &req,
sizeof(req));
}
#define DLN2_GPIO_DIRECTION_IN 0
#define DLN2_GPIO_DIRECTION_OUT 1
static int dln2_gpio_request(struct gpio_chip *chip, unsigned offset)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
struct dln2_gpio_pin req = {
.pin = cpu_to_le16(offset),
};
struct dln2_gpio_pin_val rsp;
int len = sizeof(rsp);
int ret;
ret = dln2_gpio_pin_cmd(dln2, DLN2_GPIO_PIN_ENABLE, offset);
if (ret < 0)
return ret;
/* cache the pin direction */
ret = dln2_transfer(dln2->pdev, DLN2_GPIO_PIN_GET_DIRECTION,
&req, sizeof(req), &rsp, &len);
if (ret < 0)
return ret;
if (len < sizeof(rsp) || req.pin != rsp.pin) {
ret = -EPROTO;
goto out_disable;
}
switch (rsp.value) {
case DLN2_GPIO_DIRECTION_IN:
clear_bit(offset, dln2->output_enabled);
return 0;
case DLN2_GPIO_DIRECTION_OUT:
set_bit(offset, dln2->output_enabled);
return 0;
default:
ret = -EPROTO;
goto out_disable;
}
out_disable:
dln2_gpio_pin_cmd(dln2, DLN2_GPIO_PIN_DISABLE, offset);
return ret;
}
static void dln2_gpio_free(struct gpio_chip *chip, unsigned offset)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
dln2_gpio_pin_cmd(dln2, DLN2_GPIO_PIN_DISABLE, offset);
}
static int dln2_gpio_get_direction(struct gpio_chip *chip, unsigned offset)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
if (test_bit(offset, dln2->output_enabled))
return GPIOF_DIR_OUT;
return GPIOF_DIR_IN;
}
static int dln2_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
int dir;
dir = dln2_gpio_get_direction(chip, offset);
if (dir < 0)
return dir;
if (dir == GPIOF_DIR_IN)
return dln2_gpio_pin_get_in_val(dln2, offset);
return dln2_gpio_pin_get_out_val(dln2, offset);
}
static void dln2_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
dln2_gpio_pin_set_out_val(dln2, offset, value);
}
static int dln2_gpio_set_direction(struct gpio_chip *chip, unsigned offset,
unsigned dir)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
struct dln2_gpio_pin_val req = {
.pin = cpu_to_le16(offset),
.value = dir,
};
int ret;
ret = dln2_transfer_tx(dln2->pdev, DLN2_GPIO_PIN_SET_DIRECTION,
&req, sizeof(req));
if (ret < 0)
return ret;
if (dir == DLN2_GPIO_DIRECTION_OUT)
set_bit(offset, dln2->output_enabled);
else
clear_bit(offset, dln2->output_enabled);
return ret;
}
static int dln2_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
return dln2_gpio_set_direction(chip, offset, DLN2_GPIO_DIRECTION_IN);
}
static int dln2_gpio_direction_output(struct gpio_chip *chip, unsigned offset,
int value)
{
return dln2_gpio_set_direction(chip, offset, DLN2_GPIO_DIRECTION_OUT);
}
static int dln2_gpio_set_debounce(struct gpio_chip *chip, unsigned offset,
unsigned debounce)
{
struct dln2_gpio *dln2 = container_of(chip, struct dln2_gpio, gpio);
__le32 duration = cpu_to_le32(debounce);
return dln2_transfer_tx(dln2->pdev, DLN2_GPIO_SET_DEBOUNCE,
&duration, sizeof(duration));
}
static int dln2_gpio_set_event_cfg(struct dln2_gpio *dln2, unsigned pin,
unsigned type, unsigned period)
{
struct {
__le16 pin;
u8 type;
__le16 period;
} __packed req = {
.pin = cpu_to_le16(pin),
.type = type,
.period = cpu_to_le16(period),
};
return dln2_transfer_tx(dln2->pdev, DLN2_GPIO_PIN_SET_EVENT_CFG,
&req, sizeof(req));
}
static void dln2_irq_work(struct work_struct *w)
{
struct dln2_irq_work *iw = container_of(w, struct dln2_irq_work, work);
struct dln2_gpio *dln2 = iw->dln2;
u8 type = iw->type & DLN2_GPIO_EVENT_MASK;
if (test_bit(iw->pin, dln2->irqs_enabled))
dln2_gpio_set_event_cfg(dln2, iw->pin, type, 0);
else
dln2_gpio_set_event_cfg(dln2, iw->pin, DLN2_GPIO_EVENT_NONE, 0);
}
static void dln2_irq_enable(struct irq_data *irqd)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(irqd);
struct dln2_gpio *dln2 = container_of(gc, struct dln2_gpio, gpio);
int pin = irqd_to_hwirq(irqd);
set_bit(pin, dln2->irqs_enabled);
schedule_work(&dln2->irq_work[pin].work);
}
static void dln2_irq_disable(struct irq_data *irqd)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(irqd);
struct dln2_gpio *dln2 = container_of(gc, struct dln2_gpio, gpio);
int pin = irqd_to_hwirq(irqd);
clear_bit(pin, dln2->irqs_enabled);
schedule_work(&dln2->irq_work[pin].work);
}
static void dln2_irq_mask(struct irq_data *irqd)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(irqd);
struct dln2_gpio *dln2 = container_of(gc, struct dln2_gpio, gpio);
int pin = irqd_to_hwirq(irqd);
set_bit(pin, dln2->irqs_masked);
}
static void dln2_irq_unmask(struct irq_data *irqd)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(irqd);
struct dln2_gpio *dln2 = container_of(gc, struct dln2_gpio, gpio);
struct device *dev = dln2->gpio.dev;
int pin = irqd_to_hwirq(irqd);
if (test_and_clear_bit(pin, dln2->irqs_pending)) {
int irq;
irq = irq_find_mapping(dln2->gpio.irqdomain, pin);
if (!irq) {
dev_err(dev, "pin %d not mapped to IRQ\n", pin);
return;
}
generic_handle_irq(irq);
}
}
static int dln2_irq_set_type(struct irq_data *irqd, unsigned type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(irqd);
struct dln2_gpio *dln2 = container_of(gc, struct dln2_gpio, gpio);
int pin = irqd_to_hwirq(irqd);
switch (type) {
case IRQ_TYPE_LEVEL_HIGH:
dln2->irq_work[pin].type = DLN2_GPIO_EVENT_LVL_HIGH;
break;
case IRQ_TYPE_LEVEL_LOW:
dln2->irq_work[pin].type = DLN2_GPIO_EVENT_LVL_LOW;
break;
case IRQ_TYPE_EDGE_BOTH:
dln2->irq_work[pin].type = DLN2_GPIO_EVENT_CHANGE;
break;
case IRQ_TYPE_EDGE_RISING:
dln2->irq_work[pin].type = DLN2_GPIO_EVENT_CHANGE_RISING;
break;
case IRQ_TYPE_EDGE_FALLING:
dln2->irq_work[pin].type = DLN2_GPIO_EVENT_CHANGE_FALLING;
break;
default:
return -EINVAL;
}
return 0;
}
static struct irq_chip dln2_gpio_irqchip = {
.name = "dln2-irq",
.irq_enable = dln2_irq_enable,
.irq_disable = dln2_irq_disable,
.irq_mask = dln2_irq_mask,
.irq_unmask = dln2_irq_unmask,
.irq_set_type = dln2_irq_set_type,
};
static void dln2_gpio_event(struct platform_device *pdev, u16 echo,
const void *data, int len)
{
int pin, irq;
const struct {
__le16 count;
__u8 type;
__le16 pin;
__u8 value;
} __packed *event = data;
struct dln2_gpio *dln2 = platform_get_drvdata(pdev);
if (len < sizeof(*event)) {
dev_err(dln2->gpio.dev, "short event message\n");
return;
}
pin = le16_to_cpu(event->pin);
if (pin >= dln2->gpio.ngpio) {
dev_err(dln2->gpio.dev, "out of bounds pin %d\n", pin);
return;
}
irq = irq_find_mapping(dln2->gpio.irqdomain, pin);
if (!irq) {
dev_err(dln2->gpio.dev, "pin %d not mapped to IRQ\n", pin);
return;
}
if (!test_bit(pin, dln2->irqs_enabled))
return;
if (test_bit(pin, dln2->irqs_masked)) {
set_bit(pin, dln2->irqs_pending);
return;
}
switch (dln2->irq_work[pin].type) {
case DLN2_GPIO_EVENT_CHANGE_RISING:
if (event->value)
generic_handle_irq(irq);
break;
case DLN2_GPIO_EVENT_CHANGE_FALLING:
if (!event->value)
generic_handle_irq(irq);
break;
default:
generic_handle_irq(irq);
}
}
static int dln2_gpio_probe(struct platform_device *pdev)
{
struct dln2_gpio *dln2;
struct device *dev = &pdev->dev;
int pins;
int i, ret;
pins = dln2_gpio_get_pin_count(pdev);
if (pins < 0) {
dev_err(dev, "failed to get pin count: %d\n", pins);
return pins;
}
if (pins > DLN2_GPIO_MAX_PINS) {
pins = DLN2_GPIO_MAX_PINS;
dev_warn(dev, "clamping pins to %d\n", DLN2_GPIO_MAX_PINS);
}
dln2 = devm_kzalloc(&pdev->dev, sizeof(*dln2), GFP_KERNEL);
if (!dln2)
return -ENOMEM;
dln2->irq_work = devm_kcalloc(&pdev->dev, pins,
sizeof(struct dln2_irq_work), GFP_KERNEL);
if (!dln2->irq_work)
return -ENOMEM;
for (i = 0; i < pins; i++) {
INIT_WORK(&dln2->irq_work[i].work, dln2_irq_work);
dln2->irq_work[i].pin = i;
dln2->irq_work[i].dln2 = dln2;
}
dln2->pdev = pdev;
dln2->gpio.label = "dln2";
dln2->gpio.dev = dev;
dln2->gpio.owner = THIS_MODULE;
dln2->gpio.base = -1;
dln2->gpio.ngpio = pins;
dln2->gpio.exported = true;
dln2->gpio.can_sleep = true;
dln2->gpio.irq_not_threaded = true;
dln2->gpio.set = dln2_gpio_set;
dln2->gpio.get = dln2_gpio_get;
dln2->gpio.request = dln2_gpio_request;
dln2->gpio.free = dln2_gpio_free;
dln2->gpio.get_direction = dln2_gpio_get_direction;
dln2->gpio.direction_input = dln2_gpio_direction_input;
dln2->gpio.direction_output = dln2_gpio_direction_output;
dln2->gpio.set_debounce = dln2_gpio_set_debounce;
platform_set_drvdata(pdev, dln2);
ret = gpiochip_add(&dln2->gpio);
if (ret < 0) {
dev_err(dev, "failed to add gpio chip: %d\n", ret);
goto out;
}
ret = gpiochip_irqchip_add(&dln2->gpio, &dln2_gpio_irqchip, 0,
handle_simple_irq, IRQ_TYPE_NONE);
if (ret < 0) {
dev_err(dev, "failed to add irq chip: %d\n", ret);
goto out_gpiochip_remove;
}
ret = dln2_register_event_cb(pdev, DLN2_GPIO_CONDITION_MET_EV,
dln2_gpio_event);
if (ret) {
dev_err(dev, "failed to register event cb: %d\n", ret);
goto out_gpiochip_remove;
}
return 0;
out_gpiochip_remove:
gpiochip_remove(&dln2->gpio);
out:
return ret;
}
static int dln2_gpio_remove(struct platform_device *pdev)
{
struct dln2_gpio *dln2 = platform_get_drvdata(pdev);
int i;
dln2_unregister_event_cb(pdev, DLN2_GPIO_CONDITION_MET_EV);
for (i = 0; i < dln2->gpio.ngpio; i++)
flush_work(&dln2->irq_work[i].work);
gpiochip_remove(&dln2->gpio);
return 0;
}
static struct platform_driver dln2_gpio_driver = {
.driver.name = "dln2-gpio",
.probe = dln2_gpio_probe,
.remove = dln2_gpio_remove,
};
module_platform_driver(dln2_gpio_driver);
MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com");
MODULE_DESCRIPTION("Driver for the Diolan DLN2 GPIO interface");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dln2-gpio");

