Introduce a new file system, Flash-Friendly File System (F2FS), to Linux 3.8.
Highlights: - Add initial f2fs source codes - Fix an endian conversion bug - Fix build failures on random configs - Fix the power-off-recovery routine - Minor cleanup, coding style, and typos patches -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.11 (GNU/Linux) iQIcBAABAgAGBQJQxuJcAAoJEEAUqH6CSFDSq80QAI3i7NgUkx4h225MnbJdEKRb YX1MfSPmgE0q/15XS2qQu/s9NGJmXLV1IR9EtRSBlCQjwWhbx9Q9URktGkWslFnx 6mBLy8EvVKDMVdwoUS8ZY6IjfKbmSnoIHTZrGaT9+9d7k8nlOQLaj3qQF4wBuw1+ +qhJQV642v8qw7JiVVFgxcBSLpAS9cbdOA0vxfWncMwmRLaEO45W5+rob8ZN8WaS BUiYIiue8vlB0VDIYfpl/sSPJC/Bn1XsLKZoS2WJl8CKioE1ptLjT3acUBbabUxp hNLl8Ae0PylDMFpH8hrBXhleznrVqEMOTos/Z80/UyBny2sCxJFnaQ60TayUo2l2 hYk5Wbyj8K7IBJEke23Fepild2PnGz22zf2v+tLxxVgPH5j7/l2XHfy9gPvDbd1P 4ENiJUC3LE49Mi4TvEIFqhbrcJfD9C+v3bxpWGe8CevrpYZaB8tv/6nQXJCC/Ixp tMWqLKlHyXGmk5DZpiSFaj0/GbTPT0UGqZVRzzSXQpKqxJU6eTnXDa6aLUEYH8fH grOCriaJrd8SgL3l7RokQSQEyRHuNjMm1tlUQWOObE+y0nJjWb9Amwn1yUtJuNzx Np4nnlMhxwJ48P3LeeheSCuOUbxJtOzOR8MVXm7deYiGQbYaqB1/+9TbjOZBSX4O fpbCXrmqe1pUBukftZsL =iMoX -----END PGP SIGNATURE----- Merge tag 'for-3.8-merge' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs Pull new F2FS filesystem from Jaegeuk Kim: "Introduce a new file system, Flash-Friendly File System (F2FS), to Linux 3.8. Highlights: - Add initial f2fs source codes - Fix an endian conversion bug - Fix build failures on random configs - Fix the power-off-recovery routine - Minor cleanup, coding style, and typos patches" From the Kconfig help text: F2FS is based on Log-structured File System (LFS), which supports versatile "flash-friendly" features. The design has been focused on addressing the fundamental issues in LFS, which are snowball effect of wandering tree and high cleaning overhead. Since flash-based storages show different characteristics according to the internal geometry or flash memory management schemes aka FTL, F2FS and tools support various parameters not only for configuring on-disk layout, but also for selecting allocation and cleaning algorithms. and there's an article by Neil Brown about it on lwn.net: http://lwn.net/Articles/518988/ * tag 'for-3.8-merge' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (36 commits) f2fs: fix tracking parent inode number f2fs: cleanup the f2fs_bio_alloc routine f2fs: introduce accessor to retrieve number of dentry slots f2fs: remove redundant call to f2fs_put_page in delete entry f2fs: make use of GFP_F2FS_ZERO for setting gfp_mask f2fs: rewrite f2fs_bio_alloc to make it simpler f2fs: fix a typo in f2fs documentation f2fs: remove unused variable f2fs: move error condition for mkdir at proper place f2fs: remove unneeded initialization f2fs: check read only condition before beginning write out f2fs: remove unneeded memset from init_once f2fs: show error in case of invalid mount arguments f2fs: fix the compiler warning for uninitialized use of variable f2fs: resolve build failures f2fs: adjust kernel coding style f2fs: fix endian conversion bugs reported by sparse f2fs: remove unneeded version.h header file from f2fs.h f2fs: update the f2fs document f2fs: update Kconfig and Makefile ...
This commit is contained in:
commit
a13eea6bd9
|
@ -50,6 +50,8 @@ ext4.txt
|
|||
- info, mount options and specifications for the Ext4 filesystem.
|
||||
files.txt
|
||||
- info on file management in the Linux kernel.
|
||||
f2fs.txt
|
||||
- info and mount options for the F2FS filesystem.
|
||||
fuse.txt
|
||||
- info on the Filesystem in User SpacE including mount options.
|
||||
gfs2.txt
|
||||
|
|
|
@ -0,0 +1,421 @@
|
|||
================================================================================
|
||||
WHAT IS Flash-Friendly File System (F2FS)?
|
||||
================================================================================
|
||||
|
||||
NAND flash memory-based storage devices, such as SSD, eMMC, and SD cards, have
|
||||
been equipped on a variety systems ranging from mobile to server systems. Since
|
||||
they are known to have different characteristics from the conventional rotating
|
||||
disks, a file system, an upper layer to the storage device, should adapt to the
|
||||
changes from the sketch in the design level.
|
||||
|
||||
F2FS is a file system exploiting NAND flash memory-based storage devices, which
|
||||
is based on Log-structured File System (LFS). The design has been focused on
|
||||
addressing the fundamental issues in LFS, which are snowball effect of wandering
|
||||
tree and high cleaning overhead.
|
||||
|
||||
Since a NAND flash memory-based storage device shows different characteristic
|
||||
according to its internal geometry or flash memory management scheme, namely FTL,
|
||||
F2FS and its tools support various parameters not only for configuring on-disk
|
||||
layout, but also for selecting allocation and cleaning algorithms.
|
||||
|
||||
The file system formatting tool, "mkfs.f2fs", is available from the following
|
||||
git tree:
|
||||
>> git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git
|
||||
|
||||
For reporting bugs and sending patches, please use the following mailing list:
|
||||
>> linux-f2fs-devel@lists.sourceforge.net
|
||||
|
||||
================================================================================
|
||||
BACKGROUND AND DESIGN ISSUES
|
||||
================================================================================
|
||||
|
||||
Log-structured File System (LFS)
|
||||
--------------------------------
|
||||
"A log-structured file system writes all modifications to disk sequentially in
|
||||
a log-like structure, thereby speeding up both file writing and crash recovery.
|
||||
The log is the only structure on disk; it contains indexing information so that
|
||||
files can be read back from the log efficiently. In order to maintain large free
|
||||
areas on disk for fast writing, we divide the log into segments and use a
|
||||
segment cleaner to compress the live information from heavily fragmented
|
||||
segments." from Rosenblum, M. and Ousterhout, J. K., 1992, "The design and
|
||||
implementation of a log-structured file system", ACM Trans. Computer Systems
|
||||
10, 1, 26–52.
|
||||
|
||||
Wandering Tree Problem
|
||||
----------------------
|
||||
In LFS, when a file data is updated and written to the end of log, its direct
|
||||
pointer block is updated due to the changed location. Then the indirect pointer
|
||||
block is also updated due to the direct pointer block update. In this manner,
|
||||
the upper index structures such as inode, inode map, and checkpoint block are
|
||||
also updated recursively. This problem is called as wandering tree problem [1],
|
||||
and in order to enhance the performance, it should eliminate or relax the update
|
||||
propagation as much as possible.
|
||||
|
||||
[1] Bityutskiy, A. 2005. JFFS3 design issues. http://www.linux-mtd.infradead.org/
|
||||
|
||||
Cleaning Overhead
|
||||
-----------------
|
||||
Since LFS is based on out-of-place writes, it produces so many obsolete blocks
|
||||
scattered across the whole storage. In order to serve new empty log space, it
|
||||
needs to reclaim these obsolete blocks seamlessly to users. This job is called
|
||||
as a cleaning process.
|
||||
|
||||
The process consists of three operations as follows.
|
||||
1. A victim segment is selected through referencing segment usage table.
|
||||
2. It loads parent index structures of all the data in the victim identified by
|
||||
segment summary blocks.
|
||||
3. It checks the cross-reference between the data and its parent index structure.
|
||||
4. It moves valid data selectively.
|
||||
|
||||
This cleaning job may cause unexpected long delays, so the most important goal
|
||||
is to hide the latencies to users. And also definitely, it should reduce the
|
||||
amount of valid data to be moved, and move them quickly as well.
|
||||
|
||||
================================================================================
|
||||
KEY FEATURES
|
||||
================================================================================
|
||||
|
||||
Flash Awareness
|
||||
---------------
|
||||
- Enlarge the random write area for better performance, but provide the high
|
||||
spatial locality
|
||||
- Align FS data structures to the operational units in FTL as best efforts
|
||||
|
||||
Wandering Tree Problem
|
||||
----------------------
|
||||
- Use a term, “node”, that represents inodes as well as various pointer blocks
|
||||
- Introduce Node Address Table (NAT) containing the locations of all the “node”
|
||||
blocks; this will cut off the update propagation.
|
||||
|
||||
Cleaning Overhead
|
||||
-----------------
|
||||
- Support a background cleaning process
|
||||
- Support greedy and cost-benefit algorithms for victim selection policies
|
||||
- Support multi-head logs for static/dynamic hot and cold data separation
|
||||
- Introduce adaptive logging for efficient block allocation
|
||||
|
||||
================================================================================
|
||||
MOUNT OPTIONS
|
||||
================================================================================
|
||||
|
||||
background_gc_off Turn off cleaning operations, namely garbage collection,
|
||||
triggered in background when I/O subsystem is idle.
|
||||
disable_roll_forward Disable the roll-forward recovery routine
|
||||
discard Issue discard/TRIM commands when a segment is cleaned.
|
||||
no_heap Disable heap-style segment allocation which finds free
|
||||
segments for data from the beginning of main area, while
|
||||
for node from the end of main area.
|
||||
nouser_xattr Disable Extended User Attributes. Note: xattr is enabled
|
||||
by default if CONFIG_F2FS_FS_XATTR is selected.
|
||||
noacl Disable POSIX Access Control List. Note: acl is enabled
|
||||
by default if CONFIG_F2FS_FS_POSIX_ACL is selected.
|
||||
active_logs=%u Support configuring the number of active logs. In the
|
||||
current design, f2fs supports only 2, 4, and 6 logs.
|
||||
Default number is 6.
|
||||
disable_ext_identify Disable the extension list configured by mkfs, so f2fs
|
||||
does not aware of cold files such as media files.
|
||||
|
||||
================================================================================
|
||||
DEBUGFS ENTRIES
|
||||
================================================================================
|
||||
|
||||
/sys/kernel/debug/f2fs/ contains information about all the partitions mounted as
|
||||
f2fs. Each file shows the whole f2fs information.
|
||||
|
||||
/sys/kernel/debug/f2fs/status includes:
|
||||
- major file system information managed by f2fs currently
|
||||
- average SIT information about whole segments
|
||||
- current memory footprint consumed by f2fs.
|
||||
|
||||
================================================================================
|
||||
USAGE
|
||||
================================================================================
|
||||
|
||||
1. Download userland tools and compile them.
|
||||
|
||||
2. Skip, if f2fs was compiled statically inside kernel.
|
||||
Otherwise, insert the f2fs.ko module.
|
||||
# insmod f2fs.ko
|
||||
|
||||
3. Create a directory trying to mount
|
||||
# mkdir /mnt/f2fs
|
||||
|
||||
4. Format the block device, and then mount as f2fs
|
||||
# mkfs.f2fs -l label /dev/block_device
|
||||
# mount -t f2fs /dev/block_device /mnt/f2fs
|
||||
|
||||
Format options
|
||||
--------------
|
||||
-l [label] : Give a volume label, up to 256 unicode name.
|
||||
-a [0 or 1] : Split start location of each area for heap-based allocation.
|
||||
1 is set by default, which performs this.
|
||||
-o [int] : Set overprovision ratio in percent over volume size.
|
||||
5 is set by default.
|
||||
-s [int] : Set the number of segments per section.
|
||||
1 is set by default.
|
||||
-z [int] : Set the number of sections per zone.
|
||||
1 is set by default.
|
||||
-e [str] : Set basic extension list. e.g. "mp3,gif,mov"
|
||||
|
||||
================================================================================
|
||||
DESIGN
|
||||
================================================================================
|
||||
|
||||
On-disk Layout
|
||||
--------------
|
||||
|
||||
F2FS divides the whole volume into a number of segments, each of which is fixed
|
||||
to 2MB in size. A section is composed of consecutive segments, and a zone
|
||||
consists of a set of sections. By default, section and zone sizes are set to one
|
||||
segment size identically, but users can easily modify the sizes by mkfs.
|
||||
|
||||
F2FS splits the entire volume into six areas, and all the areas except superblock
|
||||
consists of multiple segments as described below.
|
||||
|
||||
align with the zone size <-|
|
||||
|-> align with the segment size
|
||||
_________________________________________________________________________
|
||||
| | | Node | Segment | Segment | |
|
||||
| Superblock | Checkpoint | Address | Info. | Summary | Main |
|
||||
| (SB) | (CP) | Table (NAT) | Table (SIT) | Area (SSA) | |
|
||||
|____________|_____2______|______N______|______N______|______N_____|__N___|
|
||||
. .
|
||||
. .
|
||||
. .
|
||||
._________________________________________.
|
||||
|_Segment_|_..._|_Segment_|_..._|_Segment_|
|
||||
. .
|
||||
._________._________
|
||||
|_section_|__...__|_
|
||||
. .
|
||||
.________.
|
||||
|__zone__|
|
||||
|
||||
- Superblock (SB)
|
||||
: It is located at the beginning of the partition, and there exist two copies
|
||||
to avoid file system crash. It contains basic partition information and some
|
||||
default parameters of f2fs.
|
||||
|
||||
- Checkpoint (CP)
|
||||
: It contains file system information, bitmaps for valid NAT/SIT sets, orphan
|
||||
inode lists, and summary entries of current active segments.
|
||||
|
||||
- Node Address Table (NAT)
|
||||
: It is composed of a block address table for all the node blocks stored in
|
||||
Main area.
|
||||
|
||||
- Segment Information Table (SIT)
|
||||
: It contains segment information such as valid block count and bitmap for the
|
||||
validity of all the blocks.
|
||||
|
||||
- Segment Summary Area (SSA)
|
||||
: It contains summary entries which contains the owner information of all the
|
||||
data and node blocks stored in Main area.
|
||||
|
||||
- Main Area
|
||||
: It contains file and directory data including their indices.
|
||||
|
||||
In order to avoid misalignment between file system and flash-based storage, F2FS
|
||||
aligns the start block address of CP with the segment size. Also, it aligns the
|
||||
start block address of Main area with the zone size by reserving some segments
|
||||
in SSA area.
|
||||
|
||||
Reference the following survey for additional technical details.
