Documentation/mm: update references to __m[un]lock_page() to *_folio()

We now pass folios to these functions, so update the documentation
accordingly.

Additionally, correct the outdated reference to __pagevec_lru_add_fn(),
the referenced action occurs in __munlock_folio() directly now, replace
reference to lru_cache_add_inactive_or_unevictable() with the modern folio
equivalent folio_add_lru_vma() and reference folio flags by the flag name
rather than accessor.

Link: https://lkml.kernel.org/r/898c487169d98a7f09c1c1e57a7dfdc2b3f6bf0f.1673526881.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
Lorenzo Stoakes 2023-01-12 12:39:32 +00:00 committed by Andrew Morton
parent 96f97c438f
commit a8265cd917
1 changed files with 15 additions and 15 deletions

View File

@ -308,22 +308,22 @@ do end up getting faulted into this VM_LOCKED VMA, they will be handled in the
fault path - which is also how mlock2()'s MLOCK_ONFAULT areas are handled.
For each PTE (or PMD) being faulted into a VMA, the page add rmap function
calls mlock_vma_page(), which calls mlock_page() when the VMA is VM_LOCKED
calls mlock_vma_page(), which calls mlock_folio() when the VMA is VM_LOCKED
(unless it is a PTE mapping of a part of a transparent huge page). Or when
it is a newly allocated anonymous page, lru_cache_add_inactive_or_unevictable()
calls mlock_new_page() instead: similar to mlock_page(), but can make better
it is a newly allocated anonymous page, folio_add_lru_vma() calls
mlock_new_folio() instead: similar to mlock_folio(), but can make better
judgments, since this page is held exclusively and known not to be on LRU yet.
mlock_page() sets PageMlocked immediately, then places the page on the CPU's
mlock pagevec, to batch up the rest of the work to be done under lru_lock by
__mlock_page(). __mlock_page() sets PageUnevictable, initializes mlock_count
mlock_folio() sets PG_mlocked immediately, then places the page on the CPU's
mlock folio batch, to batch up the rest of the work to be done under lru_lock by
__mlock_folio(). __mlock_folio() sets PG_unevictable, initializes mlock_count
and moves the page to unevictable state ("the unevictable LRU", but with
mlock_count in place of LRU threading). Or if the page was already PageLRU
and PageUnevictable and PageMlocked, it simply increments the mlock_count.
mlock_count in place of LRU threading). Or if the page was already PG_lru
and PG_unevictable and PG_mlocked, it simply increments the mlock_count.
But in practice that may not work ideally: the page may not yet be on an LRU, or
it may have been temporarily isolated from LRU. In such cases the mlock_count
field cannot be touched, but will be set to 0 later when __pagevec_lru_add_fn()
field cannot be touched, but will be set to 0 later when __munlock_folio()
returns the page to "LRU". Races prohibit mlock_count from being set to 1 then:
rather than risk stranding a page indefinitely as unevictable, always err with
mlock_count on the low side, so that when munlocked the page will be rescued to
@ -377,8 +377,8 @@ that it is munlock() being performed.
munlock_page() uses the mlock pagevec to batch up work to be done under
lru_lock by __munlock_page(). __munlock_page() decrements the page's
mlock_count, and when that reaches 0 it clears PageMlocked and clears
PageUnevictable, moving the page from unevictable state to inactive LRU.
mlock_count, and when that reaches 0 it clears PG_mlocked and clears
PG_unevictable, moving the page from unevictable state to inactive LRU.
But in practice that may not work ideally: the page may not yet have reached
"the unevictable LRU", or it may have been temporarily isolated from it. In
@ -488,8 +488,8 @@ munlock_vma_page(), which calls munlock_page() when the VMA is VM_LOCKED
munlock_page() uses the mlock pagevec to batch up work to be done under
lru_lock by __munlock_page(). __munlock_page() decrements the page's
mlock_count, and when that reaches 0 it clears PageMlocked and clears
PageUnevictable, moving the page from unevictable state to inactive LRU.
mlock_count, and when that reaches 0 it clears PG_mlocked and clears
PG_unevictable, moving the page from unevictable state to inactive LRU.
But in practice that may not work ideally: the page may not yet have reached
"the unevictable LRU", or it may have been temporarily isolated from it. In
@ -515,7 +515,7 @@ munlocking by clearing VM_LOCKED from a VMA, before munlocking all the pages
present, if one of those pages were unmapped by truncation or hole punch before
mlock_pte_range() reached it, it would not be recognized as mlocked by this VMA,
and would not be counted out of mlock_count. In this rare case, a page may
still appear as PageMlocked after it has been fully unmapped: and it is left to
still appear as PG_mlocked after it has been fully unmapped: and it is left to
release_pages() (or __page_cache_release()) to clear it and update statistics
before freeing (this event is counted in /proc/vmstat unevictable_pgs_cleared,
which is usually 0).
@ -527,7 +527,7 @@ Page Reclaim in shrink_*_list()
vmscan's shrink_active_list() culls any obviously unevictable pages -
i.e. !page_evictable(page) pages - diverting those to the unevictable list.
However, shrink_active_list() only sees unevictable pages that made it onto the
active/inactive LRU lists. Note that these pages do not have PageUnevictable
active/inactive LRU lists. Note that these pages do not have PG_unevictable
set - otherwise they would be on the unevictable list and shrink_active_list()
would never see them.