View File

@ -881,6 +881,16 @@ config I2C_DIOLAN_U2C
This driver can also be built as a module. If so, the module
will be called i2c-diolan-u2c.
config I2C_DLN2
tristate "Diolan DLN-2 USB I2C adapter"
depends on MFD_DLN2
help
If you say yes to this option, support will be included for Diolan
DLN2, a USB to I2C interface.
This driver can also be built as a module. If so, the module
will be called i2c-dln2.
config I2C_PARPORT
tristate "Parallel port adapter"
depends on PARPORT

View File

@ -87,6 +87,7 @@ obj-$(CONFIG_I2C_RCAR) += i2c-rcar.o
# External I2C/SMBus adapter drivers
obj-$(CONFIG_I2C_DIOLAN_U2C) += i2c-diolan-u2c.o
obj-$(CONFIG_I2C_DLN2) += i2c-dln2.o
obj-$(CONFIG_I2C_PARPORT) += i2c-parport.o
obj-$(CONFIG_I2C_PARPORT_LIGHT) += i2c-parport-light.o
obj-$(CONFIG_I2C_ROBOTFUZZ_OSIF) += i2c-robotfuzz-osif.o

View File

@ -0,0 +1,262 @@
/*
* Driver for the Diolan DLN-2 USB-I2C adapter
*
* Copyright (c) 2014 Intel Corporation
*
* Derived from:
* i2c-diolan-u2c.c
* Copyright (c) 2010-2011 Ericsson AB
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/mfd/dln2.h>
#define DLN2_I2C_MODULE_ID 0x03
#define DLN2_I2C_CMD(cmd) DLN2_CMD(cmd, DLN2_I2C_MODULE_ID)
/* I2C commands */
#define DLN2_I2C_GET_PORT_COUNT DLN2_I2C_CMD(0x00)
#define DLN2_I2C_ENABLE DLN2_I2C_CMD(0x01)
#define DLN2_I2C_DISABLE DLN2_I2C_CMD(0x02)
#define DLN2_I2C_IS_ENABLED DLN2_I2C_CMD(0x03)
#define DLN2_I2C_WRITE DLN2_I2C_CMD(0x06)
#define DLN2_I2C_READ DLN2_I2C_CMD(0x07)
#define DLN2_I2C_SCAN_DEVICES DLN2_I2C_CMD(0x08)
#define DLN2_I2C_PULLUP_ENABLE DLN2_I2C_CMD(0x09)
#define DLN2_I2C_PULLUP_DISABLE DLN2_I2C_CMD(0x0A)
#define DLN2_I2C_PULLUP_IS_ENABLED DLN2_I2C_CMD(0x0B)
#define DLN2_I2C_TRANSFER DLN2_I2C_CMD(0x0C)
#define DLN2_I2C_SET_MAX_REPLY_COUNT DLN2_I2C_CMD(0x0D)
#define DLN2_I2C_GET_MAX_REPLY_COUNT DLN2_I2C_CMD(0x0E)
#define DLN2_I2C_MAX_XFER_SIZE 256
#define DLN2_I2C_BUF_SIZE (DLN2_I2C_MAX_XFER_SIZE + 16)
struct dln2_i2c {
struct platform_device *pdev;
struct i2c_adapter adapter;
u8 port;
/*
* Buffer to hold the packet for read or write transfers. One is enough
* since we can't have multiple transfers in parallel on the i2c bus.
*/
void *buf;
};
static int dln2_i2c_enable(struct dln2_i2c *dln2, bool enable)
{
u16 cmd;
struct {
u8 port;
} tx;
tx.port = dln2->port;
if (enable)
cmd = DLN2_I2C_ENABLE;
else
cmd = DLN2_I2C_DISABLE;
return dln2_transfer_tx(dln2->pdev, cmd, &tx, sizeof(tx));
}
static int dln2_i2c_write(struct dln2_i2c *dln2, u8 addr,
u8 *data, u16 data_len)
{
int ret;
struct {
u8 port;
u8 addr;
u8 mem_addr_len;
__le32 mem_addr;
__le16 buf_len;
u8 buf[DLN2_I2C_MAX_XFER_SIZE];
} __packed *tx = dln2->buf;
unsigned len;
BUILD_BUG_ON(sizeof(*tx) > DLN2_I2C_BUF_SIZE);
tx->port = dln2->port;
tx->addr = addr;
tx->mem_addr_len = 0;
tx->mem_addr = 0;
tx->buf_len = cpu_to_le16(data_len);
memcpy(tx->buf, data, data_len);
len = sizeof(*tx) + data_len - DLN2_I2C_MAX_XFER_SIZE;
ret = dln2_transfer_tx(dln2->pdev, DLN2_I2C_WRITE, tx, len);
if (ret < 0)
return ret;
return data_len;
}
static int dln2_i2c_read(struct dln2_i2c *dln2, u16 addr, u8 *data,
u16 data_len)
{
int ret;
struct {
u8 port;
u8 addr;
u8 mem_addr_len;
__le32 mem_addr;
__le16 buf_len;
} __packed tx;
struct {
__le16 buf_len;
u8 buf[DLN2_I2C_MAX_XFER_SIZE];
} __packed *rx = dln2->buf;
unsigned rx_len = sizeof(*rx);
BUILD_BUG_ON(sizeof(*rx) > DLN2_I2C_BUF_SIZE);
tx.port = dln2->port;
tx.addr = addr;
tx.mem_addr_len = 0;
tx.mem_addr = 0;
tx.buf_len = cpu_to_le16(data_len);
ret = dln2_transfer(dln2->pdev, DLN2_I2C_READ, &tx, sizeof(tx),
rx, &rx_len);
if (ret < 0)
return ret;
if (rx_len < sizeof(rx->buf_len) + data_len)
return -EPROTO;
if (le16_to_cpu(rx->buf_len) != data_len)
return -EPROTO;
memcpy(data, rx->buf, data_len);
return data_len;
}
static int dln2_i2c_xfer(struct i2c_adapter *adapter,
struct i2c_msg *msgs, int num)
{
struct dln2_i2c *dln2 = i2c_get_adapdata(adapter);
struct i2c_msg *pmsg;
struct device *dev = &dln2->adapter.dev;
int i;
for (i = 0; i < num; i++) {
int ret;
pmsg = &msgs[i];
if (pmsg->len > DLN2_I2C_MAX_XFER_SIZE) {
dev_warn(dev, "maximum transfer size exceeded\n");
return -EOPNOTSUPP;
}
if (pmsg->flags & I2C_M_RD) {
ret = dln2_i2c_read(dln2, pmsg->addr, pmsg->buf,
pmsg->len);
if (ret < 0)
return ret;
pmsg->len = ret;
} else {
ret = dln2_i2c_write(dln2, pmsg->addr, pmsg->buf,
pmsg->len);
if (ret != pmsg->len)
return -EPROTO;
}
}
return num;
}
static u32 dln2_i2c_func(struct i2c_adapter *a)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
I2C_FUNC_SMBUS_I2C_BLOCK;
}
static const struct i2c_algorithm dln2_i2c_usb_algorithm = {
.master_xfer = dln2_i2c_xfer,
.functionality = dln2_i2c_func,
};
static int dln2_i2c_probe(struct platform_device *pdev)
{
int ret;
struct dln2_i2c *dln2;
struct device *dev = &pdev->dev;
struct dln2_platform_data *pdata = dev_get_platdata(&pdev->dev);
dln2 = devm_kzalloc(dev, sizeof(*dln2), GFP_KERNEL);
if (!dln2)
return -ENOMEM;
dln2->buf = devm_kmalloc(dev, DLN2_I2C_BUF_SIZE, GFP_KERNEL);
if (!dln2->buf)
return -ENOMEM;
dln2->pdev = pdev;
dln2->port = pdata->port;
/* setup i2c adapter description */
dln2->adapter.owner = THIS_MODULE;
dln2->adapter.class = I2C_CLASS_HWMON;
dln2->adapter.algo = &dln2_i2c_usb_algorithm;
dln2->adapter.dev.parent = dev;
i2c_set_adapdata(&dln2->adapter, dln2);
snprintf(dln2->adapter.name, sizeof(dln2->adapter.name), "%s-%s-%d",
"dln2-i2c", dev_name(pdev->dev.parent), dln2->port);
platform_set_drvdata(pdev, dln2);
/* initialize the i2c interface */
ret = dln2_i2c_enable(dln2, true);
if (ret < 0) {
dev_err(dev, "failed to initialize adapter: %d\n", ret);
return ret;
}
/* and finally attach to i2c layer */
ret = i2c_add_adapter(&dln2->adapter);
if (ret < 0) {
dev_err(dev, "failed to add I2C adapter: %d\n", ret);
goto out_disable;
}
return 0;
out_disable:
dln2_i2c_enable(dln2, false);
return ret;
}
static int dln2_i2c_remove(struct platform_device *pdev)
{
struct dln2_i2c *dln2 = platform_get_drvdata(pdev);
i2c_del_adapter(&dln2->adapter);
dln2_i2c_enable(dln2, false);
return 0;
}
static struct platform_driver dln2_i2c_driver = {
.driver.name = "dln2-i2c",
.probe = dln2_i2c_probe,
.remove = dln2_i2c_remove,
};
module_platform_driver(dln2_i2c_driver);
MODULE_AUTHOR("Laurentiu Palcu <laurentiu.palcu@intel.com>");
MODULE_DESCRIPTION("Driver for the Diolan DLN2 I2C master interface");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dln2-i2c");

View File

@ -127,6 +127,14 @@ config AT91_ADC
help
Say yes here to build support for Atmel AT91 ADC.
config AXP288_ADC
tristate "X-Powers AXP288 ADC driver"
depends on MFD_AXP20X
help
Say yes here to have support for X-Powers power management IC (PMIC) ADC
device. Depending on platform configuration, this general purpose ADC can
be used for sampling sensors such as thermal resistors.
config EXYNOS_ADC
tristate "Exynos ADC driver support"
depends on ARCH_EXYNOS || ARCH_S3C24XX || ARCH_S3C64XX || (OF && COMPILE_TEST)

View File

@ -14,6 +14,7 @@ obj-$(CONFIG_AD7793) += ad7793.o
obj-$(CONFIG_AD7887) += ad7887.o
obj-$(CONFIG_AD799X) += ad799x.o
obj-$(CONFIG_AT91_ADC) += at91_adc.o
obj-$(CONFIG_AXP288_ADC) += axp288_adc.o
obj-$(CONFIG_EXYNOS_ADC) += exynos_adc.o
obj-$(CONFIG_LP8788_ADC) += lp8788_adc.o
obj-$(CONFIG_MAX1027) += max1027.o