|
||||
https://wiki.linaro.org/WorkingGroups/Kernel/Projects/FlashCardSurvey
|
||||
|
||||
File System Metadata Structure
|
||||
------------------------------
|
||||
|
||||
F2FS adopts the checkpointing scheme to maintain file system consistency. At
|
||||
mount time, F2FS first tries to find the last valid checkpoint data by scanning
|
||||
CP area. In order to reduce the scanning time, F2FS uses only two copies of CP.
|
||||
One of them always indicates the last valid data, which is called as shadow copy
|
||||
mechanism. In addition to CP, NAT and SIT also adopt the shadow copy mechanism.
|
||||
|
||||
For file system consistency, each CP points to which NAT and SIT copies are
|
||||
valid, as shown as below.
|
||||
|
||||
+--------+----------+---------+
|
||||
| CP | NAT | SIT |
|
||||
+--------+----------+---------+
|
||||
. . . .
|
||||
. . . .
|
||||
. . . .
|
||||
+-------+-------+--------+--------+--------+--------+
|
||||
| CP #0 | CP #1 | NAT #0 | NAT #1 | SIT #0 | SIT #1 |
|
||||
+-------+-------+--------+--------+--------+--------+
|
||||
| ^ ^
|
||||
| | |
|
||||
`----------------------------------------'
|
||||
|
||||
Index Structure
|
||||
---------------
|
||||
|
||||
The key data structure to manage the data locations is a "node". Similar to
|
||||
traditional file structures, F2FS has three types of node: inode, direct node,
|
||||
indirect node. F2FS assigns 4KB to an inode block which contains 923 data block
|
||||
indices, two direct node pointers, two indirect node pointers, and one double
|
||||
indirect node pointer as described below. One direct node block contains 1018
|
||||
data blocks, and one indirect node block contains also 1018 node blocks. Thus,
|
||||
one inode block (i.e., a file) covers:
|
||||
|
||||
4KB * (923 + 2 * 1018 + 2 * 1018 * 1018 + 1018 * 1018 * 1018) := 3.94TB.
|
||||
|
||||
Inode block (4KB)
|
||||
|- data (923)
|
||||
|- direct node (2)
|
||||
| `- data (1018)
|
||||
|- indirect node (2)
|
||||
| `- direct node (1018)
|
||||
| `- data (1018)
|
||||
`- double indirect node (1)
|
||||
`- indirect node (1018)
|
||||
`- direct node (1018)
|
||||
`- data (1018)
|
||||
|
||||
Note that, all the node blocks are mapped by NAT which means the location of
|
||||
each node is translated by the NAT table. In the consideration of the wandering
|
||||
tree problem, F2FS is able to cut off the propagation of node updates caused by
|
||||
leaf data writes.
|
||||
|
||||
Directory Structure
|
||||
-------------------
|
||||
|
||||
A directory entry occupies 11 bytes, which consists of the following attributes.
|
||||
|
||||
- hash hash value of the file name
|
||||
- ino inode number
|
||||
- len the length of file name
|
||||
- type file type such as directory, symlink, etc
|
||||
|
||||
A dentry block consists of 214 dentry slots and file names. Therein a bitmap is
|
||||
used to represent whether each dentry is valid or not. A dentry block occupies
|
||||
4KB with the following composition.
|
||||
|
||||
Dentry Block(4 K) = bitmap (27 bytes) + reserved (3 bytes) +
|
||||
dentries(11 * 214 bytes) + file name (8 * 214 bytes)
|
||||
|
||||
[Bucket]
|
||||
+--------------------------------+
|
||||
|dentry block 1 | dentry block 2 |
|
||||
+--------------------------------+
|
||||
. .
|
||||
. .
|
||||
. [Dentry Block Structure: 4KB] .
|
||||
+--------+----------+----------+------------+
|
||||
| bitmap | reserved | dentries | file names |
|
||||
+--------+----------+----------+------------+
|
||||
[Dentry Block: 4KB] . .
|
||||
. .
|
||||
. .
|
||||
+------+------+-----+------+
|
||||
| hash | ino | len | type |
|
||||
+------+------+-----+------+
|
||||
[Dentry Structure: 11 bytes]
|
||||
|
||||
F2FS implements multi-level hash tables for directory structure. Each level has
|
||||
a hash table with dedicated number of hash buckets as shown below. Note that
|
||||
"A(2B)" means a bucket includes 2 data blocks.
|
||||
|
||||
----------------------
|
||||
A : bucket
|
||||
B : block
|
||||
N : MAX_DIR_HASH_DEPTH
|
||||
----------------------
|
||||
|
||||
level #0 | A(2B)
|
||||
|
|
||||
level #1 | A(2B) - A(2B)
|
||||
|
|
||||
level #2 | A(2B) - A(2B) - A(2B) - A(2B)
|
||||
. | . . . .
|
||||
level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B)
|
||||
. | . . . .
|
||||
level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B)
|
||||
|
||||
The number of blocks and buckets are determined by,
|
||||
|
||||
,- 2, if n < MAX_DIR_HASH_DEPTH / 2,
|
||||
# of blocks in level #n = |
|
||||
`- 4, Otherwise
|
||||
|
||||
,- 2^n, if n < MAX_DIR_HASH_DEPTH / 2,
|
||||
# of buckets in level #n = |
|
||||
`- 2^((MAX_DIR_HASH_DEPTH / 2) - 1), Otherwise
|
||||
|
||||
When F2FS finds a file name in a directory, at first a hash value of the file
|
||||
name is calculated. Then, F2FS scans the hash table in level #0 to find the
|
||||
dentry consisting of the file name and its inode number. If not found, F2FS
|
||||
scans the next hash table in level #1. In this way, F2FS scans hash tables in
|
||||
each levels incrementally from 1 to N. In each levels F2FS needs to scan only
|
||||
one bucket determined by the following equation, which shows O(log(# of files))
|
||||
complexity.
|
||||
|
||||
bucket number to scan in level #n = (hash value) % (# of buckets in level #n)
|
||||
|
||||
In the case of file creation, F2FS finds empty consecutive slots that cover the
|
||||
file name. F2FS searches the empty slots in the hash tables of whole levels from
|
||||
1 to N in the same way as the lookup operation.
|
||||
|
||||
The following figure shows an example of two cases holding children.
|
||||
--------------> Dir <--------------
|
||||
| |
|
||||
child child
|
||||
|
||||
child - child [hole] - child
|
||||
|
||||
child - child - child [hole] - [hole] - child
|
||||
|
||||
Case 1: Case 2:
|
||||
Number of children = 6, Number of children = 3,
|
||||
File size = 7 File size = 7
|
||||
|
||||
Default Block Allocation
|
||||
------------------------
|
||||
|
||||
At runtime, F2FS manages six active logs inside "Main" area: Hot/Warm/Cold node
|
||||
and Hot/Warm/Cold data.
|
||||
|
||||
- Hot node contains direct node blocks of directories.
|
||||
- Warm node contains direct node blocks except hot node blocks.
|
||||
- Cold node contains indirect node blocks
|
||||
- Hot data contains dentry blocks
|
||||
- Warm data contains data blocks except hot and cold data blocks
|
||||
- Cold data contains multimedia data or migrated data blocks
|
||||
|
||||
LFS has two schemes for free space management: threaded log and copy-and-compac-
|
||||
tion. The copy-and-compaction scheme which is known as cleaning, is well-suited
|
||||
for devices showing very good sequential write performance, since free segments
|
||||
are served all the time for writing new data. However, it suffers from cleaning
|
||||
overhead under high utilization. Contrarily, the threaded log scheme suffers
|
||||
from random writes, but no cleaning process is needed. F2FS adopts a hybrid
|
||||
scheme where the copy-and-compaction scheme is adopted by default, but the
|
||||
policy is dynamically changed to the threaded log scheme according to the file
|
||||
system status.
|
||||
|
||||
In order to align F2FS with underlying flash-based storage, F2FS allocates a
|
||||
segment in a unit of section. F2FS expects that the section size would be the
|
||||
same as the unit size of garbage collection in FTL. Furthermore, with respect
|
||||
to the mapping granularity in FTL, F2FS allocates each section of the active
|
||||
logs from different zones as much as possible, since FTL can write the data in
|
||||
the active logs into one allocation unit according to its mapping granularity.
|
||||
|
||||
Cleaning process
|
||||
----------------
|
||||
|
||||
F2FS does cleaning both on demand and in the background. On-demand cleaning is
|
||||
triggered when there are not enough free segments to serve VFS calls. Background
|
||||
cleaner is operated by a kernel thread, and triggers the cleaning job when the
|
||||
system is idle.
|
||||
|
||||
F2FS supports two victim selection policies: greedy and cost-benefit algorithms.
|
||||
In the greedy algorithm, F2FS selects a victim segment having the smallest number
|
||||
of valid blocks. In the cost-benefit algorithm, F2FS selects a victim segment
|
||||
according to the segment age and the number of valid blocks in order to address
|
||||
log block thrashing problem in the greedy algorithm. F2FS adopts the greedy
|
||||
algorithm for on-demand cleaner, while background cleaner adopts cost-benefit
|
||||
algorithm.
|
||||
|
||||
In order to identify whether the data in the victim segment are valid or not,
|
||||
F2FS manages a bitmap. Each bit represents the validity of a block, and the
|
||||
bitmap is composed of a bit stream covering whole blocks in main area.
|
|
@ -220,6 +220,7 @@ source "fs/pstore/Kconfig"
|
|||
source "fs/sysv/Kconfig"
|
||||
source "fs/ufs/Kconfig"
|
||||
source "fs/exofs/Kconfig"
|
||||
source "fs/f2fs/Kconfig"
|
||||
|
||||
endif # MISC_FILESYSTEMS
|
||||
|
||||
|
|
|
@ -123,6 +123,7 @@ obj-$(CONFIG_DEBUG_FS) += debugfs/
|
|||
obj-$(CONFIG_OCFS2_FS) += ocfs2/
|
||||
obj-$(CONFIG_BTRFS_FS) += btrfs/
|
||||
obj-$(CONFIG_GFS2_FS) += gfs2/
|
||||
obj-$(CONFIG_F2FS_FS) += f2fs/
|
||||
obj-y += exofs/ # Multiple modules
|
||||
obj-$(CONFIG_CEPH_FS) += ceph/
|
||||
obj-$(CONFIG_PSTORE) += pstore/
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
config F2FS_FS
|
||||
tristate "F2FS filesystem support (EXPERIMENTAL)"
|
||||
depends on BLOCK
|
||||
help
|
||||
F2FS is based on Log-structured File System (LFS), which supports
|
||||
versatile "flash-friendly" features. The design has been focused on
|
||||
addressing the fundamental issues in LFS, which are snowball effect
|
||||
of wandering tree and high cleaning overhead.
|
||||
|
||||
Since flash-based storages show different characteristics according to
|
||||
the internal geometry or flash memory management schemes aka FTL, F2FS
|
||||
and tools support various parameters not only for configuring on-disk
|
||||
layout, but also for selecting allocation and cleaning algorithms.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
config F2FS_STAT_FS
|
||||
bool "F2FS Status Information"
|
||||
depends on F2FS_FS && DEBUG_FS
|
||||
default y
|
||||
help
|
||||
/sys/kernel/debug/f2fs/ contains information about all the partitions
|
||||
mounted as f2fs. Each file shows the whole f2fs information.
|
||||
|
||||
/sys/kernel/debug/f2fs/status includes:
|
||||
- major file system information managed by f2fs currently
|
||||
- average SIT information about whole segments
|
||||
- current memory footprint consumed by f2fs.
|
||||
|
||||
config F2FS_FS_XATTR
|
||||
bool "F2FS extended attributes"
|
||||
depends on F2FS_FS
|
||||
default y
|
||||
help
|
||||
Extended attributes are name:value pairs associated with inodes by
|
||||
the kernel or by users (see the attr(5) manual page, or visit
|
||||
<http://acl.bestbits.at/> for details).
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
config F2FS_FS_POSIX_ACL
|
||||
bool "F2FS Access Control Lists"
|
||||
depends on F2FS_FS_XATTR
|
||||
select FS_POSIX_ACL
|
||||
default y
|
||||
help
|
||||
Posix Access Control Lists (ACLs) support permissions for users and
|
||||
gourps beyond the owner/group/world scheme.
|
||||
|
||||
To learn more about Access Control Lists, visit the POSIX ACLs for
|
||||
Linux website <http://acl.bestbits.at/>.
|
||||
|
||||
If you don't know what Access Control Lists are, say N
|
|
@ -0,0 +1,7 @@
|
|||
obj-$(CONFIG_F2FS_FS) += f2fs.o
|
||||
|
||||
f2fs-y := dir.o file.o inode.o namei.o hash.o super.o
|
||||
f2fs-y += checkpoint.o gc.o data.o node.o segment.o recovery.o
|
||||
f2fs-$(CONFIG_F2FS_STAT_FS) += debug.o
|
||||
f2fs-$(CONFIG_F2FS_FS_XATTR) += xattr.o
|
||||
f2fs-$(CONFIG_F2FS_FS_POSIX_ACL) += acl.o
|
|
@ -0,0 +1,414 @@
|
|||
/*
|
||||
* fs/f2fs/acl.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* Portions of this code from linux/fs/ext2/acl.c
|
||||
*
|
||||
* Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include "f2fs.h"
|
||||
#include "xattr.h"
|
||||
#include "acl.h"
|
||||
|
||||
#define get_inode_mode(i) ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
|
||||
(F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
|
||||
|
||||
static inline size_t f2fs_acl_size(int count)
|
||||
{
|
||||
if (count <= 4) {
|
||||
return sizeof(struct f2fs_acl_header) +
|
||||
count * sizeof(struct f2fs_acl_entry_short);
|
||||
} else {
|
||||
return sizeof(struct f2fs_acl_header) +
|
||||
4 * sizeof(struct f2fs_acl_entry_short) +
|
||||
(count - 4) * sizeof(struct f2fs_acl_entry);
|
||||
}
|
||||
}
|
||||
|
||||
static inline int f2fs_acl_count(size_t size)
|
||||
{
|
||||
ssize_t s;
|
||||
size -= sizeof(struct f2fs_acl_header);
|
||||
s = size - 4 * sizeof(struct f2fs_acl_entry_short);
|
||||
if (s < 0) {
|
||||
if (size % sizeof(struct f2fs_acl_entry_short))
|
||||
return -1;
|
||||
return size / sizeof(struct f2fs_acl_entry_short);
|
||||
} else {
|
||||
if (s % sizeof(struct f2fs_acl_entry))
|
||||
return -1;
|
||||
return s / sizeof(struct f2fs_acl_entry) + 4;
|
||||
}
|
||||
}
|
||||
|
||||
static struct posix_acl *f2fs_acl_from_disk(const char *value, size_t size)
|
||||
{
|
||||
int i, count;
|
||||
struct posix_acl *acl;
|
||||
struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value;
|
||||
struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1);
|
||||
const char *end = value + size;
|
||||
|
||||
if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION))
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
count = f2fs_acl_count(size);
|
||||
if (count < 0)
|
||||
return ERR_PTR(-EINVAL);
|
||||
if (count == 0)
|
||||
return NULL;
|
||||
|
||||
acl = posix_acl_alloc(count, GFP_KERNEL);
|
||||
if (!acl)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
|
||||
if ((char *)entry > end)
|
||||
goto fail;
|
||||
|
||||
acl->a_entries[i].e_tag = le16_to_cpu(entry->e_tag);
|
||||
acl->a_entries[i].e_perm = le16_to_cpu(entry->e_perm);
|
||||
|
||||
switch (acl->a_entries[i].e_tag) {
|
||||
case ACL_USER_OBJ:
|
||||
case ACL_GROUP_OBJ:
|
||||
case ACL_MASK:
|
||||
case ACL_OTHER:
|
||||
acl->a_entries[i].e_id = ACL_UNDEFINED_ID;
|
||||
entry = (struct f2fs_acl_entry *)((char *)entry +
|
||||
sizeof(struct f2fs_acl_entry_short));
|
||||
break;
|
||||
|
||||
case ACL_USER:
|
||||
acl->a_entries[i].e_uid =
|
||||
make_kuid(&init_user_ns,
|
||||
le32_to_cpu(entry->e_id));
|
||||
entry = (struct f2fs_acl_entry *)((char *)entry +
|
||||
sizeof(struct f2fs_acl_entry));
|
||||
break;
|
||||
case ACL_GROUP:
|
||||
acl->a_entries[i].e_gid =
|
||||
make_kgid(&init_user_ns,
|
||||
le32_to_cpu(entry->e_id));
|
||||
entry = (struct f2fs_acl_entry *)((char *)entry +
|
||||
sizeof(struct f2fs_acl_entry));
|
||||
break;
|
||||
default:
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if ((char *)entry != end)
|
||||
goto fail;
|
||||
return acl;
|
||||
fail:
|
||||
posix_acl_release(acl);
|
||||
return ERR_PTR(-EINVAL);
|
||||
}
|
||||
|
||||
static void *f2fs_acl_to_disk(const struct posix_acl *acl, size_t *size)
|
||||
{
|
||||
struct f2fs_acl_header *f2fs_acl;
|
||||
struct f2fs_acl_entry *entry;
|
||||
int i;
|
||||
|
||||
f2fs_acl = kmalloc(sizeof(struct f2fs_acl_header) + acl->a_count *
|
||||
sizeof(struct f2fs_acl_entry), GFP_KERNEL);
|
||||
if (!f2fs_acl)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
f2fs_acl->a_version = cpu_to_le32(F2FS_ACL_VERSION);
|
||||
entry = (struct f2fs_acl_entry *)(f2fs_acl + 1);
|
||||
|
||||
for (i = 0; i < acl->a_count; i++) {
|
||||
|
||||
entry->e_tag = cpu_to_le16(acl->a_entries[i].e_tag);
|
||||
entry->e_perm = cpu_to_le16(acl->a_entries[i].e_perm);
|
||||
|
||||
switch (acl->a_entries[i].e_tag) {
|
||||
case ACL_USER:
|
||||
entry->e_id = cpu_to_le32(
|
||||
from_kuid(&init_user_ns,
|
||||
acl->a_entries[i].e_uid));
|
||||
entry = (struct f2fs_acl_entry *)((char *)entry +
|
||||
sizeof(struct f2fs_acl_entry));
|
||||
break;
|
||||
case ACL_GROUP:
|
||||
entry->e_id = cpu_to_le32(
|
||||
from_kgid(&init_user_ns,
|
||||
acl->a_entries[i].e_gid));
|
||||
entry = (struct f2fs_acl_entry *)((char *)entry +
|
||||
sizeof(struct f2fs_acl_entry));
|
||||
break;
|
||||
case ACL_USER_OBJ:
|
||||
case ACL_GROUP_OBJ:
|
||||
case ACL_MASK:
|
||||
case ACL_OTHER:
|
||||
entry = (struct f2fs_acl_entry *)((char *)entry +
|
||||
sizeof(struct f2fs_acl_entry_short));
|
||||
break;
|
||||
default:
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
*size = f2fs_acl_size(acl->a_count);
|
||||
return (void *)f2fs_acl;
|
||||
|
||||
fail:
|
||||
kfree(f2fs_acl);
|
||||
return ERR_PTR(-EINVAL);
|
||||
}
|
||||
|
||||
struct posix_acl *f2fs_get_acl(struct inode *inode, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
int name_index = F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT;
|
||||
void *value = NULL;
|
||||
struct posix_acl *acl;
|
||||
int retval;
|
||||
|
||||
if (!test_opt(sbi, POSIX_ACL))
|
||||
return NULL;
|
||||
|
||||
acl = get_cached_acl(inode, type);
|
||||
if (acl != ACL_NOT_CACHED)
|
||||
return acl;
|
||||
|
||||
if (type == ACL_TYPE_ACCESS)
|
||||
name_index = F2FS_XATTR_INDEX_POSIX_ACL_ACCESS;
|
||||
|
||||
retval = f2fs_getxattr(inode, name_index, "", NULL, 0);
|
||||
if (retval > 0) {
|
||||
value = kmalloc(retval, GFP_KERNEL);
|
||||
if (!value)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
retval = f2fs_getxattr(inode, name_index, "", value, retval);
|
||||
}
|
||||
|
||||
if (retval < 0) {
|
||||
if (retval == -ENODATA)
|
||||
acl = NULL;
|
||||
else
|
||||
acl = ERR_PTR(retval);
|
||||
} else {
|
||||
acl = f2fs_acl_from_disk(value, retval);
|
||||
}
|
||||
kfree(value);
|
||||
if (!IS_ERR(acl))
|
||||
set_cached_acl(inode, type, acl);
|
||||
|
||||
return acl;
|
||||
}
|
||||
|
||||
static int f2fs_set_acl(struct inode *inode, int type, struct posix_acl *acl)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
int name_index;
|
||||
void *value = NULL;
|
||||
size_t size = 0;
|
||||
int error;
|
||||
|
||||
if (!test_opt(sbi, POSIX_ACL))
|
||||
return 0;
|
||||
if (S_ISLNK(inode->i_mode))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
switch (type) {
|
||||
case ACL_TYPE_ACCESS:
|
||||
name_index = F2FS_XATTR_INDEX_POSIX_ACL_ACCESS;
|
||||
if (acl) {
|
||||
error = posix_acl_equiv_mode(acl, &inode->i_mode);
|
||||
if (error < 0)
|
||||
return error;
|
||||
set_acl_inode(fi, inode->i_mode);
|
||||
if (error == 0)
|
||||
acl = NULL;
|
||||
}
|
||||
break;
|
||||
|
||||
case ACL_TYPE_DEFAULT:
|
||||
name_index = F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT;
|
||||
if (!S_ISDIR(inode->i_mode))
|
||||
return acl ? -EACCES : 0;
|
||||
break;
|
||||
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (acl) {
|
||||
value = f2fs_acl_to_disk(acl, &size);
|
||||
if (IS_ERR(value)) {
|
||||
cond_clear_inode_flag(fi, FI_ACL_MODE);
|
||||
return (int)PTR_ERR(value);
|
||||
}
|
||||
}
|
||||
|
||||
error = f2fs_setxattr(inode, name_index, "", value, size);
|
||||
|
||||
kfree(value);
|
||||
if (!error)
|
||||
set_cached_acl(inode, type, acl);
|
||||
|
||||
cond_clear_inode_flag(fi, FI_ACL_MODE);
|
||||
return error;
|
||||
}
|
||||
|
||||
int f2fs_init_acl(struct inode *inode, struct inode *dir)
|
||||
{
|
||||
struct posix_acl *acl = NULL;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
||||
int error = 0;
|
||||
|
||||
if (!S_ISLNK(inode->i_mode)) {
|
||||
if (test_opt(sbi, POSIX_ACL)) {
|
||||
acl = f2fs_get_acl(dir, ACL_TYPE_DEFAULT);
|
||||
if (IS_ERR(acl))
|
||||
return PTR_ERR(acl);
|
||||
}
|
||||
if (!acl)
|
||||
inode->i_mode &= ~current_umask();
|
||||
}
|
||||
|
||||
if (test_opt(sbi, POSIX_ACL) && acl) {
|
||||
|
||||
if (S_ISDIR(inode->i_mode)) {
|
||||
error = f2fs_set_acl(inode, ACL_TYPE_DEFAULT, acl);
|
||||
if (error)
|
||||
goto cleanup;
|
||||
}
|
||||
error = posix_acl_create(&acl, GFP_KERNEL, &inode->i_mode);
|
||||
if (error < 0)
|
||||
return error;
|
||||
if (error > 0)
|
||||
error = f2fs_set_acl(inode, ACL_TYPE_ACCESS, acl);
|
||||
}
|
||||
cleanup:
|
||||
posix_acl_release(acl);
|
||||
return error;
|
||||
}
|
||||
|
||||
int f2fs_acl_chmod(struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct posix_acl *acl;
|
||||
int error;
|
||||
mode_t mode = get_inode_mode(inode);
|
||||
|
||||
if (!test_opt(sbi, POSIX_ACL))
|
||||
return 0;
|
||||
if (S_ISLNK(mode))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
acl = f2fs_get_acl(inode, ACL_TYPE_ACCESS);
|
||||
if (IS_ERR(acl) || !acl)
|
||||
return PTR_ERR(acl);
|
||||
|
||||
error = posix_acl_chmod(&acl, GFP_KERNEL, mode);
|
||||
if (error)
|
||||
return error;
|
||||
error = f2fs_set_acl(inode, ACL_TYPE_ACCESS, acl);
|
||||
posix_acl_release(acl);
|
||||
return error;
|
||||
}
|
||||
|
||||
static size_t f2fs_xattr_list_acl(struct dentry *dentry, char *list,
|
||||
size_t list_size, const char *name, size_t name_len, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
||||
const char *xname = POSIX_ACL_XATTR_DEFAULT;
|
||||
size_t size;
|
||||
|
||||
if (!test_opt(sbi, POSIX_ACL))
|
||||
return 0;
|
||||
|
||||
if (type == ACL_TYPE_ACCESS)
|
||||
xname = POSIX_ACL_XATTR_ACCESS;
|
||||
|
||||
size = strlen(xname) + 1;
|
||||
if (list && size <= list_size)
|
||||
memcpy(list, xname, size);
|
||||
return size;
|
||||
}
|
||||
|
||||
static int f2fs_xattr_get_acl(struct dentry *dentry, const char *name,
|
||||
void *buffer, size_t size, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
||||
struct posix_acl *acl;
|
||||
int error;
|
||||
|
||||
if (strcmp(name, "") != 0)
|
||||
return -EINVAL;
|
||||
if (!test_opt(sbi, POSIX_ACL))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
acl = f2fs_get_acl(dentry->d_inode, type);
|
||||
if (IS_ERR(acl))
|
||||
return PTR_ERR(acl);
|
||||
if (!acl)
|
||||
return -ENODATA;
|
||||
error = posix_acl_to_xattr(&init_user_ns, acl, buffer, size);
|
||||
posix_acl_release(acl);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
static int f2fs_xattr_set_acl(struct dentry *dentry, const char *name,
|
||||
const void *value, size_t size, int flags, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
||||
struct inode *inode = dentry->d_inode;
|
||||
struct posix_acl *acl = NULL;
|
||||
int error;
|
||||
|
||||
if (strcmp(name, "") != 0)
|
||||
return -EINVAL;
|
||||
if (!test_opt(sbi, POSIX_ACL))
|
||||
return -EOPNOTSUPP;
|
||||
if (!inode_owner_or_capable(inode))
|
||||
return -EPERM;
|
||||
|
||||
if (value) {
|
||||
acl = posix_acl_from_xattr(&init_user_ns, value, size);
|
||||
if (IS_ERR(acl))
|
||||
return PTR_ERR(acl);
|
||||
if (acl) {
|
||||
error = posix_acl_valid(acl);
|
||||
if (error)
|
||||
goto release_and_out;
|
||||
}
|
||||
} else {
|
||||
acl = NULL;
|
||||
}
|
||||
|
||||
error = f2fs_set_acl(inode, type, acl);
|
||||
|
||||
release_and_out:
|
||||
posix_acl_release(acl);
|
||||
return error;
|
||||
}
|
||||
|
||||
const struct xattr_handler f2fs_xattr_acl_default_handler = {
|
||||
.prefix = POSIX_ACL_XATTR_DEFAULT,
|
||||
.flags = ACL_TYPE_DEFAULT,
|
||||
.list = f2fs_xattr_list_acl,
|
||||
.get = f2fs_xattr_get_acl,
|
||||
.set = f2fs_xattr_set_acl,
|
||||
};
|
||||
|
||||
const struct xattr_handler f2fs_xattr_acl_access_handler = {
|
||||
.prefix = POSIX_ACL_XATTR_ACCESS,
|
||||
.flags = ACL_TYPE_ACCESS,
|
||||
.list = f2fs_xattr_list_acl,
|
||||
.get = f2fs_xattr_get_acl,
|
||||
.set = f2fs_xattr_set_acl,
|
||||
};
|
|
@ -0,0 +1,57 @@
|
|||
/*
|
||||
* fs/f2fs/acl.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* Portions of this code from linux/fs/ext2/acl.h
|
||||
*
|
||||
* Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#ifndef __F2FS_ACL_H__
|
||||
#define __F2FS_ACL_H__
|
||||
|
||||
#include <linux/posix_acl_xattr.h>
|
||||
|
||||
#define F2FS_ACL_VERSION 0x0001
|
||||
|
||||
struct f2fs_acl_entry {
|
||||
__le16 e_tag;
|
||||
__le16 e_perm;
|
||||
__le32 e_id;
|
||||
};
|
||||
|
||||
struct f2fs_acl_entry_short {
|
||||
__le16 e_tag;
|
||||
__le16 e_perm;
|
||||
};
|
||||
|
||||
struct f2fs_acl_header {
|
||||
__le32 a_version;
|
||||
};
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
|
||||
extern struct posix_acl *f2fs_get_acl(struct inode *inode, int type);
|
||||
extern int f2fs_acl_chmod(struct inode *inode);
|
||||
extern int f2fs_init_acl(struct inode *inode, struct inode *dir);
|
||||
#else
|
||||
#define f2fs_check_acl NULL
|
||||
#define f2fs_get_acl NULL
|
||||
#define f2fs_set_acl NULL
|
||||
|
||||
static inline int f2fs_acl_chmod(struct inode *inode)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int f2fs_init_acl(struct inode *inode, struct inode *dir)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
#endif /* __F2FS_ACL_H__ */
|
|
@ -0,0 +1,794 @@
|
|||
/*
|
||||
* fs/f2fs/checkpoint.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/mpage.h>
|
||||
#include <linux/writeback.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/pagevec.h>
|
||||
#include <linux/swap.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "segment.h"
|
||||
|
||||
static struct kmem_cache *orphan_entry_slab;
|
||||
static struct kmem_cache *inode_entry_slab;
|
||||
|
||||
/*
|
||||
* We guarantee no failure on the returned page.