View File

@ -0,0 +1,261 @@
/*
* axp288_adc.c - X-Powers AXP288 PMIC ADC Driver
*
* Copyright (C) 2014 Intel Corporation
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/mfd/axp20x.h>
#include <linux/platform_device.h>
#include <linux/iio/iio.h>
#include <linux/iio/machine.h>
#include <linux/iio/driver.h>
#define AXP288_ADC_EN_MASK 0xF1
#define AXP288_ADC_TS_PIN_GPADC 0xF2
#define AXP288_ADC_TS_PIN_ON 0xF3
enum axp288_adc_id {
AXP288_ADC_TS,
AXP288_ADC_PMIC,
AXP288_ADC_GP,
AXP288_ADC_BATT_CHRG_I,
AXP288_ADC_BATT_DISCHRG_I,
AXP288_ADC_BATT_V,
AXP288_ADC_NR_CHAN,
};
struct axp288_adc_info {
int irq;
struct regmap *regmap;
};
static const struct iio_chan_spec const axp288_adc_channels[] = {
{
.indexed = 1,
.type = IIO_TEMP,
.channel = 0,
.address = AXP288_TS_ADC_H,
.datasheet_name = "TS_PIN",
}, {
.indexed = 1,
.type = IIO_TEMP,
.channel = 1,
.address = AXP288_PMIC_ADC_H,
.datasheet_name = "PMIC_TEMP",
}, {
.indexed = 1,
.type = IIO_TEMP,
.channel = 2,
.address = AXP288_GP_ADC_H,
.datasheet_name = "GPADC",
}, {
.indexed = 1,
.type = IIO_CURRENT,
.channel = 3,
.address = AXP20X_BATT_CHRG_I_H,
.datasheet_name = "BATT_CHG_I",
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
}, {
.indexed = 1,
.type = IIO_CURRENT,
.channel = 4,
.address = AXP20X_BATT_DISCHRG_I_H,
.datasheet_name = "BATT_DISCHRG_I",
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
}, {
.indexed = 1,
.type = IIO_VOLTAGE,
.channel = 5,
.address = AXP20X_BATT_V_H,
.datasheet_name = "BATT_V",
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
},
};
#define AXP288_ADC_MAP(_adc_channel_label, _consumer_dev_name, \
_consumer_channel) \
{ \
.adc_channel_label = _adc_channel_label, \
.consumer_dev_name = _consumer_dev_name, \
.consumer_channel = _consumer_channel, \
}
/* for consumer drivers */
static struct iio_map axp288_adc_default_maps[] = {
AXP288_ADC_MAP("TS_PIN", "axp288-batt", "axp288-batt-temp"),
AXP288_ADC_MAP("PMIC_TEMP", "axp288-pmic", "axp288-pmic-temp"),
AXP288_ADC_MAP("GPADC", "axp288-gpadc", "axp288-system-temp"),
AXP288_ADC_MAP("BATT_CHG_I", "axp288-chrg", "axp288-chrg-curr"),
AXP288_ADC_MAP("BATT_DISCHRG_I", "axp288-chrg", "axp288-chrg-d-curr"),
AXP288_ADC_MAP("BATT_V", "axp288-batt", "axp288-batt-volt"),
{},
};
static int axp288_adc_read_channel(int *val, unsigned long address,
struct regmap *regmap)
{
u8 buf[2];
if (regmap_bulk_read(regmap, address, buf, 2))
return -EIO;
*val = (buf[0] << 4) + ((buf[1] >> 4) & 0x0F);
return IIO_VAL_INT;
}
static int axp288_adc_set_ts(struct regmap *regmap, unsigned int mode,
unsigned long address)
{
/* channels other than GPADC do not need to switch TS pin */
if (address != AXP288_GP_ADC_H)
return 0;
return regmap_write(regmap, AXP288_ADC_TS_PIN_CTRL, mode);
}
static int axp288_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret;
struct axp288_adc_info *info = iio_priv(indio_dev);
mutex_lock(&indio_dev->mlock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (axp288_adc_set_ts(info->regmap, AXP288_ADC_TS_PIN_GPADC,
chan->address)) {
dev_err(&indio_dev->dev, "GPADC mode\n");
ret = -EINVAL;
break;
}
ret = axp288_adc_read_channel(val, chan->address, info->regmap);
if (axp288_adc_set_ts(info->regmap, AXP288_ADC_TS_PIN_ON,
chan->address))
dev_err(&indio_dev->dev, "TS pin restore\n");
break;
case IIO_CHAN_INFO_PROCESSED:
ret = axp288_adc_read_channel(val, chan->address, info->regmap);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
return ret;
}
static int axp288_adc_set_state(struct regmap *regmap)
{
/* ADC should be always enabled for internal FG to function */
if (regmap_write(regmap, AXP288_ADC_TS_PIN_CTRL, AXP288_ADC_TS_PIN_ON))
return -EIO;
return regmap_write(regmap, AXP20X_ADC_EN1, AXP288_ADC_EN_MASK);
}
static const struct iio_info axp288_adc_iio_info = {
.read_raw = &axp288_adc_read_raw,
.driver_module = THIS_MODULE,
};
static int axp288_adc_probe(struct platform_device *pdev)
{
int ret;
struct axp288_adc_info *info;
struct iio_dev *indio_dev;
struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent);
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info));
if (!indio_dev)
return -ENOMEM;
info = iio_priv(indio_dev);
info->irq = platform_get_irq(pdev, 0);
if (info->irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return info->irq;
}
platform_set_drvdata(pdev, indio_dev);
info->regmap = axp20x->regmap;
/*
* Set ADC to enabled state at all time, including system suspend.
* otherwise internal fuel gauge functionality may be affected.
*/
ret = axp288_adc_set_state(axp20x->regmap);
if (ret) {
dev_err(&pdev->dev, "unable to enable ADC device\n");
return ret;
}
indio_dev->dev.parent = &pdev->dev;
indio_dev->name = pdev->name;
indio_dev->channels = axp288_adc_channels;
indio_dev->num_channels = ARRAY_SIZE(axp288_adc_channels);
indio_dev->info = &axp288_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = iio_map_array_register(indio_dev, axp288_adc_default_maps);
if (ret < 0)
return ret;
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(&pdev->dev, "unable to register iio device\n");
goto err_array_unregister;
}
return 0;
err_array_unregister:
iio_map_array_unregister(indio_dev);
return ret;
}
static int axp288_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
iio_device_unregister(indio_dev);
iio_map_array_unregister(indio_dev);
return 0;
}
static struct platform_device_id axp288_adc_id_table[] = {
{ .name = "axp288_adc" },
{},
};
static struct platform_driver axp288_adc_driver = {
.probe = axp288_adc_probe,
.remove = axp288_adc_remove,
.id_table = axp288_adc_id_table,
.driver = {
.name = "axp288_adc",
},
};
MODULE_DEVICE_TABLE(platform, axp288_adc_id_table);
module_platform_driver(axp288_adc_driver);
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
MODULE_DESCRIPTION("X-Powers AXP288 ADC Driver");
MODULE_LICENSE("GPL");

View File

@ -74,7 +74,8 @@ config MFD_AXP20X
select REGMAP_IRQ
depends on I2C=y
help
If you say Y here you get support for the X-Powers AXP202 and AXP209.
If you say Y here you get support for the X-Powers AXP202, AXP209 and
AXP288 power management IC (PMIC).
This driver include only the core APIs. You have to select individual
components like regulators or the PEK (Power Enable Key) under the
corresponding menus.
@ -183,6 +184,16 @@ config MFD_DA9063
Additional drivers must be enabled in order to use the functionality
of the device.
config MFD_DLN2
tristate "Diolan DLN2 support"
select MFD_CORE
depends on USB
help
This adds support for Diolan USB-I2C/SPI/GPIO Master Adapter
DLN-2. Additional drivers such as I2C_DLN2, GPIO_DLN2,
etc. must be enabled in order to use the functionality of
the device.
config MFD_MC13XXX
tristate
depends on (SPI_MASTER || I2C)

View File

@ -174,6 +174,7 @@ obj-$(CONFIG_MFD_STW481X) += stw481x.o
obj-$(CONFIG_MFD_IPAQ_MICRO) += ipaq-micro.o
obj-$(CONFIG_MFD_MENF21BMC) += menf21bmc.o
obj-$(CONFIG_MFD_HI6421_PMIC) += hi6421-pmic-core.o
obj-$(CONFIG_MFD_DLN2) += dln2.o
intel-soc-pmic-objs := intel_soc_pmic_core.o intel_soc_pmic_crc.o
obj-$(CONFIG_INTEL_SOC_PMIC) += intel-soc-pmic.o