|
||||
*/
|
||||
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
||||
{
|
||||
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
||||
struct page *page = NULL;
|
||||
repeat:
|
||||
page = grab_cache_page(mapping, index);
|
||||
if (!page) {
|
||||
cond_resched();
|
||||
goto repeat;
|
||||
}
|
||||
|
||||
/* We wait writeback only inside grab_meta_page() */
|
||||
wait_on_page_writeback(page);
|
||||
SetPageUptodate(page);
|
||||
return page;
|
||||
}
|
||||
|
||||
/*
|
||||
* We guarantee no failure on the returned page.
|
||||
*/
|
||||
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
||||
{
|
||||
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
||||
struct page *page;
|
||||
repeat:
|
||||
page = grab_cache_page(mapping, index);
|
||||
if (!page) {
|
||||
cond_resched();
|
||||
goto repeat;
|
||||
}
|
||||
if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
|
||||
f2fs_put_page(page, 1);
|
||||
goto repeat;
|
||||
}
|
||||
mark_page_accessed(page);
|
||||
|
||||
/* We do not allow returning an errorneous page */
|
||||
return page;
|
||||
}
|
||||
|
||||
static int f2fs_write_meta_page(struct page *page,
|
||||
struct writeback_control *wbc)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
int err;
|
||||
|
||||
wait_on_page_writeback(page);
|
||||
|
||||
err = write_meta_page(sbi, page, wbc);
|
||||
if (err) {
|
||||
wbc->pages_skipped++;
|
||||
set_page_dirty(page);
|
||||
}
|
||||
|
||||
dec_page_count(sbi, F2FS_DIRTY_META);
|
||||
|
||||
/* In this case, we should not unlock this page */
|
||||
if (err != AOP_WRITEPAGE_ACTIVATE)
|
||||
unlock_page(page);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_write_meta_pages(struct address_space *mapping,
|
||||
struct writeback_control *wbc)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
||||
struct block_device *bdev = sbi->sb->s_bdev;
|
||||
long written;
|
||||
|
||||
if (wbc->for_kupdate)
|
||||
return 0;
|
||||
|
||||
if (get_pages(sbi, F2FS_DIRTY_META) == 0)
|
||||
return 0;
|
||||
|
||||
/* if mounting is failed, skip writing node pages */
|
||||
mutex_lock(&sbi->cp_mutex);
|
||||
written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
|
||||
mutex_unlock(&sbi->cp_mutex);
|
||||
wbc->nr_to_write -= written;
|
||||
return 0;
|
||||
}
|
||||
|
||||
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
|
||||
long nr_to_write)
|
||||
{
|
||||
struct address_space *mapping = sbi->meta_inode->i_mapping;
|
||||
pgoff_t index = 0, end = LONG_MAX;
|
||||
struct pagevec pvec;
|
||||
long nwritten = 0;
|
||||
struct writeback_control wbc = {
|
||||
.for_reclaim = 0,
|
||||
};
|
||||
|
||||
pagevec_init(&pvec, 0);
|
||||
|
||||
while (index <= end) {
|
||||
int i, nr_pages;
|
||||
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
|
||||
PAGECACHE_TAG_DIRTY,
|
||||
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
|
||||
if (nr_pages == 0)
|
||||
break;
|
||||
|
||||
for (i = 0; i < nr_pages; i++) {
|
||||
struct page *page = pvec.pages[i];
|
||||
lock_page(page);
|
||||
BUG_ON(page->mapping != mapping);
|
||||
BUG_ON(!PageDirty(page));
|
||||
clear_page_dirty_for_io(page);
|
||||
f2fs_write_meta_page(page, &wbc);
|
||||
if (nwritten++ >= nr_to_write)
|
||||
break;
|
||||
}
|
||||
pagevec_release(&pvec);
|
||||
cond_resched();
|
||||
}
|
||||
|
||||
if (nwritten)
|
||||
f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
|
||||
|
||||
return nwritten;
|
||||
}
|
||||
|
||||
static int f2fs_set_meta_page_dirty(struct page *page)
|
||||
{
|
||||
struct address_space *mapping = page->mapping;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
|
||||
|
||||
SetPageUptodate(page);
|
||||
if (!PageDirty(page)) {
|
||||
__set_page_dirty_nobuffers(page);
|
||||
inc_page_count(sbi, F2FS_DIRTY_META);
|
||||
F2FS_SET_SB_DIRT(sbi);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct address_space_operations f2fs_meta_aops = {
|
||||
.writepage = f2fs_write_meta_page,
|
||||
.writepages = f2fs_write_meta_pages,
|
||||
.set_page_dirty = f2fs_set_meta_page_dirty,
|
||||
};
|
||||
|
||||
int check_orphan_space(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
unsigned int max_orphans;
|
||||
int err = 0;
|
||||
|
||||
/*
|
||||
* considering 512 blocks in a segment 5 blocks are needed for cp
|
||||
* and log segment summaries. Remaining blocks are used to keep
|
||||
* orphan entries with the limitation one reserved segment
|
||||
* for cp pack we can have max 1020*507 orphan entries
|
||||
*/
|
||||
max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
|
||||
mutex_lock(&sbi->orphan_inode_mutex);
|
||||
if (sbi->n_orphans >= max_orphans)
|
||||
err = -ENOSPC;
|
||||
mutex_unlock(&sbi->orphan_inode_mutex);
|
||||
return err;
|
||||
}
|
||||
|
||||
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
||||
{
|
||||
struct list_head *head, *this;
|
||||
struct orphan_inode_entry *new = NULL, *orphan = NULL;
|
||||
|
||||
mutex_lock(&sbi->orphan_inode_mutex);
|
||||
head = &sbi->orphan_inode_list;
|
||||
list_for_each(this, head) {
|
||||
orphan = list_entry(this, struct orphan_inode_entry, list);
|
||||
if (orphan->ino == ino)
|
||||
goto out;
|
||||
if (orphan->ino > ino)
|
||||
break;
|
||||
orphan = NULL;
|
||||
}
|
||||
retry:
|
||||
new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
|
||||
if (!new) {
|
||||
cond_resched();
|
||||
goto retry;
|
||||
}
|
||||
new->ino = ino;
|
||||
INIT_LIST_HEAD(&new->list);
|
||||
|
||||
/* add new_oentry into list which is sorted by inode number */
|
||||
if (orphan) {
|
||||
struct orphan_inode_entry *prev;
|
||||
|
||||
/* get previous entry */
|
||||
prev = list_entry(orphan->list.prev, typeof(*prev), list);
|
||||
if (&prev->list != head)
|
||||
/* insert new orphan inode entry */
|
||||
list_add(&new->list, &prev->list);
|
||||
else
|
||||
list_add(&new->list, head);
|
||||
} else {
|
||||
list_add_tail(&new->list, head);
|
||||
}
|
||||
sbi->n_orphans++;
|
||||
out:
|
||||
mutex_unlock(&sbi->orphan_inode_mutex);
|
||||
}
|
||||
|
||||
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
||||
{
|
||||
struct list_head *this, *next, *head;
|
||||
struct orphan_inode_entry *orphan;
|
||||
|
||||
mutex_lock(&sbi->orphan_inode_mutex);
|
||||
head = &sbi->orphan_inode_list;
|
||||
list_for_each_safe(this, next, head) {
|
||||
orphan = list_entry(this, struct orphan_inode_entry, list);
|
||||
if (orphan->ino == ino) {
|
||||
list_del(&orphan->list);
|
||||
kmem_cache_free(orphan_entry_slab, orphan);
|
||||
sbi->n_orphans--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
mutex_unlock(&sbi->orphan_inode_mutex);
|
||||
}
|
||||
|
||||
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
||||
{
|
||||
struct inode *inode = f2fs_iget(sbi->sb, ino);
|
||||
BUG_ON(IS_ERR(inode));
|
||||
clear_nlink(inode);
|
||||
|
||||
/* truncate all the data during iput */
|
||||
iput(inode);
|
||||
}
|
||||
|
||||
int recover_orphan_inodes(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
block_t start_blk, orphan_blkaddr, i, j;
|
||||
|
||||
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
|
||||
return 0;
|
||||
|
||||
sbi->por_doing = 1;
|
||||
start_blk = __start_cp_addr(sbi) + 1;
|
||||
orphan_blkaddr = __start_sum_addr(sbi) - 1;
|
||||
|
||||
for (i = 0; i < orphan_blkaddr; i++) {
|
||||
struct page *page = get_meta_page(sbi, start_blk + i);
|
||||
struct f2fs_orphan_block *orphan_blk;
|
||||
|
||||
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
||||
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
|
||||
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
|
||||
recover_orphan_inode(sbi, ino);
|
||||
}
|
||||
f2fs_put_page(page, 1);
|
||||
}
|
||||
/* clear Orphan Flag */
|
||||
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
|
||||
sbi->por_doing = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
||||
{
|
||||
struct list_head *head, *this, *next;
|
||||
struct f2fs_orphan_block *orphan_blk = NULL;
|
||||
struct page *page = NULL;
|
||||
unsigned int nentries = 0;
|
||||
unsigned short index = 1;
|
||||
unsigned short orphan_blocks;
|
||||
|
||||
orphan_blocks = (unsigned short)((sbi->n_orphans +
|
||||
(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
|
||||
|
||||
mutex_lock(&sbi->orphan_inode_mutex);
|
||||
head = &sbi->orphan_inode_list;
|
||||
|
||||
/* loop for each orphan inode entry and write them in Jornal block */
|
||||
list_for_each_safe(this, next, head) {
|
||||
struct orphan_inode_entry *orphan;
|
||||
|
||||
orphan = list_entry(this, struct orphan_inode_entry, list);
|
||||
|
||||
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
|
||||
/*
|
||||
* an orphan block is full of 1020 entries,
|
||||
* then we need to flush current orphan blocks
|
||||
* and bring another one in memory
|
||||
*/
|
||||
orphan_blk->blk_addr = cpu_to_le16(index);
|
||||
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
||||
orphan_blk->entry_count = cpu_to_le32(nentries);
|
||||
set_page_dirty(page);
|
||||
f2fs_put_page(page, 1);
|
||||
index++;
|
||||
start_blk++;
|
||||
nentries = 0;
|
||||
page = NULL;
|
||||
}
|
||||
if (page)
|
||||
goto page_exist;
|
||||
|
||||
page = grab_meta_page(sbi, start_blk);
|
||||
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
||||
memset(orphan_blk, 0, sizeof(*orphan_blk));
|
||||
page_exist:
|
||||
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
|
||||
}
|
||||
if (!page)
|
||||
goto end;
|
||||
|
||||
orphan_blk->blk_addr = cpu_to_le16(index);
|
||||
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
||||
orphan_blk->entry_count = cpu_to_le32(nentries);
|
||||
set_page_dirty(page);
|
||||
f2fs_put_page(page, 1);
|
||||
end:
|
||||
mutex_unlock(&sbi->orphan_inode_mutex);
|
||||
}
|
||||
|
||||
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
|
||||
block_t cp_addr, unsigned long long *version)
|
||||
{
|
||||
struct page *cp_page_1, *cp_page_2 = NULL;
|
||||
unsigned long blk_size = sbi->blocksize;
|
||||
struct f2fs_checkpoint *cp_block;
|
||||
unsigned long long cur_version = 0, pre_version = 0;
|
||||
unsigned int crc = 0;
|
||||
size_t crc_offset;
|
||||
|
||||
/* Read the 1st cp block in this CP pack */
|
||||
cp_page_1 = get_meta_page(sbi, cp_addr);
|
||||
|
||||
/* get the version number */
|
||||
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
|
||||
crc_offset = le32_to_cpu(cp_block->checksum_offset);
|
||||
if (crc_offset >= blk_size)
|
||||
goto invalid_cp1;
|
||||
|
||||
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
|
||||
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
|
||||
goto invalid_cp1;
|
||||
|
||||
pre_version = le64_to_cpu(cp_block->checkpoint_ver);
|
||||
|
||||
/* Read the 2nd cp block in this CP pack */
|
||||
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
|
||||
cp_page_2 = get_meta_page(sbi, cp_addr);
|
||||
|
||||
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
|
||||
crc_offset = le32_to_cpu(cp_block->checksum_offset);
|
||||
if (crc_offset >= blk_size)
|
||||
goto invalid_cp2;
|
||||
|
||||
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
|
||||
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
|
||||
goto invalid_cp2;
|
||||
|
||||
cur_version = le64_to_cpu(cp_block->checkpoint_ver);
|
||||
|
||||
if (cur_version == pre_version) {
|
||||
*version = cur_version;
|
||||
f2fs_put_page(cp_page_2, 1);
|
||||
return cp_page_1;
|
||||
}
|
||||
invalid_cp2:
|
||||
f2fs_put_page(cp_page_2, 1);
|
||||
invalid_cp1:
|
||||
f2fs_put_page(cp_page_1, 1);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_checkpoint *cp_block;
|
||||
struct f2fs_super_block *fsb = sbi->raw_super;
|
||||
struct page *cp1, *cp2, *cur_page;
|
||||
unsigned long blk_size = sbi->blocksize;
|
||||
unsigned long long cp1_version = 0, cp2_version = 0;
|
||||
unsigned long long cp_start_blk_no;
|
||||
|
||||
sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
|
||||
if (!sbi->ckpt)
|
||||
return -ENOMEM;
|
||||
/*
|
||||
* Finding out valid cp block involves read both
|
||||
* sets( cp pack1 and cp pack 2)
|
||||
*/
|
||||
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
||||
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
|
||||
|
||||
/* The second checkpoint pack should start at the next segment */
|
||||
cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
|
||||
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
|
||||
|
||||
if (cp1 && cp2) {
|
||||
if (ver_after(cp2_version, cp1_version))
|
||||
cur_page = cp2;
|
||||
else
|
||||
cur_page = cp1;
|
||||
} else if (cp1) {
|
||||
cur_page = cp1;
|
||||
} else if (cp2) {
|
||||
cur_page = cp2;
|
||||
} else {
|
||||
goto fail_no_cp;
|
||||
}
|
||||
|
||||
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
|
||||
memcpy(sbi->ckpt, cp_block, blk_size);
|
||||
|
||||
f2fs_put_page(cp1, 1);
|
||||
f2fs_put_page(cp2, 1);
|
||||
return 0;
|
||||
|
||||
fail_no_cp:
|
||||
kfree(sbi->ckpt);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
void set_dirty_dir_page(struct inode *inode, struct page *page)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct list_head *head = &sbi->dir_inode_list;
|
||||
struct dir_inode_entry *new;
|
||||
struct list_head *this;
|
||||
|
||||
if (!S_ISDIR(inode->i_mode))
|
||||
return;
|
||||
retry:
|
||||
new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
|
||||
if (!new) {
|
||||
cond_resched();
|
||||
goto retry;
|
||||
}
|
||||
new->inode = inode;
|
||||
INIT_LIST_HEAD(&new->list);
|
||||
|
||||
spin_lock(&sbi->dir_inode_lock);
|
||||
list_for_each(this, head) {
|
||||
struct dir_inode_entry *entry;
|
||||
entry = list_entry(this, struct dir_inode_entry, list);
|
||||
if (entry->inode == inode) {
|
||||
kmem_cache_free(inode_entry_slab, new);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
list_add_tail(&new->list, head);
|
||||
sbi->n_dirty_dirs++;
|
||||
|
||||
BUG_ON(!S_ISDIR(inode->i_mode));
|
||||
out:
|
||||
inc_page_count(sbi, F2FS_DIRTY_DENTS);
|
||||
inode_inc_dirty_dents(inode);
|
||||
SetPagePrivate(page);
|
||||
|
||||
spin_unlock(&sbi->dir_inode_lock);
|
||||
}
|
||||
|
||||
void remove_dirty_dir_inode(struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct list_head *head = &sbi->dir_inode_list;
|
||||
struct list_head *this;
|
||||
|
||||
if (!S_ISDIR(inode->i_mode))
|
||||
return;
|
||||
|
||||
spin_lock(&sbi->dir_inode_lock);
|
||||
if (atomic_read(&F2FS_I(inode)->dirty_dents))
|
||||
goto out;
|
||||
|
||||
list_for_each(this, head) {
|
||||
struct dir_inode_entry *entry;
|
||||
entry = list_entry(this, struct dir_inode_entry, list);
|
||||
if (entry->inode == inode) {
|
||||
list_del(&entry->list);
|
||||
kmem_cache_free(inode_entry_slab, entry);
|
||||
sbi->n_dirty_dirs--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
out:
|
||||
spin_unlock(&sbi->dir_inode_lock);
|
||||
}
|
||||
|
||||
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct list_head *head = &sbi->dir_inode_list;
|
||||
struct dir_inode_entry *entry;
|
||||
struct inode *inode;
|
||||
retry:
|
||||
spin_lock(&sbi->dir_inode_lock);
|
||||
if (list_empty(head)) {
|
||||
spin_unlock(&sbi->dir_inode_lock);
|
||||
return;
|
||||
}
|
||||
entry = list_entry(head->next, struct dir_inode_entry, list);
|
||||
inode = igrab(entry->inode);
|
||||
spin_unlock(&sbi->dir_inode_lock);
|
||||
if (inode) {
|
||||
filemap_flush(inode->i_mapping);
|
||||
iput(inode);
|
||||
} else {
|
||||
/*
|
||||
* We should submit bio, since it exists several
|
||||
* wribacking dentry pages in the freeing inode.
|
||||
*/
|
||||
f2fs_submit_bio(sbi, DATA, true);
|
||||
}
|
||||
goto retry;
|
||||
}
|
||||
|
||||
/*
|
||||
* Freeze all the FS-operations for checkpoint.
|
||||
*/
|
||||
void block_operations(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
int t;
|
||||
struct writeback_control wbc = {
|
||||
.sync_mode = WB_SYNC_ALL,
|
||||
.nr_to_write = LONG_MAX,
|
||||
.for_reclaim = 0,
|
||||
};
|
||||
|
||||
/* Stop renaming operation */
|
||||
mutex_lock_op(sbi, RENAME);
|
||||
mutex_lock_op(sbi, DENTRY_OPS);
|
||||
|
||||
retry_dents:
|
||||
/* write all the dirty dentry pages */
|
||||
sync_dirty_dir_inodes(sbi);
|
||||
|
||||
mutex_lock_op(sbi, DATA_WRITE);
|
||||
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
|
||||
mutex_unlock_op(sbi, DATA_WRITE);
|
||||
goto retry_dents;
|
||||
}
|
||||
|
||||
/* block all the operations */
|
||||
for (t = DATA_NEW; t <= NODE_TRUNC; t++)
|
||||
mutex_lock_op(sbi, t);
|
||||
|
||||
mutex_lock(&sbi->write_inode);
|
||||
|
||||
/*
|
||||
* POR: we should ensure that there is no dirty node pages
|
||||
* until finishing nat/sit flush.
|
||||
*/
|
||||
retry:
|
||||
sync_node_pages(sbi, 0, &wbc);
|
||||
|
||||
mutex_lock_op(sbi, NODE_WRITE);
|
||||
|
||||
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
|
||||
mutex_unlock_op(sbi, NODE_WRITE);
|
||||
goto retry;
|
||||
}
|
||||
mutex_unlock(&sbi->write_inode);
|
||||
}
|
||||
|
||||
static void unblock_operations(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
int t;
|
||||
for (t = NODE_WRITE; t >= RENAME; t--)
|
||||
mutex_unlock_op(sbi, t);
|
||||
}
|
||||
|
||||
static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
|
||||
{
|
||||
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
||||
nid_t last_nid = 0;
|
||||
block_t start_blk;
|
||||
struct page *cp_page;
|
||||
unsigned int data_sum_blocks, orphan_blocks;
|
||||
unsigned int crc32 = 0;
|
||||
void *kaddr;
|
||||
int i;
|
||||
|
||||
/* Flush all the NAT/SIT pages */
|
||||
while (get_pages(sbi, F2FS_DIRTY_META))
|
||||
sync_meta_pages(sbi, META, LONG_MAX);
|
||||
|
||||
next_free_nid(sbi, &last_nid);
|
||||
|
||||
/*
|
||||
* modify checkpoint
|
||||
* version number is already updated
|
||||
*/
|
||||
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
|
||||
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
|
||||
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
|
||||
for (i = 0; i < 3; i++) {
|
||||
ckpt->cur_node_segno[i] =
|
||||
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
|
||||
ckpt->cur_node_blkoff[i] =
|
||||
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
|
||||
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
|
||||
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
|
||||
}
|
||||
for (i = 0; i < 3; i++) {
|
||||
ckpt->cur_data_segno[i] =
|
||||
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
|
||||
ckpt->cur_data_blkoff[i] =
|
||||
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
|
||||
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
|
||||
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
|
||||
}
|
||||
|
||||
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
|
||||
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
|
||||
ckpt->next_free_nid = cpu_to_le32(last_nid);
|
||||
|
||||
/* 2 cp + n data seg summary + orphan inode blocks */
|
||||
data_sum_blocks = npages_for_summary_flush(sbi);
|
||||
if (data_sum_blocks < 3)
|
||||
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
||||
else
|
||||
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
||||
|
||||
orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
|
||||
/ F2FS_ORPHANS_PER_BLOCK;
|
||||
ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
|
||||
|
||||
if (is_umount) {
|
||||
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
||||
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
|
||||
data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
|
||||
} else {
|
||||
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
||||
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
|
||||
data_sum_blocks + orphan_blocks);
|
||||
}
|
||||
|
||||
if (sbi->n_orphans)
|
||||
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
||||
else
|
||||
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
||||
|
||||
/* update SIT/NAT bitmap */
|
||||
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
|
||||
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
|
||||
|
||||
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
|
||||
*(__le32 *)((unsigned char *)ckpt +
|
||||
le32_to_cpu(ckpt->checksum_offset))
|
||||
= cpu_to_le32(crc32);
|
||||
|
||||
start_blk = __start_cp_addr(sbi);
|
||||
|
||||
/* write out checkpoint buffer at block 0 */
|
||||
cp_page = grab_meta_page(sbi, start_blk++);
|
||||
kaddr = page_address(cp_page);
|
||||
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
|
||||
set_page_dirty(cp_page);
|
||||
f2fs_put_page(cp_page, 1);
|
||||
|
||||
if (sbi->n_orphans) {
|
||||
write_orphan_inodes(sbi, start_blk);
|
||||
start_blk += orphan_blocks;
|
||||
}
|
||||
|
||||
write_data_summaries(sbi, start_blk);
|
||||
start_blk += data_sum_blocks;
|
||||
if (is_umount) {
|
||||
write_node_summaries(sbi, start_blk);
|
||||
start_blk += NR_CURSEG_NODE_TYPE;
|
||||
}
|
||||
|
||||
/* writeout checkpoint block */
|
||||
cp_page = grab_meta_page(sbi, start_blk);
|
||||
kaddr = page_address(cp_page);
|
||||
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
|
||||
set_page_dirty(cp_page);
|
||||
f2fs_put_page(cp_page, 1);
|
||||
|
||||
/* wait for previous submitted node/meta pages writeback */
|
||||
while (get_pages(sbi, F2FS_WRITEBACK))
|
||||
congestion_wait(BLK_RW_ASYNC, HZ / 50);
|
||||
|
||||
filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
|
||||
filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
|
||||
|
||||
/* update user_block_counts */
|
||||
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
||||
sbi->alloc_valid_block_count = 0;
|
||||
|
||||
/* Here, we only have one bio having CP pack */
|
||||
if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))
|
||||
sbi->sb->s_flags |= MS_RDONLY;
|
||||
else
|
||||
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
|
||||
|
||||
clear_prefree_segments(sbi);
|
||||
F2FS_RESET_SB_DIRT(sbi);
|
||||
}
|
||||
|
||||
/*
|
||||
* We guarantee that this checkpoint procedure should not fail.
|
||||
*/
|
||||
void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
|
||||
{
|
||||
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
||||
unsigned long long ckpt_ver;
|
||||
|
||||
if (!blocked) {
|
||||
mutex_lock(&sbi->cp_mutex);
|
||||
block_operations(sbi);
|
||||
}
|
||||
|
||||
f2fs_submit_bio(sbi, DATA, true);
|
||||
f2fs_submit_bio(sbi, NODE, true);
|
||||
f2fs_submit_bio(sbi, META, true);
|
||||
|
||||
/*
|
||||
* update checkpoint pack index
|
||||
* Increase the version number so that
|
||||
* SIT entries and seg summaries are written at correct place
|
||||
*/
|
||||
ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
|
||||
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
|
||||
|
||||
/* write cached NAT/SIT entries to NAT/SIT area */
|
||||
flush_nat_entries(sbi);
|
||||
flush_sit_entries(sbi);
|
||||
|
||||
reset_victim_segmap(sbi);
|
||||
|
||||
/* unlock all the fs_lock[] in do_checkpoint() */
|
||||
do_checkpoint(sbi, is_umount);
|
||||
|
||||
unblock_operations(sbi);
|
||||
mutex_unlock(&sbi->cp_mutex);
|
||||
}
|
||||
|
||||
void init_orphan_info(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
mutex_init(&sbi->orphan_inode_mutex);
|
||||
INIT_LIST_HEAD(&sbi->orphan_inode_list);
|
||||
sbi->n_orphans = 0;
|
||||
}
|
||||
|
||||
int create_checkpoint_caches(void)
|
||||
{
|
||||
orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
|
||||
sizeof(struct orphan_inode_entry), NULL);
|
||||
if (unlikely(!orphan_entry_slab))
|
||||
return -ENOMEM;
|
||||
inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
|
||||
sizeof(struct dir_inode_entry), NULL);
|
||||
if (unlikely(!inode_entry_slab)) {
|
||||
kmem_cache_destroy(orphan_entry_slab);
|
||||
return -ENOMEM;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void destroy_checkpoint_caches(void)
|
||||
{
|
||||
kmem_cache_destroy(orphan_entry_slab);
|
||||
kmem_cache_destroy(inode_entry_slab);
|
||||
}
|
|
@ -0,0 +1,702 @@
|
|||
/*
|
||||
* fs/f2fs/data.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/mpage.h>
|
||||
#include <linux/writeback.h>
|
||||
#include <linux/backing-dev.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/bio.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "segment.h"
|
||||
|
||||
/*
|
||||
* Lock ordering for the change of data block address:
|
||||
* ->data_page
|
||||
* ->node_page
|
||||
* update block addresses in the node page
|
||||
*/
|
||||
static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
|
||||
{
|
||||
struct f2fs_node *rn;
|
||||
__le32 *addr_array;
|
||||
struct page *node_page = dn->node_page;
|
||||
unsigned int ofs_in_node = dn->ofs_in_node;
|
||||
|
||||
wait_on_page_writeback(node_page);
|
||||
|
||||
rn = (struct f2fs_node *)page_address(node_page);
|
||||
|
||||
/* Get physical address of data block */
|
||||
addr_array = blkaddr_in_node(rn);
|
||||
addr_array[ofs_in_node] = cpu_to_le32(new_addr);
|
||||
set_page_dirty(node_page);
|
||||
}
|
||||
|
||||
int reserve_new_block(struct dnode_of_data *dn)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
||||
|
||||
if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
|
||||
return -EPERM;
|
||||
if (!inc_valid_block_count(sbi, dn->inode, 1))
|
||||
return -ENOSPC;
|
||||
|
||||
__set_data_blkaddr(dn, NEW_ADDR);
|
||||
dn->data_blkaddr = NEW_ADDR;
|
||||
sync_inode_page(dn);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
|
||||
struct buffer_head *bh_result)
|
||||
{
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
pgoff_t start_fofs, end_fofs;
|
||||
block_t start_blkaddr;
|
||||
|
||||
read_lock(&fi->ext.ext_lock);
|
||||
if (fi->ext.len == 0) {
|
||||
read_unlock(&fi->ext.ext_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
sbi->total_hit_ext++;
|
||||
start_fofs = fi->ext.fofs;
|
||||
end_fofs = fi->ext.fofs + fi->ext.len - 1;
|
||||
start_blkaddr = fi->ext.blk_addr;
|
||||
|
||||
if (pgofs >= start_fofs && pgofs <= end_fofs) {
|
||||
unsigned int blkbits = inode->i_sb->s_blocksize_bits;
|
||||
size_t count;
|
||||
|
||||
clear_buffer_new(bh_result);
|
||||
map_bh(bh_result, inode->i_sb,
|
||||
start_blkaddr + pgofs - start_fofs);
|
||||
count = end_fofs - pgofs + 1;
|
||||
if (count < (UINT_MAX >> blkbits))
|
||||
bh_result->b_size = (count << blkbits);
|
||||
else
|
||||
bh_result->b_size = UINT_MAX;
|
||||
|
||||
sbi->read_hit_ext++;
|
||||
read_unlock(&fi->ext.ext_lock);
|
||||
return 1;
|
||||
}
|
||||
read_unlock(&fi->ext.ext_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
|
||||
{
|
||||
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
|
||||
pgoff_t fofs, start_fofs, end_fofs;
|
||||
block_t start_blkaddr, end_blkaddr;
|
||||
|
||||
BUG_ON(blk_addr == NEW_ADDR);
|
||||
fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
|
||||
|
||||
/* Update the page address in the parent node */
|
||||
__set_data_blkaddr(dn, blk_addr);
|
||||
|
||||
write_lock(&fi->ext.ext_lock);
|
||||
|
||||
start_fofs = fi->ext.fofs;
|
||||
end_fofs = fi->ext.fofs + fi->ext.len - 1;
|
||||
start_blkaddr = fi->ext.blk_addr;
|
||||
end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
|
||||
|
||||
/* Drop and initialize the matched extent */
|
||||
if (fi->ext.len == 1 && fofs == start_fofs)
|
||||
fi->ext.len = 0;
|
||||
|
||||
/* Initial extent */
|
||||
if (fi->ext.len == 0) {
|
||||
if (blk_addr != NULL_ADDR) {
|
||||
fi->ext.fofs = fofs;
|
||||
fi->ext.blk_addr = blk_addr;
|
||||
fi->ext.len = 1;
|
||||
}
|
||||
goto end_update;
|
||||
}
|
||||
|
||||
/* Frone merge */
|
||||
if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
|
||||
fi->ext.fofs--;
|
||||
fi->ext.blk_addr--;
|
||||
fi->ext.len++;
|
||||
goto end_update;
|
||||
}
|
||||
|
||||
/* Back merge */
|
||||
if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
|
||||
fi->ext.len++;
|
||||
goto end_update;
|
||||
}
|
||||
|
||||
/* Split the existing extent */
|
||||
if (fi->ext.len > 1 &&
|
||||
fofs >= start_fofs && fofs <= end_fofs) {
|
||||
if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
|
||||
fi->ext.len = fofs - start_fofs;
|
||||
} else {
|
||||
fi->ext.fofs = fofs + 1;
|
||||
fi->ext.blk_addr = start_blkaddr +
|
||||
fofs - start_fofs + 1;
|
||||
fi->ext.len -= fofs - start_fofs + 1;
|
||||
}
|
||||
goto end_update;
|
||||
}
|
||||
write_unlock(&fi->ext.ext_lock);
|
||||
return;
|
||||
|
||||
end_update:
|
||||
write_unlock(&fi->ext.ext_lock);
|
||||
sync_inode_page(dn);
|
||||
return;
|
||||
}
|
||||
|
||||
struct page *find_data_page(struct inode *inode, pgoff_t index)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct address_space *mapping = inode->i_mapping;
|
||||
struct dnode_of_data dn;
|
||||
struct page *page;
|
||||
int err;
|
||||
|
||||
page = find_get_page(mapping, index);
|
||||
if (page && PageUptodate(page))
|
||||
return page;
|
||||
f2fs_put_page(page, 0);
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, index, RDONLY_NODE);
|
||||
if (err)
|
||||
return ERR_PTR(err);
|
||||
f2fs_put_dnode(&dn);
|
||||
|
||||
if (dn.data_blkaddr == NULL_ADDR)
|
||||
return ERR_PTR(-ENOENT);
|
||||
|
||||
/* By fallocate(), there is no cached page, but with NEW_ADDR */
|
||||
if (dn.data_blkaddr == NEW_ADDR)
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
page = grab_cache_page(mapping, index);
|
||||
if (!page)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
|
||||
if (err) {
|
||||
f2fs_put_page(page, 1);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
unlock_page(page);
|
||||
return page;
|
||||
}
|
||||
|
||||
/*
|
||||
* If it tries to access a hole, return an error.