View File

@ -1,9 +1,9 @@
/*
* axp20x.c - MFD core driver for the X-Powers AXP202 and AXP209
* axp20x.c - MFD core driver for the X-Powers' Power Management ICs
*
* AXP20x comprises an adaptive USB-Compatible PWM charger, 2 BUCK DC-DC
* converters, 5 LDOs, multiple 12-bit ADCs of voltage, current and temperature
* as well as 4 configurable GPIOs.
* AXP20x typically comprises an adaptive USB-Compatible PWM charger, BUCK DC-DC
* converters, LDOs, multiple 12-bit ADCs of voltage, current and temperature
* as well as configurable GPIOs.
*
* Author: Carlo Caione <carlo@caione.org>
*
@ -25,9 +25,16 @@
#include <linux/mfd/core.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/acpi.h>
#define AXP20X_OFF 0x80
static const char const *axp20x_model_names[] = {
"AXP202",
"AXP209",
"AXP288",
};
static const struct regmap_range axp20x_writeable_ranges[] = {
regmap_reg_range(AXP20X_DATACACHE(0), AXP20X_IRQ5_STATE),
regmap_reg_range(AXP20X_DCDC_MODE, AXP20X_FG_RES),
@ -47,6 +54,25 @@ static const struct regmap_access_table axp20x_volatile_table = {
.n_yes_ranges = ARRAY_SIZE(axp20x_volatile_ranges),
};
static const struct regmap_range axp288_writeable_ranges[] = {
regmap_reg_range(AXP20X_DATACACHE(0), AXP20X_IRQ6_STATE),
regmap_reg_range(AXP20X_DCDC_MODE, AXP288_FG_TUNE5),
};
static const struct regmap_range axp288_volatile_ranges[] = {
regmap_reg_range(AXP20X_IRQ1_EN, AXP20X_IPSOUT_V_HIGH_L),
};
static const struct regmap_access_table axp288_writeable_table = {
.yes_ranges = axp288_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(axp288_writeable_ranges),
};
static const struct regmap_access_table axp288_volatile_table = {
.yes_ranges = axp288_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(axp288_volatile_ranges),
};
static struct resource axp20x_pek_resources[] = {
{
.name = "PEK_DBR",
@ -61,6 +87,39 @@ static struct resource axp20x_pek_resources[] = {
},
};
static struct resource axp288_battery_resources[] = {
{
.start = AXP288_IRQ_QWBTU,
.end = AXP288_IRQ_QWBTU,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_WBTU,
.end = AXP288_IRQ_WBTU,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_QWBTO,
.end = AXP288_IRQ_QWBTO,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_WBTO,
.end = AXP288_IRQ_WBTO,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_WL2,
.end = AXP288_IRQ_WL2,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_WL1,
.end = AXP288_IRQ_WL1,
.flags = IORESOURCE_IRQ,
},
};
static const struct regmap_config axp20x_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
@ -70,47 +129,96 @@ static const struct regmap_config axp20x_regmap_config = {
.cache_type = REGCACHE_RBTREE,
};
#define AXP20X_IRQ(_irq, _off, _mask) \
[AXP20X_IRQ_##_irq] = { .reg_offset = (_off), .mask = BIT(_mask) }
static const struct regmap_config axp288_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.wr_table = &axp288_writeable_table,
.volatile_table = &axp288_volatile_table,
.max_register = AXP288_FG_TUNE5,
.cache_type = REGCACHE_RBTREE,
};
#define INIT_REGMAP_IRQ(_variant, _irq, _off, _mask) \
[_variant##_IRQ_##_irq] = { .reg_offset = (_off), .mask = BIT(_mask) }
static const struct regmap_irq axp20x_regmap_irqs[] = {
AXP20X_IRQ(ACIN_OVER_V, 0, 7),
AXP20X_IRQ(ACIN_PLUGIN, 0, 6),
AXP20X_IRQ(ACIN_REMOVAL, 0, 5),
AXP20X_IRQ(VBUS_OVER_V, 0, 4),
AXP20X_IRQ(VBUS_PLUGIN, 0, 3),
AXP20X_IRQ(VBUS_REMOVAL, 0, 2),
AXP20X_IRQ(VBUS_V_LOW, 0, 1),
AXP20X_IRQ(BATT_PLUGIN, 1, 7),
AXP20X_IRQ(BATT_REMOVAL, 1, 6),
AXP20X_IRQ(BATT_ENT_ACT_MODE, 1, 5),
AXP20X_IRQ(BATT_EXIT_ACT_MODE, 1, 4),
AXP20X_IRQ(CHARG, 1, 3),
AXP20X_IRQ(CHARG_DONE, 1, 2),
AXP20X_IRQ(BATT_TEMP_HIGH, 1, 1),
AXP20X_IRQ(BATT_TEMP_LOW, 1, 0),
AXP20X_IRQ(DIE_TEMP_HIGH, 2, 7),
AXP20X_IRQ(CHARG_I_LOW, 2, 6),
AXP20X_IRQ(DCDC1_V_LONG, 2, 5),
AXP20X_IRQ(DCDC2_V_LONG, 2, 4),
AXP20X_IRQ(DCDC3_V_LONG, 2, 3),
AXP20X_IRQ(PEK_SHORT, 2, 1),
AXP20X_IRQ(PEK_LONG, 2, 0),
AXP20X_IRQ(N_OE_PWR_ON, 3, 7),
AXP20X_IRQ(N_OE_PWR_OFF, 3, 6),
AXP20X_IRQ(VBUS_VALID, 3, 5),
AXP20X_IRQ(VBUS_NOT_VALID, 3, 4),
AXP20X_IRQ(VBUS_SESS_VALID, 3, 3),
AXP20X_IRQ(VBUS_SESS_END, 3, 2),
AXP20X_IRQ(LOW_PWR_LVL1, 3, 1),
AXP20X_IRQ(LOW_PWR_LVL2, 3, 0),
AXP20X_IRQ(TIMER, 4, 7),
AXP20X_IRQ(PEK_RIS_EDGE, 4, 6),
AXP20X_IRQ(PEK_FAL_EDGE, 4, 5),
AXP20X_IRQ(GPIO3_INPUT, 4, 3),
AXP20X_IRQ(GPIO2_INPUT, 4, 2),
AXP20X_IRQ(GPIO1_INPUT, 4, 1),
AXP20X_IRQ(GPIO0_INPUT, 4, 0),
INIT_REGMAP_IRQ(AXP20X, ACIN_OVER_V, 0, 7),
INIT_REGMAP_IRQ(AXP20X, ACIN_PLUGIN, 0, 6),
INIT_REGMAP_IRQ(AXP20X, ACIN_REMOVAL, 0, 5),
INIT_REGMAP_IRQ(AXP20X, VBUS_OVER_V, 0, 4),
INIT_REGMAP_IRQ(AXP20X, VBUS_PLUGIN, 0, 3),
INIT_REGMAP_IRQ(AXP20X, VBUS_REMOVAL, 0, 2),
INIT_REGMAP_IRQ(AXP20X, VBUS_V_LOW, 0, 1),
INIT_REGMAP_IRQ(AXP20X, BATT_PLUGIN, 1, 7),
INIT_REGMAP_IRQ(AXP20X, BATT_REMOVAL, 1, 6),
INIT_REGMAP_IRQ(AXP20X, BATT_ENT_ACT_MODE, 1, 5),
INIT_REGMAP_IRQ(AXP20X, BATT_EXIT_ACT_MODE, 1, 4),
INIT_REGMAP_IRQ(AXP20X, CHARG, 1, 3),
INIT_REGMAP_IRQ(AXP20X, CHARG_DONE, 1, 2),
INIT_REGMAP_IRQ(AXP20X, BATT_TEMP_HIGH, 1, 1),
INIT_REGMAP_IRQ(AXP20X, BATT_TEMP_LOW, 1, 0),
INIT_REGMAP_IRQ(AXP20X, DIE_TEMP_HIGH, 2, 7),
INIT_REGMAP_IRQ(AXP20X, CHARG_I_LOW, 2, 6),
INIT_REGMAP_IRQ(AXP20X, DCDC1_V_LONG, 2, 5),
INIT_REGMAP_IRQ(AXP20X, DCDC2_V_LONG, 2, 4),
INIT_REGMAP_IRQ(AXP20X, DCDC3_V_LONG, 2, 3),
INIT_REGMAP_IRQ(AXP20X, PEK_SHORT, 2, 1),
INIT_REGMAP_IRQ(AXP20X, PEK_LONG, 2, 0),
INIT_REGMAP_IRQ(AXP20X, N_OE_PWR_ON, 3, 7),
INIT_REGMAP_IRQ(AXP20X, N_OE_PWR_OFF, 3, 6),
INIT_REGMAP_IRQ(AXP20X, VBUS_VALID, 3, 5),
INIT_REGMAP_IRQ(AXP20X, VBUS_NOT_VALID, 3, 4),
INIT_REGMAP_IRQ(AXP20X, VBUS_SESS_VALID, 3, 3),
INIT_REGMAP_IRQ(AXP20X, VBUS_SESS_END, 3, 2),
INIT_REGMAP_IRQ(AXP20X, LOW_PWR_LVL1, 3, 1),
INIT_REGMAP_IRQ(AXP20X, LOW_PWR_LVL2, 3, 0),
INIT_REGMAP_IRQ(AXP20X, TIMER, 4, 7),
INIT_REGMAP_IRQ(AXP20X, PEK_RIS_EDGE, 4, 6),
INIT_REGMAP_IRQ(AXP20X, PEK_FAL_EDGE, 4, 5),
INIT_REGMAP_IRQ(AXP20X, GPIO3_INPUT, 4, 3),
INIT_REGMAP_IRQ(AXP20X, GPIO2_INPUT, 4, 2),
INIT_REGMAP_IRQ(AXP20X, GPIO1_INPUT, 4, 1),
INIT_REGMAP_IRQ(AXP20X, GPIO0_INPUT, 4, 0),
};
/* some IRQs are compatible with axp20x models */
static const struct regmap_irq axp288_regmap_irqs[] = {
INIT_REGMAP_IRQ(AXP288, VBUS_FALL, 0, 2),
INIT_REGMAP_IRQ(AXP288, VBUS_RISE, 0, 3),
INIT_REGMAP_IRQ(AXP288, OV, 0, 4),
INIT_REGMAP_IRQ(AXP288, DONE, 1, 2),
INIT_REGMAP_IRQ(AXP288, CHARGING, 1, 3),
INIT_REGMAP_IRQ(AXP288, SAFE_QUIT, 1, 4),
INIT_REGMAP_IRQ(AXP288, SAFE_ENTER, 1, 5),
INIT_REGMAP_IRQ(AXP288, ABSENT, 1, 6),
INIT_REGMAP_IRQ(AXP288, APPEND, 1, 7),
INIT_REGMAP_IRQ(AXP288, QWBTU, 2, 0),
INIT_REGMAP_IRQ(AXP288, WBTU, 2, 1),
INIT_REGMAP_IRQ(AXP288, QWBTO, 2, 2),
INIT_REGMAP_IRQ(AXP288, WBTO, 2, 3),
INIT_REGMAP_IRQ(AXP288, QCBTU, 2, 4),
INIT_REGMAP_IRQ(AXP288, CBTU, 2, 5),
INIT_REGMAP_IRQ(AXP288, QCBTO, 2, 6),
INIT_REGMAP_IRQ(AXP288, CBTO, 2, 7),
INIT_REGMAP_IRQ(AXP288, WL2, 3, 0),
INIT_REGMAP_IRQ(AXP288, WL1, 3, 1),
INIT_REGMAP_IRQ(AXP288, GPADC, 3, 2),
INIT_REGMAP_IRQ(AXP288, OT, 3, 7),
INIT_REGMAP_IRQ(AXP288, GPIO0, 4, 0),
INIT_REGMAP_IRQ(AXP288, GPIO1, 4, 1),
INIT_REGMAP_IRQ(AXP288, POKO, 4, 2),
INIT_REGMAP_IRQ(AXP288, POKL, 4, 3),
INIT_REGMAP_IRQ(AXP288, POKS, 4, 4),
INIT_REGMAP_IRQ(AXP288, POKN, 4, 5),
INIT_REGMAP_IRQ(AXP288, POKP, 4, 6),
INIT_REGMAP_IRQ(AXP288, TIMER, 4, 7),
INIT_REGMAP_IRQ(AXP288, MV_CHNG, 5, 0),
INIT_REGMAP_IRQ(AXP288, BC_USB_CHNG, 5, 1),
};
static const struct of_device_id axp20x_of_match[] = {
@ -128,16 +236,39 @@ static const struct i2c_device_id axp20x_i2c_id[] = {
};
MODULE_DEVICE_TABLE(i2c, axp20x_i2c_id);
static struct acpi_device_id axp20x_acpi_match[] = {
{
.id = "INT33F4",
.driver_data = AXP288_ID,
},
{ },
};
MODULE_DEVICE_TABLE(acpi, axp20x_acpi_match);
static const struct regmap_irq_chip axp20x_regmap_irq_chip = {
.name = "axp20x_irq_chip",
.status_base = AXP20X_IRQ1_STATE,
.ack_base = AXP20X_IRQ1_STATE,
.mask_base = AXP20X_IRQ1_EN,
.num_regs = 5,
.irqs = axp20x_regmap_irqs,
.num_irqs = ARRAY_SIZE(axp20x_regmap_irqs),
.mask_invert = true,
.init_ack_masked = true,
.irqs = axp20x_regmap_irqs,
.num_irqs = ARRAY_SIZE(axp20x_regmap_irqs),
.num_regs = 5,
};
static const struct regmap_irq_chip axp288_regmap_irq_chip = {
.name = "axp288_irq_chip",
.status_base = AXP20X_IRQ1_STATE,
.ack_base = AXP20X_IRQ1_STATE,
.mask_base = AXP20X_IRQ1_EN,
.mask_invert = true,
.init_ack_masked = true,
.irqs = axp288_regmap_irqs,
.num_irqs = ARRAY_SIZE(axp288_regmap_irqs),
.num_regs = 6,
};
static struct mfd_cell axp20x_cells[] = {
@ -150,36 +281,155 @@ static struct mfd_cell axp20x_cells[] = {
},
};
static struct resource axp288_adc_resources[] = {
{
.name = "GPADC",
.start = AXP288_IRQ_GPADC,
.end = AXP288_IRQ_GPADC,
.flags = IORESOURCE_IRQ,
},
};
static struct resource axp288_charger_resources[] = {
{
.start = AXP288_IRQ_OV,
.end = AXP288_IRQ_OV,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_DONE,
.end = AXP288_IRQ_DONE,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_CHARGING,
.end = AXP288_IRQ_CHARGING,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_SAFE_QUIT,
.end = AXP288_IRQ_SAFE_QUIT,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_SAFE_ENTER,
.end = AXP288_IRQ_SAFE_ENTER,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_QCBTU,
.end = AXP288_IRQ_QCBTU,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_CBTU,
.end = AXP288_IRQ_CBTU,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_QCBTO,
.end = AXP288_IRQ_QCBTO,
.flags = IORESOURCE_IRQ,
},
{
.start = AXP288_IRQ_CBTO,
.end = AXP288_IRQ_CBTO,
.flags = IORESOURCE_IRQ,
},
};
static struct mfd_cell axp288_cells[] = {
{
.name = "axp288_adc",
.num_resources = ARRAY_SIZE(axp288_adc_resources),
.resources = axp288_adc_resources,
},
{
.name = "axp288_charger",
.num_resources = ARRAY_SIZE(axp288_charger_resources),
.resources = axp288_charger_resources,
},
{
.name = "axp288_battery",
.num_resources = ARRAY_SIZE(axp288_battery_resources),
.resources = axp288_battery_resources,
},
};
static struct axp20x_dev *axp20x_pm_power_off;
static void axp20x_power_off(void)
{
if (axp20x_pm_power_off->variant == AXP288_ID)
return;
regmap_write(axp20x_pm_power_off->regmap, AXP20X_OFF_CTRL,
AXP20X_OFF);
}
static int axp20x_match_device(struct axp20x_dev *axp20x, struct device *dev)
{
const struct acpi_device_id *acpi_id;
const struct of_device_id *of_id;
if (dev->of_node) {
of_id = of_match_device(axp20x_of_match, dev);
if (!of_id) {
dev_err(dev, "Unable to match OF ID\n");
return -ENODEV;
}
axp20x->variant = (long) of_id->data;
} else {
acpi_id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!acpi_id || !acpi_id->driver_data) {
dev_err(dev, "Unable to match ACPI ID and data\n");
return -ENODEV;
}
axp20x->variant = (long) acpi_id->driver_data;
}
switch (axp20x->variant) {
case AXP202_ID:
case AXP209_ID:
axp20x->nr_cells = ARRAY_SIZE(axp20x_cells);
axp20x->cells = axp20x_cells;
axp20x->regmap_cfg = &axp20x_regmap_config;
axp20x->regmap_irq_chip = &axp20x_regmap_irq_chip;
break;
case AXP288_ID:
axp20x->cells = axp288_cells;
axp20x->nr_cells = ARRAY_SIZE(axp288_cells);
axp20x->regmap_cfg = &axp288_regmap_config;
axp20x->regmap_irq_chip = &axp288_regmap_irq_chip;
break;
default:
dev_err(dev, "unsupported AXP20X ID %lu\n", axp20x->variant);
return -EINVAL;
}
dev_info(dev, "AXP20x variant %s found\n",
axp20x_model_names[axp20x->variant]);
return 0;
}
static int axp20x_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct axp20x_dev *axp20x;
const struct of_device_id *of_id;
int ret;
axp20x = devm_kzalloc(&i2c->dev, sizeof(*axp20x), GFP_KERNEL);
if (!axp20x)
return -ENOMEM;
of_id = of_match_device(axp20x_of_match, &i2c->dev);
if (!of_id) {
dev_err(&i2c->dev, "Unable to setup AXP20X data\n");
return -ENODEV;
}
axp20x->variant = (long) of_id->data;
ret = axp20x_match_device(axp20x, &i2c->dev);
if (ret)
return ret;
axp20x->i2c_client = i2c;
axp20x->dev = &i2c->dev;
dev_set_drvdata(axp20x->dev, axp20x);
axp20x->regmap = devm_regmap_init_i2c(i2c, &axp20x_regmap_config);
axp20x->regmap = devm_regmap_init_i2c(i2c, axp20x->regmap_cfg);
if (IS_ERR(axp20x->regmap)) {
ret = PTR_ERR(axp20x->regmap);
dev_err(&i2c->dev, "regmap init failed: %d\n", ret);
@ -188,15 +438,15 @@ static int axp20x_i2c_probe(struct i2c_client *i2c,
ret = regmap_add_irq_chip(axp20x->regmap, i2c->irq,
IRQF_ONESHOT | IRQF_SHARED, -1,
&axp20x_regmap_irq_chip,
axp20x->regmap_irq_chip,
&axp20x->regmap_irqc);
if (ret) {
dev_err(&i2c->dev, "failed to add irq chip: %d\n", ret);
return ret;
}
ret = mfd_add_devices(axp20x->dev, -1, axp20x_cells,
ARRAY_SIZE(axp20x_cells), NULL, 0, NULL);
ret = mfd_add_devices(axp20x->dev, -1, axp20x->cells,
axp20x->nr_cells, NULL, 0, NULL);
if (ret) {
dev_err(&i2c->dev, "failed to add MFD devices: %d\n", ret);
@ -234,6 +484,7 @@ static struct i2c_driver axp20x_i2c_driver = {
.name = "axp20x",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(axp20x_of_match),
.acpi_match_table = ACPI_PTR(axp20x_acpi_match),
},
.probe = axp20x_i2c_probe,
.remove = axp20x_i2c_remove,