|
||||
* Because, the callers, functions in dir.c and GC, should be able to know
|
||||
* whether this page exists or not.
|
||||
*/
|
||||
struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct address_space *mapping = inode->i_mapping;
|
||||
struct dnode_of_data dn;
|
||||
struct page *page;
|
||||
int err;
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, index, RDONLY_NODE);
|
||||
if (err)
|
||||
return ERR_PTR(err);
|
||||
f2fs_put_dnode(&dn);
|
||||
|
||||
if (dn.data_blkaddr == NULL_ADDR)
|
||||
return ERR_PTR(-ENOENT);
|
||||
|
||||
page = grab_cache_page(mapping, index);
|
||||
if (!page)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
if (PageUptodate(page))
|
||||
return page;
|
||||
|
||||
BUG_ON(dn.data_blkaddr == NEW_ADDR);
|
||||
BUG_ON(dn.data_blkaddr == NULL_ADDR);
|
||||
|
||||
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
|
||||
if (err) {
|
||||
f2fs_put_page(page, 1);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
return page;
|
||||
}
|
||||
|
||||
/*
|
||||
* Caller ensures that this data page is never allocated.
|
||||
* A new zero-filled data page is allocated in the page cache.
|
||||
*/
|
||||
struct page *get_new_data_page(struct inode *inode, pgoff_t index,
|
||||
bool new_i_size)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct address_space *mapping = inode->i_mapping;
|
||||
struct page *page;
|
||||
struct dnode_of_data dn;
|
||||
int err;
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, index, 0);
|
||||
if (err)
|
||||
return ERR_PTR(err);
|
||||
|
||||
if (dn.data_blkaddr == NULL_ADDR) {
|
||||
if (reserve_new_block(&dn)) {
|
||||
f2fs_put_dnode(&dn);
|
||||
return ERR_PTR(-ENOSPC);
|
||||
}
|
||||
}
|
||||
f2fs_put_dnode(&dn);
|
||||
|
||||
page = grab_cache_page(mapping, index);
|
||||
if (!page)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
if (PageUptodate(page))
|
||||
return page;
|
||||
|
||||
if (dn.data_blkaddr == NEW_ADDR) {
|
||||
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
||||
} else {
|
||||
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
|
||||
if (err) {
|
||||
f2fs_put_page(page, 1);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
}
|
||||
SetPageUptodate(page);
|
||||
|
||||
if (new_i_size &&
|
||||
i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
|
||||
i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
|
||||
mark_inode_dirty_sync(inode);
|
||||
}
|
||||
return page;
|
||||
}
|
||||
|
||||
static void read_end_io(struct bio *bio, int err)
|
||||
{
|
||||
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
||||
struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
|
||||
|
||||
do {
|
||||
struct page *page = bvec->bv_page;
|
||||
|
||||
if (--bvec >= bio->bi_io_vec)
|
||||
prefetchw(&bvec->bv_page->flags);
|
||||
|
||||
if (uptodate) {
|
||||
SetPageUptodate(page);
|
||||
} else {
|
||||
ClearPageUptodate(page);
|
||||
SetPageError(page);
|
||||
}
|
||||
unlock_page(page);
|
||||
} while (bvec >= bio->bi_io_vec);
|
||||
kfree(bio->bi_private);
|
||||
bio_put(bio);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fill the locked page with data located in the block address.
|
||||
* Read operation is synchronous, and caller must unlock the page.
|
||||
*/
|
||||
int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
|
||||
block_t blk_addr, int type)
|
||||
{
|
||||
struct block_device *bdev = sbi->sb->s_bdev;
|
||||
bool sync = (type == READ_SYNC);
|
||||
struct bio *bio;
|
||||
|
||||
/* This page can be already read by other threads */
|
||||
if (PageUptodate(page)) {
|
||||
if (!sync)
|
||||
unlock_page(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
down_read(&sbi->bio_sem);
|
||||
|
||||
/* Allocate a new bio */
|
||||
bio = f2fs_bio_alloc(bdev, 1);
|
||||
|
||||
/* Initialize the bio */
|
||||
bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
|
||||
bio->bi_end_io = read_end_io;
|
||||
|
||||
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
|
||||
kfree(bio->bi_private);
|
||||
bio_put(bio);
|
||||
up_read(&sbi->bio_sem);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
submit_bio(type, bio);
|
||||
up_read(&sbi->bio_sem);
|
||||
|
||||
/* wait for read completion if sync */
|
||||
if (sync) {
|
||||
lock_page(page);
|
||||
if (PageError(page))
|
||||
return -EIO;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function should be used by the data read flow only where it
|
||||
* does not check the "create" flag that indicates block allocation.
|
||||
* The reason for this special functionality is to exploit VFS readahead
|
||||
* mechanism.
|
||||
*/
|
||||
static int get_data_block_ro(struct inode *inode, sector_t iblock,
|
||||
struct buffer_head *bh_result, int create)
|
||||
{
|
||||
unsigned int blkbits = inode->i_sb->s_blocksize_bits;
|
||||
unsigned maxblocks = bh_result->b_size >> blkbits;
|
||||
struct dnode_of_data dn;
|
||||
pgoff_t pgofs;
|
||||
int err;
|
||||
|
||||
/* Get the page offset from the block offset(iblock) */
|
||||
pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
|
||||
|
||||
if (check_extent_cache(inode, pgofs, bh_result))
|
||||
return 0;
|
||||
|
||||
/* When reading holes, we need its node page */
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE);
|
||||
if (err)
|
||||
return (err == -ENOENT) ? 0 : err;
|
||||
|
||||
/* It does not support data allocation */
|
||||
BUG_ON(create);
|
||||
|
||||
if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
|
||||
int i;
|
||||
unsigned int end_offset;
|
||||
|
||||
end_offset = IS_INODE(dn.node_page) ?
|
||||
ADDRS_PER_INODE :
|
||||
ADDRS_PER_BLOCK;
|
||||
|
||||
clear_buffer_new(bh_result);
|
||||
|
||||
/* Give more consecutive addresses for the read ahead */
|
||||
for (i = 0; i < end_offset - dn.ofs_in_node; i++)
|
||||
if (((datablock_addr(dn.node_page,
|
||||
dn.ofs_in_node + i))
|
||||
!= (dn.data_blkaddr + i)) || maxblocks == i)
|
||||
break;
|
||||
map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
|
||||
bh_result->b_size = (i << blkbits);
|
||||
}
|
||||
f2fs_put_dnode(&dn);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int f2fs_read_data_page(struct file *file, struct page *page)
|
||||
{
|
||||
return mpage_readpage(page, get_data_block_ro);
|
||||
}
|
||||
|
||||
static int f2fs_read_data_pages(struct file *file,
|
||||
struct address_space *mapping,
|
||||
struct list_head *pages, unsigned nr_pages)
|
||||
{
|
||||
return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
|
||||
}
|
||||
|
||||
int do_write_data_page(struct page *page)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
block_t old_blk_addr, new_blk_addr;
|
||||
struct dnode_of_data dn;
|
||||
int err = 0;
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, page->index, RDONLY_NODE);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
old_blk_addr = dn.data_blkaddr;
|
||||
|
||||
/* This page is already truncated */
|
||||
if (old_blk_addr == NULL_ADDR)
|
||||
goto out_writepage;
|
||||
|
||||
set_page_writeback(page);
|
||||
|
||||
/*
|
||||
* If current allocation needs SSR,
|
||||
* it had better in-place writes for updated data.
|
||||
*/
|
||||
if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
|
||||
need_inplace_update(inode)) {
|
||||
rewrite_data_page(F2FS_SB(inode->i_sb), page,
|
||||
old_blk_addr);
|
||||
} else {
|
||||
write_data_page(inode, page, &dn,
|
||||
old_blk_addr, &new_blk_addr);
|
||||
update_extent_cache(new_blk_addr, &dn);
|
||||
F2FS_I(inode)->data_version =
|
||||
le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
|
||||
}
|
||||
out_writepage:
|
||||
f2fs_put_dnode(&dn);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_write_data_page(struct page *page,
|
||||
struct writeback_control *wbc)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
loff_t i_size = i_size_read(inode);
|
||||
const pgoff_t end_index = ((unsigned long long) i_size)
|
||||
>> PAGE_CACHE_SHIFT;
|
||||
unsigned offset;
|
||||
int err = 0;
|
||||
|
||||
if (page->index < end_index)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* If the offset is out-of-range of file size,
|
||||
* this page does not have to be written to disk.
|
||||
*/
|
||||
offset = i_size & (PAGE_CACHE_SIZE - 1);
|
||||
if ((page->index >= end_index + 1) || !offset) {
|
||||
if (S_ISDIR(inode->i_mode)) {
|
||||
dec_page_count(sbi, F2FS_DIRTY_DENTS);
|
||||
inode_dec_dirty_dents(inode);
|
||||
}
|
||||
goto unlock_out;
|
||||
}
|
||||
|
||||
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
|
||||
out:
|
||||
if (sbi->por_doing)
|
||||
goto redirty_out;
|
||||
|
||||
if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
|
||||
goto redirty_out;
|
||||
|
||||
mutex_lock_op(sbi, DATA_WRITE);
|
||||
if (S_ISDIR(inode->i_mode)) {
|
||||
dec_page_count(sbi, F2FS_DIRTY_DENTS);
|
||||
inode_dec_dirty_dents(inode);
|
||||
}
|
||||
err = do_write_data_page(page);
|
||||
if (err && err != -ENOENT) {
|
||||
wbc->pages_skipped++;
|
||||
set_page_dirty(page);
|
||||
}
|
||||
mutex_unlock_op(sbi, DATA_WRITE);
|
||||
|
||||
if (wbc->for_reclaim)
|
||||
f2fs_submit_bio(sbi, DATA, true);
|
||||
|
||||
if (err == -ENOENT)
|
||||
goto unlock_out;
|
||||
|
||||
clear_cold_data(page);
|
||||
unlock_page(page);
|
||||
|
||||
if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
|
||||
f2fs_balance_fs(sbi);
|
||||
return 0;
|
||||
|
||||
unlock_out:
|
||||
unlock_page(page);
|
||||
return (err == -ENOENT) ? 0 : err;
|
||||
|
||||
redirty_out:
|
||||
wbc->pages_skipped++;
|
||||
set_page_dirty(page);
|
||||
return AOP_WRITEPAGE_ACTIVATE;
|
||||
}
|
||||
|
||||
#define MAX_DESIRED_PAGES_WP 4096
|
||||
|
||||
static int f2fs_write_data_pages(struct address_space *mapping,
|
||||
struct writeback_control *wbc)
|
||||
{
|
||||
struct inode *inode = mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
int ret;
|
||||
long excess_nrtw = 0, desired_nrtw;
|
||||
|
||||
if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
|
||||
desired_nrtw = MAX_DESIRED_PAGES_WP;
|
||||
excess_nrtw = desired_nrtw - wbc->nr_to_write;
|
||||
wbc->nr_to_write = desired_nrtw;
|
||||
}
|
||||
|
||||
if (!S_ISDIR(inode->i_mode))
|
||||
mutex_lock(&sbi->writepages);
|
||||
ret = generic_writepages(mapping, wbc);
|
||||
if (!S_ISDIR(inode->i_mode))
|
||||
mutex_unlock(&sbi->writepages);
|
||||
f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
|
||||
|
||||
remove_dirty_dir_inode(inode);
|
||||
|
||||
wbc->nr_to_write -= excess_nrtw;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
|
||||
loff_t pos, unsigned len, unsigned flags,
|
||||
struct page **pagep, void **fsdata)
|
||||
{
|
||||
struct inode *inode = mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct page *page;
|
||||
pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
|
||||
struct dnode_of_data dn;
|
||||
int err = 0;
|
||||
|
||||
/* for nobh_write_end */
|
||||
*fsdata = NULL;
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
|
||||
page = grab_cache_page_write_begin(mapping, index, flags);
|
||||
if (!page)
|
||||
return -ENOMEM;
|
||||
*pagep = page;
|
||||
|
||||
mutex_lock_op(sbi, DATA_NEW);
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, index, 0);
|
||||
if (err) {
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
f2fs_put_page(page, 1);
|
||||
return err;
|
||||
}
|
||||
|
||||
if (dn.data_blkaddr == NULL_ADDR) {
|
||||
err = reserve_new_block(&dn);
|
||||
if (err) {
|
||||
f2fs_put_dnode(&dn);
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
f2fs_put_page(page, 1);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
f2fs_put_dnode(&dn);
|
||||
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
|
||||
if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
|
||||
return 0;
|
||||
|
||||
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
|
||||
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
|
||||
unsigned end = start + len;
|
||||
|
||||
/* Reading beyond i_size is simple: memset to zero */
|
||||
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (dn.data_blkaddr == NEW_ADDR) {
|
||||
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
||||
} else {
|
||||
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
|
||||
if (err) {
|
||||
f2fs_put_page(page, 1);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
SetPageUptodate(page);
|
||||
clear_cold_data(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
|
||||
const struct iovec *iov, loff_t offset, unsigned long nr_segs)
|
||||
{
|
||||
struct file *file = iocb->ki_filp;
|
||||
struct inode *inode = file->f_mapping->host;
|
||||
|
||||
if (rw == WRITE)
|
||||
return 0;
|
||||
|
||||
/* Needs synchronization with the cleaner */
|
||||
return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
|
||||
get_data_block_ro);
|
||||
}
|
||||
|
||||
static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
|
||||
dec_page_count(sbi, F2FS_DIRTY_DENTS);
|
||||
inode_dec_dirty_dents(inode);
|
||||
}
|
||||
ClearPagePrivate(page);
|
||||
}
|
||||
|
||||
static int f2fs_release_data_page(struct page *page, gfp_t wait)
|
||||
{
|
||||
ClearPagePrivate(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int f2fs_set_data_page_dirty(struct page *page)
|
||||
{
|
||||
struct address_space *mapping = page->mapping;
|
||||
struct inode *inode = mapping->host;
|
||||
|
||||
SetPageUptodate(page);
|
||||
if (!PageDirty(page)) {
|
||||
__set_page_dirty_nobuffers(page);
|
||||
set_dirty_dir_page(inode, page);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct address_space_operations f2fs_dblock_aops = {
|
||||
.readpage = f2fs_read_data_page,
|
||||
.readpages = f2fs_read_data_pages,
|
||||
.writepage = f2fs_write_data_page,
|
||||
.writepages = f2fs_write_data_pages,
|
||||
.write_begin = f2fs_write_begin,
|
||||
.write_end = nobh_write_end,
|
||||
.set_page_dirty = f2fs_set_data_page_dirty,
|
||||
.invalidatepage = f2fs_invalidate_data_page,
|
||||
.releasepage = f2fs_release_data_page,
|
||||
.direct_IO = f2fs_direct_IO,
|
||||
};
|
|
@ -0,0 +1,361 @@
|
|||
/*
|
||||
* f2fs debugging statistics
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
* Copyright (c) 2012 Linux Foundation
|
||||
* Copyright (c) 2012 Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/fs.h>
|
||||
#include <linux/backing-dev.h>
|
||||
#include <linux/proc_fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/debugfs.h>
|
||||
#include <linux/seq_file.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "segment.h"
|
||||
#include "gc.h"
|
||||
|
||||
static LIST_HEAD(f2fs_stat_list);
|
||||
static struct dentry *debugfs_root;
|
||||
|
||||
static void update_general_status(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_stat_info *si = sbi->stat_info;
|
||||
int i;
|
||||
|
||||
/* valid check of the segment numbers */
|
||||
si->hit_ext = sbi->read_hit_ext;
|
||||
si->total_ext = sbi->total_hit_ext;
|
||||
si->ndirty_node = get_pages(sbi, F2FS_DIRTY_NODES);
|
||||
si->ndirty_dent = get_pages(sbi, F2FS_DIRTY_DENTS);
|
||||
si->ndirty_dirs = sbi->n_dirty_dirs;
|
||||
si->ndirty_meta = get_pages(sbi, F2FS_DIRTY_META);
|
||||
si->total_count = (int)sbi->user_block_count / sbi->blocks_per_seg;
|
||||
si->rsvd_segs = reserved_segments(sbi);
|
||||
si->overp_segs = overprovision_segments(sbi);
|
||||
si->valid_count = valid_user_blocks(sbi);
|
||||
si->valid_node_count = valid_node_count(sbi);
|
||||
si->valid_inode_count = valid_inode_count(sbi);
|
||||
si->utilization = utilization(sbi);
|
||||
|
||||
si->free_segs = free_segments(sbi);
|
||||
si->free_secs = free_sections(sbi);
|
||||
si->prefree_count = prefree_segments(sbi);
|
||||
si->dirty_count = dirty_segments(sbi);
|
||||
si->node_pages = sbi->node_inode->i_mapping->nrpages;
|
||||
si->meta_pages = sbi->meta_inode->i_mapping->nrpages;
|
||||
si->nats = NM_I(sbi)->nat_cnt;
|
||||
si->sits = SIT_I(sbi)->dirty_sentries;
|
||||
si->fnids = NM_I(sbi)->fcnt;
|
||||
si->bg_gc = sbi->bg_gc;
|
||||
si->util_free = (int)(free_user_blocks(sbi) >> sbi->log_blocks_per_seg)
|
||||
* 100 / (int)(sbi->user_block_count >> sbi->log_blocks_per_seg)
|
||||
/ 2;
|
||||
si->util_valid = (int)(written_block_count(sbi) >>
|
||||
sbi->log_blocks_per_seg)
|
||||
* 100 / (int)(sbi->user_block_count >> sbi->log_blocks_per_seg)
|
||||
/ 2;
|
||||
si->util_invalid = 50 - si->util_free - si->util_valid;
|
||||
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_NODE; i++) {
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, i);
|
||||
si->curseg[i] = curseg->segno;
|
||||
si->cursec[i] = curseg->segno / sbi->segs_per_sec;
|
||||
si->curzone[i] = si->cursec[i] / sbi->secs_per_zone;
|
||||
}
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
si->segment_count[i] = sbi->segment_count[i];
|
||||
si->block_count[i] = sbi->block_count[i];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This function calculates BDF of every segments
|
||||
*/
|
||||
static void update_sit_info(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_stat_info *si = sbi->stat_info;
|
||||
unsigned int blks_per_sec, hblks_per_sec, total_vblocks, bimodal, dist;
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
unsigned int segno, vblocks;
|
||||
int ndirty = 0;
|
||||
|
||||
bimodal = 0;
|
||||
total_vblocks = 0;
|
||||
blks_per_sec = sbi->segs_per_sec * (1 << sbi->log_blocks_per_seg);
|
||||
hblks_per_sec = blks_per_sec / 2;
|
||||
mutex_lock(&sit_i->sentry_lock);
|
||||
for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
|
||||
vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
|
||||
dist = abs(vblocks - hblks_per_sec);
|
||||
bimodal += dist * dist;
|
||||
|
||||
if (vblocks > 0 && vblocks < blks_per_sec) {
|
||||
total_vblocks += vblocks;
|
||||
ndirty++;
|
||||
}
|
||||
}
|
||||
mutex_unlock(&sit_i->sentry_lock);
|
||||
dist = sbi->total_sections * hblks_per_sec * hblks_per_sec / 100;
|
||||
si->bimodal = bimodal / dist;
|
||||
if (si->dirty_count)
|
||||
si->avg_vblocks = total_vblocks / ndirty;
|
||||
else
|
||||
si->avg_vblocks = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function calculates memory footprint.
|
||||
*/
|
||||
static void update_mem_info(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_stat_info *si = sbi->stat_info;
|
||||
unsigned npages;
|
||||
|
||||
if (si->base_mem)
|
||||
goto get_cache;
|
||||
|
||||
si->base_mem = sizeof(struct f2fs_sb_info) + sbi->sb->s_blocksize;
|
||||
si->base_mem += 2 * sizeof(struct f2fs_inode_info);
|
||||
si->base_mem += sizeof(*sbi->ckpt);
|
||||
|
||||
/* build sm */
|
||||
si->base_mem += sizeof(struct f2fs_sm_info);
|
||||
|
||||
/* build sit */
|
||||
si->base_mem += sizeof(struct sit_info);
|
||||
si->base_mem += TOTAL_SEGS(sbi) * sizeof(struct seg_entry);
|
||||
si->base_mem += f2fs_bitmap_size(TOTAL_SEGS(sbi));
|
||||
si->base_mem += 2 * SIT_VBLOCK_MAP_SIZE * TOTAL_SEGS(sbi);
|
||||
if (sbi->segs_per_sec > 1)
|
||||
si->base_mem += sbi->total_sections *
|
||||
sizeof(struct sec_entry);
|
||||
si->base_mem += __bitmap_size(sbi, SIT_BITMAP);
|
||||
|
||||
/* build free segmap */
|
||||
si->base_mem += sizeof(struct free_segmap_info);
|
||||
si->base_mem += f2fs_bitmap_size(TOTAL_SEGS(sbi));
|
||||
si->base_mem += f2fs_bitmap_size(sbi->total_sections);
|
||||
|
||||
/* build curseg */
|
||||
si->base_mem += sizeof(struct curseg_info) * NR_CURSEG_TYPE;
|
||||
si->base_mem += PAGE_CACHE_SIZE * NR_CURSEG_TYPE;
|
||||
|
||||
/* build dirty segmap */
|
||||
si->base_mem += sizeof(struct dirty_seglist_info);
|
||||
si->base_mem += NR_DIRTY_TYPE * f2fs_bitmap_size(TOTAL_SEGS(sbi));
|
||||
si->base_mem += 2 * f2fs_bitmap_size(TOTAL_SEGS(sbi));
|
||||
|
||||
/* buld nm */
|
||||
si->base_mem += sizeof(struct f2fs_nm_info);
|
||||
si->base_mem += __bitmap_size(sbi, NAT_BITMAP);
|
||||
|
||||
/* build gc */
|
||||
si->base_mem += sizeof(struct f2fs_gc_kthread);
|
||||
|
||||
get_cache:
|
||||
/* free nids */
|
||||
si->cache_mem = NM_I(sbi)->fcnt;
|
||||
si->cache_mem += NM_I(sbi)->nat_cnt;
|
||||
npages = sbi->node_inode->i_mapping->nrpages;
|
||||
si->cache_mem += npages << PAGE_CACHE_SHIFT;
|
||||
npages = sbi->meta_inode->i_mapping->nrpages;
|
||||
si->cache_mem += npages << PAGE_CACHE_SHIFT;
|
||||
si->cache_mem += sbi->n_orphans * sizeof(struct orphan_inode_entry);
|
||||
si->cache_mem += sbi->n_dirty_dirs * sizeof(struct dir_inode_entry);
|
||||
}
|
||||
|
||||
static int stat_show(struct seq_file *s, void *v)
|
||||
{
|
||||
struct f2fs_stat_info *si, *next;
|
||||
int i = 0;
|
||||
int j;
|
||||
|
||||
list_for_each_entry_safe(si, next, &f2fs_stat_list, stat_list) {
|
||||
|
||||
mutex_lock(&si->stat_lock);
|
||||
if (!si->sbi) {
|
||||
mutex_unlock(&si->stat_lock);
|
||||
continue;
|
||||
}
|
||||
update_general_status(si->sbi);
|
||||
|
||||
seq_printf(s, "\n=====[ partition info. #%d ]=====\n", i++);
|
||||
seq_printf(s, "[SB: 1] [CP: 2] [NAT: %d] [SIT: %d] ",
|
||||
si->nat_area_segs, si->sit_area_segs);
|
||||
seq_printf(s, "[SSA: %d] [MAIN: %d",
|
||||
si->ssa_area_segs, si->main_area_segs);
|
||||
seq_printf(s, "(OverProv:%d Resv:%d)]\n\n",
|
||||
si->overp_segs, si->rsvd_segs);
|
||||
seq_printf(s, "Utilization: %d%% (%d valid blocks)\n",
|
||||
si->utilization, si->valid_count);
|
||||
seq_printf(s, " - Node: %u (Inode: %u, ",
|
||||
si->valid_node_count, si->valid_inode_count);
|
||||
seq_printf(s, "Other: %u)\n - Data: %u\n",