769
drivers/mfd/dln2.c Normal file
View File

@ -0,0 +1,769 @@
/*
* Driver for the Diolan DLN-2 USB adapter
*
* Copyright (c) 2014 Intel Corporation
*
* Derived from:
* i2c-diolan-u2c.c
* Copyright (c) 2010-2011 Ericsson AB
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/mfd/core.h>
#include <linux/mfd/dln2.h>
#include <linux/rculist.h>
struct dln2_header {
__le16 size;
__le16 id;
__le16 echo;
__le16 handle;
};
struct dln2_response {
struct dln2_header hdr;
__le16 result;
};
#define DLN2_GENERIC_MODULE_ID 0x00
#define DLN2_GENERIC_CMD(cmd) DLN2_CMD(cmd, DLN2_GENERIC_MODULE_ID)
#define CMD_GET_DEVICE_VER DLN2_GENERIC_CMD(0x30)
#define CMD_GET_DEVICE_SN DLN2_GENERIC_CMD(0x31)
#define DLN2_HW_ID 0x200
#define DLN2_USB_TIMEOUT 200 /* in ms */
#define DLN2_MAX_RX_SLOTS 16
#define DLN2_MAX_URBS 16
#define DLN2_RX_BUF_SIZE 512
enum dln2_handle {
DLN2_HANDLE_EVENT = 0, /* don't change, hardware defined */
DLN2_HANDLE_CTRL,
DLN2_HANDLE_GPIO,
DLN2_HANDLE_I2C,
DLN2_HANDLES
};
/*
* Receive context used between the receive demultiplexer and the transfer
* routine. While sending a request the transfer routine will look for a free
* receive context and use it to wait for a response and to receive the URB and
* thus the response data.
*/
struct dln2_rx_context {
/* completion used to wait for a response */
struct completion done;
/* if non-NULL the URB contains the response */
struct urb *urb;
/* if true then this context is used to wait for a response */
bool in_use;
};
/*
* Receive contexts for a particular DLN2 module (i2c, gpio, etc.). We use the
* handle header field to identify the module in dln2_dev.mod_rx_slots and then
* the echo header field to index the slots field and find the receive context
* for a particular request.
*/
struct dln2_mod_rx_slots {
/* RX slots bitmap */
DECLARE_BITMAP(bmap, DLN2_MAX_RX_SLOTS);
/* used to wait for a free RX slot */
wait_queue_head_t wq;
/* used to wait for an RX operation to complete */
struct dln2_rx_context slots[DLN2_MAX_RX_SLOTS];
/* avoid races between alloc/free_rx_slot and dln2_rx_transfer */
spinlock_t lock;
};
struct dln2_dev {
struct usb_device *usb_dev;
struct usb_interface *interface;
u8 ep_in;
u8 ep_out;
struct urb *rx_urb[DLN2_MAX_URBS];
void *rx_buf[DLN2_MAX_URBS];
struct dln2_mod_rx_slots mod_rx_slots[DLN2_HANDLES];
struct list_head event_cb_list;
spinlock_t event_cb_lock;
bool disconnect;
int active_transfers;
wait_queue_head_t disconnect_wq;
spinlock_t disconnect_lock;
};
struct dln2_event_cb_entry {
struct list_head list;
u16 id;
struct platform_device *pdev;
dln2_event_cb_t callback;
};
int dln2_register_event_cb(struct platform_device *pdev, u16 id,
dln2_event_cb_t event_cb)
{
struct dln2_dev *dln2 = dev_get_drvdata(pdev->dev.parent);
struct dln2_event_cb_entry *i, *entry;
unsigned long flags;
int ret = 0;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->id = id;
entry->callback = event_cb;
entry->pdev = pdev;
spin_lock_irqsave(&dln2->event_cb_lock, flags);
list_for_each_entry(i, &dln2->event_cb_list, list) {
if (i->id == id) {
ret = -EBUSY;
break;
}
}
if (!ret)
list_add_rcu(&entry->list, &dln2->event_cb_list);
spin_unlock_irqrestore(&dln2->event_cb_lock, flags);
if (ret)
kfree(entry);
return ret;
}
EXPORT_SYMBOL(dln2_register_event_cb);
void dln2_unregister_event_cb(struct platform_device *pdev, u16 id)
{
struct dln2_dev *dln2 = dev_get_drvdata(pdev->dev.parent);
struct dln2_event_cb_entry *i;
unsigned long flags;
bool found = false;
spin_lock_irqsave(&dln2->event_cb_lock, flags);
list_for_each_entry(i, &dln2->event_cb_list, list) {
if (i->id == id) {
list_del_rcu(&i->list);
found = true;
break;
}
}
spin_unlock_irqrestore(&dln2->event_cb_lock, flags);
if (found) {
synchronize_rcu();
kfree(i);
}
}
EXPORT_SYMBOL(dln2_unregister_event_cb);
/*
* Returns true if a valid transfer slot is found. In this case the URB must not
* be resubmitted immediately in dln2_rx as we need the data when dln2_transfer
* is woke up. It will be resubmitted there.
*/
static bool dln2_transfer_complete(struct dln2_dev *dln2, struct urb *urb,
u16 handle, u16 rx_slot)
{
struct device *dev = &dln2->interface->dev;
struct dln2_mod_rx_slots *rxs = &dln2->mod_rx_slots[handle];
struct dln2_rx_context *rxc;
bool valid_slot = false;
if (rx_slot >= DLN2_MAX_RX_SLOTS)
goto out;
rxc = &rxs->slots[rx_slot];
/*
* No need to disable interrupts as this lock is not taken in interrupt
* context elsewhere in this driver. This function (or its callers) are
* also not exported to other modules.
*/
spin_lock(&rxs->lock);
if (rxc->in_use && !rxc->urb) {
rxc->urb = urb;
complete(&rxc->done);
valid_slot = true;
}
spin_unlock(&rxs->lock);
out:
if (!valid_slot)
dev_warn(dev, "bad/late response %d/%d\n", handle, rx_slot);
return valid_slot;
}
static void dln2_run_event_callbacks(struct dln2_dev *dln2, u16 id, u16 echo,
void *data, int len)
{
struct dln2_event_cb_entry *i;
rcu_read_lock();
list_for_each_entry_rcu(i, &dln2->event_cb_list, list) {
if (i->id == id) {
i->callback(i->pdev, echo, data, len);
break;
}
}
rcu_read_unlock();
}
static void dln2_rx(struct urb *urb)
{
struct dln2_dev *dln2 = urb->context;
struct dln2_header *hdr = urb->transfer_buffer;
struct device *dev = &dln2->interface->dev;
u16 id, echo, handle, size;
u8 *data;
int len;
int err;
switch (urb->status) {
case 0:
/* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
case -EPIPE:
/* this urb is terminated, clean up */
dev_dbg(dev, "urb shutting down with status %d\n", urb->status);
return;
default:
dev_dbg(dev, "nonzero urb status received %d\n", urb->status);
goto out;
}
if (urb->actual_length < sizeof(struct dln2_header)) {
dev_err(dev, "short response: %d\n", urb->actual_length);
goto out;
}
handle = le16_to_cpu(hdr->handle);
id = le16_to_cpu(hdr->id);
echo = le16_to_cpu(hdr->echo);
size = le16_to_cpu(hdr->size);
if (size != urb->actual_length) {
dev_err(dev, "size mismatch: handle %x cmd %x echo %x size %d actual %d\n",
handle, id, echo, size, urb->actual_length);
goto out;
}
if (handle >= DLN2_HANDLES) {
dev_warn(dev, "invalid handle %d\n", handle);
goto out;
}
data = urb->transfer_buffer + sizeof(struct dln2_header);
len = urb->actual_length - sizeof(struct dln2_header);
if (handle == DLN2_HANDLE_EVENT) {
dln2_run_event_callbacks(dln2, id, echo, data, len);
} else {
/* URB will be re-submitted in _dln2_transfer (free_rx_slot) */
if (dln2_transfer_complete(dln2, urb, handle, echo))
return;
}
out:
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err < 0)
dev_err(dev, "failed to resubmit RX URB: %d\n", err);
}
static void *dln2_prep_buf(u16 handle, u16 cmd, u16 echo, const void *obuf,
int *obuf_len, gfp_t gfp)
{
int len;
void *buf;
struct dln2_header *hdr;
len = *obuf_len + sizeof(*hdr);
buf = kmalloc(len, gfp);
if (!buf)
return NULL;
hdr = (struct dln2_header *)buf;
hdr->id = cpu_to_le16(cmd);
hdr->size = cpu_to_le16(len);
hdr->echo = cpu_to_le16(echo);
hdr->handle = cpu_to_le16(handle);
memcpy(buf + sizeof(*hdr), obuf, *obuf_len);
*obuf_len = len;
return buf;
}
static int dln2_send_wait(struct dln2_dev *dln2, u16 handle, u16 cmd, u16 echo,
const void *obuf, int obuf_len)
{
int ret = 0;
int len = obuf_len;
void *buf;
int actual;
buf = dln2_prep_buf(handle, cmd, echo, obuf, &len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = usb_bulk_msg(dln2->usb_dev,
usb_sndbulkpipe(dln2->usb_dev, dln2->ep_out),
buf, len, &actual, DLN2_USB_TIMEOUT);
kfree(buf);
return ret;
}
static bool find_free_slot(struct dln2_dev *dln2, u16 handle, int *slot)
{
struct dln2_mod_rx_slots *rxs;
unsigned long flags;
if (dln2->disconnect) {
*slot = -ENODEV;
return true;
}
rxs = &dln2->mod_rx_slots[handle];
spin_lock_irqsave(&rxs->lock, flags);
*slot = find_first_zero_bit(rxs->bmap, DLN2_MAX_RX_SLOTS);
if (*slot < DLN2_MAX_RX_SLOTS) {
struct dln2_rx_context *rxc = &rxs->slots[*slot];
set_bit(*slot, rxs->bmap);
rxc->in_use = true;
}
spin_unlock_irqrestore(&rxs->lock, flags);
return *slot < DLN2_MAX_RX_SLOTS;
}
static int alloc_rx_slot(struct dln2_dev *dln2, u16 handle)
{
int ret;
int slot;
/*
* No need to timeout here, the wait is bounded by the timeout in
* _dln2_transfer.
*/
ret = wait_event_interruptible(dln2->mod_rx_slots[handle].wq,
find_free_slot(dln2, handle, &slot));
if (ret < 0)
return ret;
return slot;
}
static void free_rx_slot(struct dln2_dev *dln2, u16 handle, int slot)
{
struct dln2_mod_rx_slots *rxs;
struct urb *urb = NULL;
unsigned long flags;
struct dln2_rx_context *rxc;
rxs = &dln2->mod_rx_slots[handle];
spin_lock_irqsave(&rxs->lock, flags);
clear_bit(slot, rxs->bmap);
rxc = &rxs->slots[slot];
rxc->in_use = false;
urb = rxc->urb;
rxc->urb = NULL;
reinit_completion(&rxc->done);
spin_unlock_irqrestore(&rxs->lock, flags);
if (urb) {
int err;
struct device *dev = &dln2->interface->dev;
err = usb_submit_urb(urb, GFP_KERNEL);
if (err < 0)
dev_err(dev, "failed to resubmit RX URB: %d\n", err);
}
wake_up_interruptible(&rxs->wq);
}
static int _dln2_transfer(struct dln2_dev *dln2, u16 handle, u16 cmd,
const void *obuf, unsigned obuf_len,
void *ibuf, unsigned *ibuf_len)
{
int ret = 0;
int rx_slot;
struct dln2_response *rsp;
struct dln2_rx_context *rxc;
struct device *dev = &dln2->interface->dev;
const unsigned long timeout = DLN2_USB_TIMEOUT * HZ / 1000;
struct dln2_mod_rx_slots *rxs = &dln2->mod_rx_slots[handle];
int size;
spin_lock(&dln2->disconnect_lock);
if (!dln2->disconnect)
dln2->active_transfers++;
else
ret = -ENODEV;
spin_unlock(&dln2->disconnect_lock);
if (ret)
return ret;
rx_slot = alloc_rx_slot(dln2, handle);
if (rx_slot < 0) {
ret = rx_slot;
goto out_decr;
}
ret = dln2_send_wait(dln2, handle, cmd, rx_slot, obuf, obuf_len);
if (ret < 0) {
dev_err(dev, "USB write failed: %d\n", ret);
goto out_free_rx_slot;
}
rxc = &rxs->slots[rx_slot];
ret = wait_for_completion_interruptible_timeout(&rxc->done, timeout);
if (ret <= 0) {
if (!ret)
ret = -ETIMEDOUT;
goto out_free_rx_slot;
} else {
ret = 0;
}
if (dln2->disconnect) {
ret = -ENODEV;
goto out_free_rx_slot;
}
/* if we got here we know that the response header has been checked */
rsp = rxc->urb->transfer_buffer;
size = le16_to_cpu(rsp->hdr.size);
if (size < sizeof(*rsp)) {
ret = -EPROTO;
goto out_free_rx_slot;
}
if (le16_to_cpu(rsp->result) > 0x80) {
dev_dbg(dev, "%d received response with error %d\n",
handle, le16_to_cpu(rsp->result));
ret = -EREMOTEIO;
goto out_free_rx_slot;
}
if (!ibuf)
goto out_free_rx_slot;
if (*ibuf_len > size - sizeof(*rsp))
*ibuf_len = size - sizeof(*rsp);
memcpy(ibuf, rsp + 1, *ibuf_len);
out_free_rx_slot:
free_rx_slot(dln2, handle, rx_slot);
out_decr:
spin_lock(&dln2->disconnect_lock);
dln2->active_transfers--;
spin_unlock(&dln2->disconnect_lock);
if (dln2->disconnect)
wake_up(&dln2->disconnect_wq);
return ret;
}
int dln2_transfer(struct platform_device *pdev, u16 cmd,
const void *obuf, unsigned obuf_len,
void *ibuf, unsigned *ibuf_len)
{
struct dln2_platform_data *dln2_pdata;
struct dln2_dev *dln2;
u16 handle;
dln2 = dev_get_drvdata(pdev->dev.parent);
dln2_pdata = dev_get_platdata(&pdev->dev);
handle = dln2_pdata->handle;
return _dln2_transfer(dln2, handle, cmd, obuf, obuf_len, ibuf,
ibuf_len);
}
EXPORT_SYMBOL(dln2_transfer);
static int dln2_check_hw(struct dln2_dev *dln2)
{
int ret;
__le32 hw_type;
int len = sizeof(hw_type);
ret = _dln2_transfer(dln2, DLN2_HANDLE_CTRL, CMD_GET_DEVICE_VER,
NULL, 0, &hw_type, &len);
if (ret < 0)
return ret;
if (len < sizeof(hw_type))
return -EREMOTEIO;
if (le32_to_cpu(hw_type) != DLN2_HW_ID) {
dev_err(&dln2->interface->dev, "Device ID 0x%x not supported\n",
le32_to_cpu(hw_type));
return -ENODEV;
}
return 0;
}
static int dln2_print_serialno(struct dln2_dev *dln2)
{
int ret;
__le32 serial_no;
int len = sizeof(serial_no);
struct device *dev = &dln2->interface->dev;
ret = _dln2_transfer(dln2, DLN2_HANDLE_CTRL, CMD_GET_DEVICE_SN, NULL, 0,
&serial_no, &len);
if (ret < 0)
return ret;
if (len < sizeof(serial_no))
return -EREMOTEIO;
dev_info(dev, "Diolan DLN2 serial %u\n", le32_to_cpu(serial_no));
return 0;
}
static int dln2_hw_init(struct dln2_dev *dln2)
{
int ret;
ret = dln2_check_hw(dln2);
if (ret < 0)
return ret;
return dln2_print_serialno(dln2);
}
static void dln2_free_rx_urbs(struct dln2_dev *dln2)
{
int i;
for (i = 0; i < DLN2_MAX_URBS; i++) {
usb_kill_urb(dln2->rx_urb[i]);
usb_free_urb(dln2->rx_urb[i]);
kfree(dln2->rx_buf[i]);
}
}
static void dln2_free(struct dln2_dev *dln2)
{
dln2_free_rx_urbs(dln2);
usb_put_dev(dln2->usb_dev);
kfree(dln2);
}
static int dln2_setup_rx_urbs(struct dln2_dev *dln2,
struct usb_host_interface *hostif)
{
int i;
int ret;
const int rx_max_size = DLN2_RX_BUF_SIZE;
struct device *dev = &dln2->interface->dev;
for (i = 0; i < DLN2_MAX_URBS; i++) {
dln2->rx_buf[i] = kmalloc(rx_max_size, GFP_KERNEL);
if (!dln2->rx_buf[i])
return -ENOMEM;
dln2->rx_urb[i] = usb_alloc_urb(0, GFP_KERNEL);
if (!dln2->rx_urb[i])
return -ENOMEM;
usb_fill_bulk_urb(dln2->rx_urb[i], dln2->usb_dev,
usb_rcvbulkpipe(dln2->usb_dev, dln2->ep_in),
dln2->rx_buf[i], rx_max_size, dln2_rx, dln2);
ret = usb_submit_urb(dln2->rx_urb[i], GFP_KERNEL);
if (ret < 0) {
dev_err(dev, "failed to submit RX URB: %d\n", ret);
return ret;
}
}
return 0;
}
static struct dln2_platform_data dln2_pdata_gpio = {
.handle = DLN2_HANDLE_GPIO,
};
/* Only one I2C port seems to be supported on current hardware */
static struct dln2_platform_data dln2_pdata_i2c = {
.handle = DLN2_HANDLE_I2C,
.port = 0,
};
static const struct mfd_cell dln2_devs[] = {
{
.name = "dln2-gpio",
.platform_data = &dln2_pdata_gpio,
.pdata_size = sizeof(struct dln2_platform_data),
},
{
.name = "dln2-i2c",
.platform_data = &dln2_pdata_i2c,
.pdata_size = sizeof(struct dln2_platform_data),
},
};
static void dln2_disconnect(struct usb_interface *interface)
{
struct dln2_dev *dln2 = usb_get_intfdata(interface);
int i, j;
/* don't allow starting new transfers */
spin_lock(&dln2->disconnect_lock);
dln2->disconnect = true;
spin_unlock(&dln2->disconnect_lock);
/* cancel in progress transfers */
for (i = 0; i < DLN2_HANDLES; i++) {
struct dln2_mod_rx_slots *rxs = &dln2->mod_rx_slots[i];
unsigned long flags;
spin_lock_irqsave(&rxs->lock, flags);
/* cancel all response waiters */
for (j = 0; j < DLN2_MAX_RX_SLOTS; j++) {
struct dln2_rx_context *rxc = &rxs->slots[j];
if (rxc->in_use)
complete(&rxc->done);
}
spin_unlock_irqrestore(&rxs->lock, flags);
}
/* wait for transfers to end */
wait_event(dln2->disconnect_wq, !dln2->active_transfers);
mfd_remove_devices(&interface->dev);
dln2_free(dln2);
}
static int dln2_probe(struct usb_interface *interface,
const struct usb_device_id *usb_id)
{
struct usb_host_interface *hostif = interface->cur_altsetting;
struct device *dev = &interface->dev;
struct dln2_dev *dln2;
int ret;
int i, j;
if (hostif->desc.bInterfaceNumber != 0 ||
hostif->desc.bNumEndpoints < 2)
return -ENODEV;
dln2 = kzalloc(sizeof(*dln2), GFP_KERNEL);
if (!dln2)
return -ENOMEM;
dln2->ep_out = hostif->endpoint[0].desc.bEndpointAddress;
dln2->ep_in = hostif->endpoint[1].desc.bEndpointAddress;
dln2->usb_dev = usb_get_dev(interface_to_usbdev(interface));
dln2->interface = interface;
usb_set_intfdata(interface, dln2);
init_waitqueue_head(&dln2->disconnect_wq);
for (i = 0; i < DLN2_HANDLES; i++) {
init_waitqueue_head(&dln2->mod_rx_slots[i].wq);
spin_lock_init(&dln2->mod_rx_slots[i].lock);
for (j = 0; j < DLN2_MAX_RX_SLOTS; j++)
init_completion(&dln2->mod_rx_slots[i].slots[j].done);
}
spin_lock_init(&dln2->event_cb_lock);
spin_lock_init(&dln2->disconnect_lock);
INIT_LIST_HEAD(&dln2->event_cb_list);
ret = dln2_setup_rx_urbs(dln2, hostif);
if (ret)
goto out_cleanup;
ret = dln2_hw_init(dln2);
if (ret < 0) {
dev_err(dev, "failed to initialize hardware\n");
goto out_cleanup;
}
ret = mfd_add_hotplug_devices(dev, dln2_devs, ARRAY_SIZE(dln2_devs));
if (ret != 0) {
dev_err(dev, "failed to add mfd devices to core\n");
goto out_cleanup;
}
return 0;
out_cleanup:
dln2_free(dln2);
return ret;
}
static const struct usb_device_id dln2_table[] = {
{ USB_DEVICE(0xa257, 0x2013) },
{ }
};
MODULE_DEVICE_TABLE(usb, dln2_table);
static struct usb_driver dln2_driver = {
.name = "dln2",
.probe = dln2_probe,
.disconnect = dln2_disconnect,
.id_table = dln2_table,
};
module_usb_driver(dln2_driver);
MODULE_AUTHOR("Octavian Purdila <octavian.purdila@intel.com>");
MODULE_DESCRIPTION("Core driver for the Diolan DLN2 interface adapter");
MODULE_LICENSE("GPL v2");

View File

@ -27,6 +27,7 @@
#include <linux/mfd/samsung/irq.h>
#include <linux/mfd/samsung/s2mpa01.h>
#include <linux/mfd/samsung/s2mps11.h>
#include <linux/mfd/samsung/s2mps13.h>
#include <linux/mfd/samsung/s2mps14.h>
#include <linux/mfd/samsung/s2mpu02.h>
#include <linux/mfd/samsung/s5m8763.h>
@ -74,6 +75,15 @@ static const struct mfd_cell s2mps11_devs[] = {
}
};
static const struct mfd_cell s2mps13_devs[] = {
{ .name = "s2mps13-pmic", },
{ .name = "s2mps13-rtc", },
{
.name = "s2mps13-clk",
.of_compatible = "samsung,s2mps13-clk",
},
};
static const struct mfd_cell s2mps14_devs[] = {
{
.name = "s2mps14-pmic",
@ -107,6 +117,9 @@ static const struct of_device_id sec_dt_match[] = {
}, {
.compatible = "samsung,s2mps11-pmic",
.data = (void *)S2MPS11X,
}, {
.compatible = "samsung,s2mps13-pmic",
.data = (void *)S2MPS13X,
}, {
.compatible = "samsung,s2mps14-pmic",
.data = (void *)S2MPS14X,
@ -194,6 +207,15 @@ static const struct regmap_config s2mps11_regmap_config = {
.cache_type = REGCACHE_FLAT,
};
static const struct regmap_config s2mps13_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = S2MPS13_REG_LDODSCH5,
.volatile_reg = s2mps11_volatile,
.cache_type = REGCACHE_FLAT,
};
static const struct regmap_config s2mps14_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
@ -325,6 +347,9 @@ static int sec_pmic_probe(struct i2c_client *i2c,
case S2MPS11X:
regmap = &s2mps11_regmap_config;
break;
case S2MPS13X:
regmap = &s2mps13_regmap_config;
break;
case S2MPS14X:
regmap = &s2mps14_regmap_config;
break;
@ -378,6 +403,10 @@ static int sec_pmic_probe(struct i2c_client *i2c,
sec_devs = s2mps11_devs;
num_sec_devs = ARRAY_SIZE(s2mps11_devs);
break;
case S2MPS13X:
sec_devs = s2mps13_devs;
num_sec_devs = ARRAY_SIZE(s2mps13_devs);
break;
case S2MPS14X:
sec_devs = s2mps14_devs;
num_sec_devs = ARRAY_SIZE(s2mps14_devs);

View File

@ -389,14 +389,22 @@ static const struct regmap_irq_chip s2mps11_irq_chip = {
.ack_base = S2MPS11_REG_INT1,
};
#define S2MPS1X_IRQ_CHIP_COMMON_DATA \
.irqs = s2mps14_irqs, \
.num_irqs = ARRAY_SIZE(s2mps14_irqs), \
.num_regs = 3, \
.status_base = S2MPS14_REG_INT1, \
.mask_base = S2MPS14_REG_INT1M, \
.ack_base = S2MPS14_REG_INT1 \
static const struct regmap_irq_chip s2mps13_irq_chip = {
.name = "s2mps13",
S2MPS1X_IRQ_CHIP_COMMON_DATA,
};
static const struct regmap_irq_chip s2mps14_irq_chip = {
.name = "s2mps14",
.irqs = s2mps14_irqs,
.num_irqs = ARRAY_SIZE(s2mps14_irqs),
.num_regs = 3,
.status_base = S2MPS14_REG_INT1,
.mask_base = S2MPS14_REG_INT1M,
.ack_base = S2MPS14_REG_INT1,
S2MPS1X_IRQ_CHIP_COMMON_DATA,
};
static const struct regmap_irq_chip s2mpu02_irq_chip = {
@ -452,6 +460,9 @@ int sec_irq_init(struct sec_pmic_dev *sec_pmic)
case S2MPS11X:
sec_irq_chip = &s2mps11_irq_chip;
break;
case S2MPS13X:
sec_irq_chip = &s2mps13_irq_chip;
break;
case S2MPS14X:
sec_irq_chip = &s2mps14_irq_chip;
break;

View File

@ -529,13 +529,13 @@ config REGULATOR_S2MPA01
via I2C bus. S2MPA01 has 10 Bucks and 26 LDO outputs.
config REGULATOR_S2MPS11
tristate "Samsung S2MPS11/S2MPS14/S2MPU02 voltage regulator"
tristate "Samsung S2MPS11/S2MPS13/S2MPS14/S2MPU02 voltage regulator"
depends on MFD_SEC_CORE
help
This driver supports a Samsung S2MPS11/S2MPS14/S2MPU02 voltage output
regulator via I2C bus. The chip is comprised of high efficient Buck
converters including Dual-Phase Buck converter, Buck-Boost converter,
various LDOs.
This driver supports a Samsung S2MPS11/S2MPS13/S2MPS14/S2MPU02 voltage
output regulator via I2C bus. The chip is comprised of high efficient
Buck converters including Dual-Phase Buck converter, Buck-Boost
converter, various LDOs.
config REGULATOR_S5M8767
tristate "Samsung S5M8767A voltage regulator"

View File

@ -30,6 +30,7 @@
#include <linux/of_gpio.h>
#include <linux/mfd/samsung/core.h>
#include <linux/mfd/samsung/s2mps11.h>
#include <linux/mfd/samsung/s2mps13.h>
#include <linux/mfd/samsung/s2mps14.h>
#include <linux/mfd/samsung/s2mpu02.h>
@ -45,10 +46,10 @@ struct s2mps11_info {
enum sec_device_type dev_type;
/*
* One bit for each S2MPS14/S2MPU02 regulator whether the suspend mode
* was enabled.
* One bit for each S2MPS13/S2MPS14/S2MPU02 regulator whether
* the suspend mode was enabled.
*/
unsigned long long s2mps14_suspend_state:35;
unsigned long long s2mps14_suspend_state:50;
/* Array of size rdev_num with GPIO-s for external sleep control */
int *ext_control_gpio;
@ -369,12 +370,101 @@ static const struct regulator_desc s2mps11_regulators[] = {
regulator_desc_s2mps11_buck6_10(10, MIN_750_MV, STEP_12_5_MV),
};
static struct regulator_ops s2mps14_reg_ops;
#define regulator_desc_s2mps13_ldo(num, min, step, min_sel) { \
.name = "LDO"#num, \
.id = S2MPS13_LDO##num, \
.ops = &s2mps14_reg_ops, \
.type = REGULATOR_VOLTAGE, \
.owner = THIS_MODULE, \
.min_uV = min, \
.uV_step = step, \
.linear_min_sel = min_sel, \
.n_voltages = S2MPS14_LDO_N_VOLTAGES, \
.vsel_reg = S2MPS13_REG_L1CTRL + num - 1, \
.vsel_mask = S2MPS14_LDO_VSEL_MASK, \
.enable_reg = S2MPS13_REG_L1CTRL + num - 1, \
.enable_mask = S2MPS14_ENABLE_MASK \
}
#define regulator_desc_s2mps13_buck(num, min, step, min_sel) { \
.name = "BUCK"#num, \
.id = S2MPS13_BUCK##num, \
.ops = &s2mps14_reg_ops, \
.type = REGULATOR_VOLTAGE, \
.owner = THIS_MODULE, \
.min_uV = min, \
.uV_step = step, \
.linear_min_sel = min_sel, \
.n_voltages = S2MPS14_BUCK_N_VOLTAGES, \
.ramp_delay = S2MPS13_BUCK_RAMP_DELAY, \
.vsel_reg = S2MPS13_REG_B1OUT + (num - 1) * 2, \
.vsel_mask = S2MPS14_BUCK_VSEL_MASK, \
.enable_reg = S2MPS13_REG_B1CTRL + (num - 1) * 2, \
.enable_mask = S2MPS14_ENABLE_MASK \
}
static const struct regulator_desc s2mps13_regulators[] = {
regulator_desc_s2mps13_ldo(1, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(2, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(3, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(4, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(5, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(6, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(7, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(8, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(9, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(10, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(11, MIN_800_MV, STEP_25_MV, 0x10),
regulator_desc_s2mps13_ldo(12, MIN_800_MV, STEP_25_MV, 0x10),
regulator_desc_s2mps13_ldo(13, MIN_800_MV, STEP_25_MV, 0x10),
regulator_desc_s2mps13_ldo(14, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(15, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(16, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(17, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(18, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(19, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(20, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(21, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(22, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(23, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(24, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(25, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(26, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(27, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(28, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(29, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(30, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(31, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(32, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(33, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(34, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(35, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(36, MIN_800_MV, STEP_12_5_MV, 0x00),
regulator_desc_s2mps13_ldo(37, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(38, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_ldo(39, MIN_1000_MV, STEP_25_MV, 0x08),
regulator_desc_s2mps13_ldo(40, MIN_1400_MV, STEP_50_MV, 0x0C),
regulator_desc_s2mps13_buck(1, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(2, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(3, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(4, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(5, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(6, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(7, MIN_500_MV, STEP_6_25_MV, 0x10),
regulator_desc_s2mps13_buck(8, MIN_1000_MV, STEP_12_5_MV, 0x20),
regulator_desc_s2mps13_buck(9, MIN_1000_MV, STEP_12_5_MV, 0x20),
regulator_desc_s2mps13_buck(10, MIN_500_MV, STEP_6_25_MV, 0x10),
};
static int s2mps14_regulator_enable(struct regulator_dev *rdev)
{
struct s2mps11_info *s2mps11 = rdev_get_drvdata(rdev);
unsigned int val;
switch (s2mps11->dev_type) {
case S2MPS13X:
case S2MPS14X:
if (s2mps11->s2mps14_suspend_state & (1 << rdev_get_id(rdev)))
val = S2MPS14_ENABLE_SUSPEND;
@ -406,6 +496,7 @@ static int s2mps14_regulator_set_suspend_disable(struct regulator_dev *rdev)
/* Below LDO should be always on or does not support suspend mode. */
switch (s2mps11->dev_type) {
case S2MPS13X:
case S2MPS14X:
switch (rdev_id) {
case S2MPS14_LDO3:
@ -831,6 +922,10 @@ static int s2mps11_pmic_probe(struct platform_device *pdev)
s2mps11->rdev_num = ARRAY_SIZE(s2mps11_regulators);
regulators = s2mps11_regulators;
break;
case S2MPS13X:
s2mps11->rdev_num = ARRAY_SIZE(s2mps13_regulators);
regulators = s2mps13_regulators;
break;
case S2MPS14X:
s2mps11->rdev_num = ARRAY_SIZE(s2mps14_regulators);
regulators = s2mps14_regulators;
@ -927,6 +1022,7 @@ out:
static const struct platform_device_id s2mps11_pmic_id[] = {
{ "s2mps11-pmic", S2MPS11X},
{ "s2mps13-pmic", S2MPS13X},
{ "s2mps14-pmic", S2MPS14X},
{ "s2mpu02-pmic", S2MPU02},
{ },

View File

@ -14,6 +14,8 @@
enum {
AXP202_ID = 0,
AXP209_ID,
AXP288_ID,
NR_AXP20X_VARIANTS,
};
#define AXP20X_DATACACHE(m) (0x04 + (m))
@ -49,11 +51,13 @@ enum {
#define AXP20X_IRQ3_EN 0x42
#define AXP20X_IRQ4_EN 0x43
#define AXP20X_IRQ5_EN 0x44
#define AXP20X_IRQ6_EN 0x45
#define AXP20X_IRQ1_STATE 0x48
#define AXP20X_IRQ2_STATE 0x49
#define AXP20X_IRQ3_STATE 0x4a
#define AXP20X_IRQ4_STATE 0x4b
#define AXP20X_IRQ5_STATE 0x4c
#define AXP20X_IRQ6_STATE 0x4d
/* ADC */
#define AXP20X_ACIN_V_ADC_H 0x56
@ -116,6 +120,15 @@ enum {
#define AXP20X_CC_CTRL 0xb8
#define AXP20X_FG_RES 0xb9
/* AXP288 specific registers */
#define AXP288_PMIC_ADC_H 0x56
#define AXP288_PMIC_ADC_L 0x57
#define AXP288_ADC_TS_PIN_CTRL 0x84
#define AXP288_PMIC_ADC_EN 0x84
#define AXP288_FG_TUNE5 0xed
/* Regulators IDs */
enum {
AXP20X_LDO1 = 0,
@ -169,12 +182,58 @@ enum {
AXP20X_IRQ_GPIO0_INPUT,
};
enum axp288_irqs {
AXP288_IRQ_VBUS_FALL = 2,
AXP288_IRQ_VBUS_RISE,
AXP288_IRQ_OV,
AXP288_IRQ_FALLING_ALT,
AXP288_IRQ_RISING_ALT,
AXP288_IRQ_OV_ALT,
AXP288_IRQ_DONE = 10,
AXP288_IRQ_CHARGING,
AXP288_IRQ_SAFE_QUIT,
AXP288_IRQ_SAFE_ENTER,
AXP288_IRQ_ABSENT,
AXP288_IRQ_APPEND,
AXP288_IRQ_QWBTU,
AXP288_IRQ_WBTU,
AXP288_IRQ_QWBTO,
AXP288_IRQ_WBTO,
AXP288_IRQ_QCBTU,
AXP288_IRQ_CBTU,
AXP288_IRQ_QCBTO,
AXP288_IRQ_CBTO,
AXP288_IRQ_WL2,
AXP288_IRQ_WL1,
AXP288_IRQ_GPADC,
AXP288_IRQ_OT = 31,
AXP288_IRQ_GPIO0,
AXP288_IRQ_GPIO1,
AXP288_IRQ_POKO,
AXP288_IRQ_POKL,
AXP288_IRQ_POKS,
AXP288_IRQ_POKN,
AXP288_IRQ_POKP,
AXP288_IRQ_TIMER,
AXP288_IRQ_MV_CHNG,
AXP288_IRQ_BC_USB_CHNG,
};
#define AXP288_TS_ADC_H 0x58
#define AXP288_TS_ADC_L 0x59
#define AXP288_GP_ADC_H 0x5a
#define AXP288_GP_ADC_L 0x5b
struct axp20x_dev {
struct device *dev;
struct i2c_client *i2c_client;
struct regmap *regmap;
struct regmap_irq_chip_data *regmap_irqc;
long variant;
int nr_cells;
struct mfd_cell *cells;
const struct regmap_config *regmap_cfg;
const struct regmap_irq_chip *regmap_irq_chip;
};
#endif /* __LINUX_MFD_AXP20X_H */

View File

@ -111,6 +111,13 @@ extern int mfd_add_devices(struct device *parent, int id,
struct resource *mem_base,
int irq_base, struct irq_domain *irq_domain);
static inline int mfd_add_hotplug_devices(struct device *parent,
const struct mfd_cell *cells, int n_devs)
{
return mfd_add_devices(parent, PLATFORM_DEVID_AUTO, cells, n_devs,
NULL, 0, NULL);
}
extern void mfd_remove_devices(struct device *parent);
#endif

103
include/linux/mfd/dln2.h Normal file
View File

@ -0,0 +1,103 @@
#ifndef __LINUX_USB_DLN2_H
#define __LINUX_USB_DLN2_H
#define DLN2_CMD(cmd, id) ((cmd) | ((id) << 8))
struct dln2_platform_data {
u16 handle; /* sub-driver handle (internally used only) */
u8 port; /* I2C/SPI port */
};
/**
* dln2_event_cb_t - event callback function signature
*
* @pdev - the sub-device that registered this callback
* @echo - the echo header field received in the message
* @data - the data payload
* @len - the data payload length
*
* The callback function is called in interrupt context and the data payload is
* only valid during the call. If the user needs later access of the data, it
* must copy it.
*/
typedef void (*dln2_event_cb_t)(struct platform_device *pdev, u16 echo,
const void *data, int len);
/**
* dl2n_register_event_cb - register a callback function for an event
*
* @pdev - the sub-device that registers the callback
* @event - the event for which to register a callback
* @event_cb - the callback function
*
* @return 0 in case of success, negative value in case of error
*/
int dln2_register_event_cb(struct platform_device *pdev, u16 event,
dln2_event_cb_t event_cb);
/**
* dln2_unregister_event_cb - unregister the callback function for an event
*
* @pdev - the sub-device that registered the callback
* @event - the event for which to register a callback
*/
void dln2_unregister_event_cb(struct platform_device *pdev, u16 event);
/**
* dln2_transfer - issue a DLN2 command and wait for a response and the
* associated data
*
* @pdev - the sub-device which is issuing this transfer
* @cmd - the command to be sent to the device
* @obuf - the buffer to be sent to the device; it can be NULL if the user
* doesn't need to transmit data with this command
* @obuf_len - the size of the buffer to be sent to the device
* @ibuf - any data associated with the response will be copied here; it can be
* NULL if the user doesn't need the response data
* @ibuf_len - must be initialized to the input buffer size; it will be modified
* to indicate the actual data transferred;
*
* @return 0 for success, negative value for errors
*/
int dln2_transfer(struct platform_device *pdev, u16 cmd,
const void *obuf, unsigned obuf_len,
void *ibuf, unsigned *ibuf_len);
/**
* dln2_transfer_rx - variant of @dln2_transfer() where TX buffer is not needed
*
* @pdev - the sub-device which is issuing this transfer
* @cmd - the command to be sent to the device
* @ibuf - any data associated with the response will be copied here; it can be
* NULL if the user doesn't need the response data
* @ibuf_len - must be initialized to the input buffer size; it will be modified
* to indicate the actual data transferred;
*
* @return 0 for success, negative value for errors
*/
static inline int dln2_transfer_rx(struct platform_device *pdev, u16 cmd,
void *ibuf, unsigned *ibuf_len)
{
return dln2_transfer(pdev, cmd, NULL, 0, ibuf, ibuf_len);
}
/**
* dln2_transfer_tx - variant of @dln2_transfer() where RX buffer is not needed
*
* @pdev - the sub-device which is issuing this transfer
* @cmd - the command to be sent to the device
* @obuf - the buffer to be sent to the device; it can be NULL if the
* user doesn't need to transmit data with this command
* @obuf_len - the size of the buffer to be sent to the device
*
* @return 0 for success, negative value for errors
*/
static inline int dln2_transfer_tx(struct platform_device *pdev, u16 cmd,
const void *obuf, unsigned obuf_len)
{
return dln2_transfer(pdev, cmd, obuf, obuf_len, NULL, NULL);
}
#endif

View File

@ -28,6 +28,7 @@
#define MIN_800_MV 800000
#define MIN_750_MV 750000
#define MIN_600_MV 600000
#define MIN_500_MV 500000
/* Macros to represent steps for LDO/BUCK */
#define STEP_50_MV 50000
@ -41,6 +42,7 @@ enum sec_device_type {
S5M8767X,
S2MPA01,
S2MPS11X,
S2MPS13X,
S2MPS14X,
S2MPU02,
};

View File

@ -0,0 +1,186 @@
/*
* s2mps13.h
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd
* http://www.samsung.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __LINUX_MFD_S2MPS13_H
#define __LINUX_MFD_S2MPS13_H
/* S2MPS13 registers */
enum s2mps13_reg {
S2MPS13_REG_ID,
S2MPS13_REG_INT1,
S2MPS13_REG_INT2,
S2MPS13_REG_INT3,
S2MPS13_REG_INT1M,
S2MPS13_REG_INT2M,
S2MPS13_REG_INT3M,
S2MPS13_REG_ST1,
S2MPS13_REG_ST2,
S2MPS13_REG_PWRONSRC,
S2MPS13_REG_OFFSRC,
S2MPS13_REG_BU_CHG,
S2MPS13_REG_RTCCTRL,
S2MPS13_REG_CTRL1,
S2MPS13_REG_CTRL2,
S2MPS13_REG_RSVD1,
S2MPS13_REG_RSVD2,
S2MPS13_REG_RSVD3,
S2MPS13_REG_RSVD4,
S2MPS13_REG_RSVD5,
S2MPS13_REG_RSVD6,
S2MPS13_REG_CTRL3,
S2MPS13_REG_RSVD7,
S2MPS13_REG_RSVD8,
S2MPS13_REG_WRSTBI,
S2MPS13_REG_B1CTRL,
S2MPS13_REG_B1OUT,
S2MPS13_REG_B2CTRL,
S2MPS13_REG_B2OUT,
S2MPS13_REG_B3CTRL,
S2MPS13_REG_B3OUT,
S2MPS13_REG_B4CTRL,
S2MPS13_REG_B4OUT,
S2MPS13_REG_B5CTRL,
S2MPS13_REG_B5OUT,
S2MPS13_REG_B6CTRL,
S2MPS13_REG_B6OUT,
S2MPS13_REG_B7CTRL,
S2MPS13_REG_B7OUT,
S2MPS13_REG_B8CTRL,
S2MPS13_REG_B8OUT,
S2MPS13_REG_B9CTRL,
S2MPS13_REG_B9OUT,
S2MPS13_REG_B10CTRL,
S2MPS13_REG_B10OUT,
S2MPS13_REG_BB1CTRL,
S2MPS13_REG_BB1OUT,
S2MPS13_REG_BUCK_RAMP1,
S2MPS13_REG_BUCK_RAMP2,
S2MPS13_REG_LDO_DVS1,
S2MPS13_REG_LDO_DVS2,
S2MPS13_REG_LDO_DVS3,
S2MPS13_REG_B6OUT2,
S2MPS13_REG_L1CTRL,
S2MPS13_REG_L2CTRL,
S2MPS13_REG_L3CTRL,
S2MPS13_REG_L4CTRL,
S2MPS13_REG_L5CTRL,
S2MPS13_REG_L6CTRL,
S2MPS13_REG_L7CTRL,
S2MPS13_REG_L8CTRL,
S2MPS13_REG_L9CTRL,
S2MPS13_REG_L10CTRL,
S2MPS13_REG_L11CTRL,
S2MPS13_REG_L12CTRL,
S2MPS13_REG_L13CTRL,
S2MPS13_REG_L14CTRL,
S2MPS13_REG_L15CTRL,
S2MPS13_REG_L16CTRL,
S2MPS13_REG_L17CTRL,
S2MPS13_REG_L18CTRL,
S2MPS13_REG_L19CTRL,
S2MPS13_REG_L20CTRL,
S2MPS13_REG_L21CTRL,
S2MPS13_REG_L22CTRL,
S2MPS13_REG_L23CTRL,
S2MPS13_REG_L24CTRL,
S2MPS13_REG_L25CTRL,
S2MPS13_REG_L26CTRL,
S2MPS13_REG_L27CTRL,
S2MPS13_REG_L28CTRL,
S2MPS13_REG_L30CTRL,
S2MPS13_REG_L31CTRL,
S2MPS13_REG_L32CTRL,
S2MPS13_REG_L33CTRL,
S2MPS13_REG_L34CTRL,
S2MPS13_REG_L35CTRL,
S2MPS13_REG_L36CTRL,
S2MPS13_REG_L37CTRL,
S2MPS13_REG_L38CTRL,
S2MPS13_REG_L39CTRL,
S2MPS13_REG_L40CTRL,
S2MPS13_REG_LDODSCH1,
S2MPS13_REG_LDODSCH2,
S2MPS13_REG_LDODSCH3,
S2MPS13_REG_LDODSCH4,
S2MPS13_REG_LDODSCH5,
};
/* regulator ids */
enum s2mps13_regulators {
S2MPS13_LDO1,
S2MPS13_LDO2,
S2MPS13_LDO3,
S2MPS13_LDO4,
S2MPS13_LDO5,
S2MPS13_LDO6,
S2MPS13_LDO7,
S2MPS13_LDO8,
S2MPS13_LDO9,
S2MPS13_LDO10,
S2MPS13_LDO11,
S2MPS13_LDO12,
S2MPS13_LDO13,
S2MPS13_LDO14,
S2MPS13_LDO15,
S2MPS13_LDO16,
S2MPS13_LDO17,
S2MPS13_LDO18,
S2MPS13_LDO19,
S2MPS13_LDO20,
S2MPS13_LDO21,
S2MPS13_LDO22,
S2MPS13_LDO23,
S2MPS13_LDO24,
S2MPS13_LDO25,
S2MPS13_LDO26,
S2MPS13_LDO27,
S2MPS13_LDO28,
S2MPS13_LDO29,
S2MPS13_LDO30,
S2MPS13_LDO31,
S2MPS13_LDO32,
S2MPS13_LDO33,
S2MPS13_LDO34,
S2MPS13_LDO35,
S2MPS13_LDO36,
S2MPS13_LDO37,
S2MPS13_LDO38,
S2MPS13_LDO39,
S2MPS13_LDO40,
S2MPS13_BUCK1,
S2MPS13_BUCK2,
S2MPS13_BUCK3,
S2MPS13_BUCK4,
S2MPS13_BUCK5,
S2MPS13_BUCK6,
S2MPS13_BUCK7,
S2MPS13_BUCK8,
S2MPS13_BUCK9,
S2MPS13_BUCK10,
S2MPS13_REGULATOR_MAX,
};
/*
* Default ramp delay in uv/us. Datasheet says that ramp delay can be
* controlled however it does not specify which register is used for that.
* Let's assume that default value will be set.
*/
#define S2MPS13_BUCK_RAMP_DELAY 12500
#endif /* __LINUX_MFD_S2MPS13_H */

View File

@ -866,4 +866,15 @@ static inline int of_changeset_update_property(struct of_changeset *ocs,
/* CONFIG_OF_RESOLVE api */
extern int of_resolve_phandles(struct device_node *tree);
/**
* of_system_has_poweroff_source - Tells if poweroff-source is found for device_node
* @np: Pointer to the given device_node
*
* return true if present false otherwise
*/
static inline bool of_system_has_poweroff_source(const struct device_node *np)
{
return of_property_read_bool(np, "poweroff-source");
}
#endif /* _LINUX_OF_H */