|
||||
si->valid_node_count - si->valid_inode_count,
|
||||
si->valid_count - si->valid_node_count);
|
||||
seq_printf(s, "\nMain area: %d segs, %d secs %d zones\n",
|
||||
si->main_area_segs, si->main_area_sections,
|
||||
si->main_area_zones);
|
||||
seq_printf(s, " - COLD data: %d, %d, %d\n",
|
||||
si->curseg[CURSEG_COLD_DATA],
|
||||
si->cursec[CURSEG_COLD_DATA],
|
||||
si->curzone[CURSEG_COLD_DATA]);
|
||||
seq_printf(s, " - WARM data: %d, %d, %d\n",
|
||||
si->curseg[CURSEG_WARM_DATA],
|
||||
si->cursec[CURSEG_WARM_DATA],
|
||||
si->curzone[CURSEG_WARM_DATA]);
|
||||
seq_printf(s, " - HOT data: %d, %d, %d\n",
|
||||
si->curseg[CURSEG_HOT_DATA],
|
||||
si->cursec[CURSEG_HOT_DATA],
|
||||
si->curzone[CURSEG_HOT_DATA]);
|
||||
seq_printf(s, " - Dir dnode: %d, %d, %d\n",
|
||||
si->curseg[CURSEG_HOT_NODE],
|
||||
si->cursec[CURSEG_HOT_NODE],
|
||||
si->curzone[CURSEG_HOT_NODE]);
|
||||
seq_printf(s, " - File dnode: %d, %d, %d\n",
|
||||
si->curseg[CURSEG_WARM_NODE],
|
||||
si->cursec[CURSEG_WARM_NODE],
|
||||
si->curzone[CURSEG_WARM_NODE]);
|
||||
seq_printf(s, " - Indir nodes: %d, %d, %d\n",
|
||||
si->curseg[CURSEG_COLD_NODE],
|
||||
si->cursec[CURSEG_COLD_NODE],
|
||||
si->curzone[CURSEG_COLD_NODE]);
|
||||
seq_printf(s, "\n - Valid: %d\n - Dirty: %d\n",
|
||||
si->main_area_segs - si->dirty_count -
|
||||
si->prefree_count - si->free_segs,
|
||||
si->dirty_count);
|
||||
seq_printf(s, " - Prefree: %d\n - Free: %d (%d)\n\n",
|
||||
si->prefree_count, si->free_segs, si->free_secs);
|
||||
seq_printf(s, "GC calls: %d (BG: %d)\n",
|
||||
si->call_count, si->bg_gc);
|
||||
seq_printf(s, " - data segments : %d\n", si->data_segs);
|
||||
seq_printf(s, " - node segments : %d\n", si->node_segs);
|
||||
seq_printf(s, "Try to move %d blocks\n", si->tot_blks);
|
||||
seq_printf(s, " - data blocks : %d\n", si->data_blks);
|
||||
seq_printf(s, " - node blocks : %d\n", si->node_blks);
|
||||
seq_printf(s, "\nExtent Hit Ratio: %d / %d\n",
|
||||
si->hit_ext, si->total_ext);
|
||||
seq_printf(s, "\nBalancing F2FS Async:\n");
|
||||
seq_printf(s, " - nodes %4d in %4d\n",
|
||||
si->ndirty_node, si->node_pages);
|
||||
seq_printf(s, " - dents %4d in dirs:%4d\n",
|
||||
si->ndirty_dent, si->ndirty_dirs);
|
||||
seq_printf(s, " - meta %4d in %4d\n",
|
||||
si->ndirty_meta, si->meta_pages);
|
||||
seq_printf(s, " - NATs %5d > %lu\n",
|
||||
si->nats, NM_WOUT_THRESHOLD);
|
||||
seq_printf(s, " - SITs: %5d\n - free_nids: %5d\n",
|
||||
si->sits, si->fnids);
|
||||
seq_printf(s, "\nDistribution of User Blocks:");
|
||||
seq_printf(s, " [ valid | invalid | free ]\n");
|
||||
seq_printf(s, " [");
|
||||
|
||||
for (j = 0; j < si->util_valid; j++)
|
||||
seq_printf(s, "-");
|
||||
seq_printf(s, "|");
|
||||
|
||||
for (j = 0; j < si->util_invalid; j++)
|
||||
seq_printf(s, "-");
|
||||
seq_printf(s, "|");
|
||||
|
||||
for (j = 0; j < si->util_free; j++)
|
||||
seq_printf(s, "-");
|
||||
seq_printf(s, "]\n\n");
|
||||
seq_printf(s, "SSR: %u blocks in %u segments\n",
|
||||
si->block_count[SSR], si->segment_count[SSR]);
|
||||
seq_printf(s, "LFS: %u blocks in %u segments\n",
|
||||
si->block_count[LFS], si->segment_count[LFS]);
|
||||
|
||||
/* segment usage info */
|
||||
update_sit_info(si->sbi);
|
||||
seq_printf(s, "\nBDF: %u, avg. vblocks: %u\n",
|
||||
si->bimodal, si->avg_vblocks);
|
||||
|
||||
/* memory footprint */
|
||||
update_mem_info(si->sbi);
|
||||
seq_printf(s, "\nMemory: %u KB = static: %u + cached: %u\n",
|
||||
(si->base_mem + si->cache_mem) >> 10,
|
||||
si->base_mem >> 10, si->cache_mem >> 10);
|
||||
mutex_unlock(&si->stat_lock);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int stat_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
return single_open(file, stat_show, inode->i_private);
|
||||
}
|
||||
|
||||
static const struct file_operations stat_fops = {
|
||||
.open = stat_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
static int init_stats(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
||||
struct f2fs_stat_info *si;
|
||||
|
||||
sbi->stat_info = kzalloc(sizeof(struct f2fs_stat_info), GFP_KERNEL);
|
||||
if (!sbi->stat_info)
|
||||
return -ENOMEM;
|
||||
|
||||
si = sbi->stat_info;
|
||||
mutex_init(&si->stat_lock);
|
||||
list_add_tail(&si->stat_list, &f2fs_stat_list);
|
||||
|
||||
si->all_area_segs = le32_to_cpu(raw_super->segment_count);
|
||||
si->sit_area_segs = le32_to_cpu(raw_super->segment_count_sit);
|
||||
si->nat_area_segs = le32_to_cpu(raw_super->segment_count_nat);
|
||||
si->ssa_area_segs = le32_to_cpu(raw_super->segment_count_ssa);
|
||||
si->main_area_segs = le32_to_cpu(raw_super->segment_count_main);
|
||||
si->main_area_sections = le32_to_cpu(raw_super->section_count);
|
||||
si->main_area_zones = si->main_area_sections /
|
||||
le32_to_cpu(raw_super->secs_per_zone);
|
||||
si->sbi = sbi;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int f2fs_build_stats(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
int retval;
|
||||
|
||||
retval = init_stats(sbi);
|
||||
if (retval)
|
||||
return retval;
|
||||
|
||||
if (!debugfs_root)
|
||||
debugfs_root = debugfs_create_dir("f2fs", NULL);
|
||||
|
||||
debugfs_create_file("status", S_IRUGO, debugfs_root, NULL, &stat_fops);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void f2fs_destroy_stats(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_stat_info *si = sbi->stat_info;
|
||||
|
||||
list_del(&si->stat_list);
|
||||
mutex_lock(&si->stat_lock);
|
||||
si->sbi = NULL;
|
||||
mutex_unlock(&si->stat_lock);
|
||||
kfree(sbi->stat_info);
|
||||
}
|
||||
|
||||
void destroy_root_stats(void)
|
||||
{
|
||||
debugfs_remove_recursive(debugfs_root);
|
||||
debugfs_root = NULL;
|
||||
}
|
|
@ -0,0 +1,672 @@
|
|||
/*
|
||||
* fs/f2fs/dir.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include "f2fs.h"
|
||||
#include "acl.h"
|
||||
|
||||
static unsigned long dir_blocks(struct inode *inode)
|
||||
{
|
||||
return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
|
||||
>> PAGE_CACHE_SHIFT;
|
||||
}
|
||||
|
||||
static unsigned int dir_buckets(unsigned int level)
|
||||
{
|
||||
if (level < MAX_DIR_HASH_DEPTH / 2)
|
||||
return 1 << level;
|
||||
else
|
||||
return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1);
|
||||
}
|
||||
|
||||
static unsigned int bucket_blocks(unsigned int level)
|
||||
{
|
||||
if (level < MAX_DIR_HASH_DEPTH / 2)
|
||||
return 2;
|
||||
else
|
||||
return 4;
|
||||
}
|
||||
|
||||
static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
|
||||
[F2FS_FT_UNKNOWN] = DT_UNKNOWN,
|
||||
[F2FS_FT_REG_FILE] = DT_REG,
|
||||
[F2FS_FT_DIR] = DT_DIR,
|
||||
[F2FS_FT_CHRDEV] = DT_CHR,
|
||||
[F2FS_FT_BLKDEV] = DT_BLK,
|
||||
[F2FS_FT_FIFO] = DT_FIFO,
|
||||
[F2FS_FT_SOCK] = DT_SOCK,
|
||||
[F2FS_FT_SYMLINK] = DT_LNK,
|
||||
};
|
||||
|
||||
#define S_SHIFT 12
|
||||
static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
|
||||
[S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
|
||||
[S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
|
||||
[S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
|
||||
[S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
|
||||
[S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
|
||||
[S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
|
||||
[S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
|
||||
};
|
||||
|
||||
static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode)
|
||||
{
|
||||
mode_t mode = inode->i_mode;
|
||||
de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
|
||||
}
|
||||
|
||||
static unsigned long dir_block_index(unsigned int level, unsigned int idx)
|
||||
{
|
||||
unsigned long i;
|
||||
unsigned long bidx = 0;
|
||||
|
||||
for (i = 0; i < level; i++)
|
||||
bidx += dir_buckets(i) * bucket_blocks(i);
|
||||
bidx += idx * bucket_blocks(level);
|
||||
return bidx;
|
||||
}
|
||||
|
||||
static bool early_match_name(const char *name, int namelen,
|
||||
f2fs_hash_t namehash, struct f2fs_dir_entry *de)
|
||||
{
|
||||
if (le16_to_cpu(de->name_len) != namelen)
|
||||
return false;
|
||||
|
||||
if (de->hash_code != namehash)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
|
||||
const char *name, int namelen, int *max_slots,
|
||||
f2fs_hash_t namehash, struct page **res_page)
|
||||
{
|
||||
struct f2fs_dir_entry *de;
|
||||
unsigned long bit_pos, end_pos, next_pos;
|
||||
struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
|
||||
int slots;
|
||||
|
||||
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK, 0);
|
||||
while (bit_pos < NR_DENTRY_IN_BLOCK) {
|
||||
de = &dentry_blk->dentry[bit_pos];
|
||||
slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
|
||||
|
||||
if (early_match_name(name, namelen, namehash, de)) {
|
||||
if (!memcmp(dentry_blk->filename[bit_pos],
|
||||
name, namelen)) {
|
||||
*res_page = dentry_page;
|
||||
goto found;
|
||||
}
|
||||
}
|
||||
next_pos = bit_pos + slots;
|
||||
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK, next_pos);
|
||||
if (bit_pos >= NR_DENTRY_IN_BLOCK)
|
||||
end_pos = NR_DENTRY_IN_BLOCK;
|
||||
else
|
||||
end_pos = bit_pos;
|
||||
if (*max_slots < end_pos - next_pos)
|
||||
*max_slots = end_pos - next_pos;
|
||||
}
|
||||
|
||||
de = NULL;
|
||||
kunmap(dentry_page);
|
||||
found:
|
||||
return de;
|
||||
}
|
||||
|
||||
static struct f2fs_dir_entry *find_in_level(struct inode *dir,
|
||||
unsigned int level, const char *name, int namelen,
|
||||
f2fs_hash_t namehash, struct page **res_page)
|
||||
{
|
||||
int s = GET_DENTRY_SLOTS(namelen);
|
||||
unsigned int nbucket, nblock;
|
||||
unsigned int bidx, end_block;
|
||||
struct page *dentry_page;
|
||||
struct f2fs_dir_entry *de = NULL;
|
||||
bool room = false;
|
||||
int max_slots = 0;
|
||||
|
||||
BUG_ON(level > MAX_DIR_HASH_DEPTH);
|
||||
|
||||
nbucket = dir_buckets(level);
|
||||
nblock = bucket_blocks(level);
|
||||
|
||||
bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket);
|
||||
end_block = bidx + nblock;
|
||||
|
||||
for (; bidx < end_block; bidx++) {
|
||||
/* no need to allocate new dentry pages to all the indices */
|
||||
dentry_page = find_data_page(dir, bidx);
|
||||
if (IS_ERR(dentry_page)) {
|
||||
room = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
de = find_in_block(dentry_page, name, namelen,
|
||||
&max_slots, namehash, res_page);
|
||||
if (de)
|
||||
break;
|
||||
|
||||
if (max_slots >= s)
|
||||
room = true;
|
||||
f2fs_put_page(dentry_page, 0);
|
||||
}
|
||||
|
||||
if (!de && room && F2FS_I(dir)->chash != namehash) {
|
||||
F2FS_I(dir)->chash = namehash;
|
||||
F2FS_I(dir)->clevel = level;
|
||||
}
|
||||
|
||||
return de;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find an entry in the specified directory with the wanted name.
|
||||
* It returns the page where the entry was found (as a parameter - res_page),
|
||||
* and the entry itself. Page is returned mapped and unlocked.
|
||||
* Entry is guaranteed to be valid.
|
||||
*/
|
||||
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
|
||||
struct qstr *child, struct page **res_page)
|
||||
{
|
||||
const char *name = child->name;
|
||||
int namelen = child->len;
|
||||
unsigned long npages = dir_blocks(dir);
|
||||
struct f2fs_dir_entry *de = NULL;
|
||||
f2fs_hash_t name_hash;
|
||||
unsigned int max_depth;
|
||||
unsigned int level;
|
||||
|
||||
if (npages == 0)
|
||||
return NULL;
|
||||
|
||||
*res_page = NULL;
|
||||
|
||||
name_hash = f2fs_dentry_hash(name, namelen);
|
||||
max_depth = F2FS_I(dir)->i_current_depth;
|
||||
|
||||
for (level = 0; level < max_depth; level++) {
|
||||
de = find_in_level(dir, level, name,
|
||||
namelen, name_hash, res_page);
|
||||
if (de)
|
||||
break;
|
||||
}
|
||||
if (!de && F2FS_I(dir)->chash != name_hash) {
|
||||
F2FS_I(dir)->chash = name_hash;
|
||||
F2FS_I(dir)->clevel = level - 1;
|
||||
}
|
||||
return de;
|
||||
}
|
||||
|
||||
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
|
||||
{
|
||||
struct page *page = NULL;
|
||||
struct f2fs_dir_entry *de = NULL;
|
||||
struct f2fs_dentry_block *dentry_blk = NULL;
|
||||
|
||||
page = get_lock_data_page(dir, 0);
|
||||
if (IS_ERR(page))
|
||||
return NULL;
|
||||
|
||||
dentry_blk = kmap(page);
|
||||
de = &dentry_blk->dentry[1];
|
||||
*p = page;
|
||||
unlock_page(page);
|
||||
return de;
|
||||
}
|
||||
|
||||
ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
|
||||
{
|
||||
ino_t res = 0;
|
||||
struct f2fs_dir_entry *de;
|
||||
struct page *page;
|
||||
|
||||
de = f2fs_find_entry(dir, qstr, &page);
|
||||
if (de) {
|
||||
res = le32_to_cpu(de->ino);
|
||||
kunmap(page);
|
||||
f2fs_put_page(page, 0);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
|
||||
struct page *page, struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
||||
|
||||
mutex_lock_op(sbi, DENTRY_OPS);
|
||||
lock_page(page);
|
||||
wait_on_page_writeback(page);
|
||||
de->ino = cpu_to_le32(inode->i_ino);
|
||||
set_de_type(de, inode);
|
||||
kunmap(page);
|
||||
set_page_dirty(page);
|
||||
dir->i_mtime = dir->i_ctime = CURRENT_TIME;
|
||||
mark_inode_dirty(dir);
|
||||
|
||||
/* update parent inode number before releasing dentry page */
|
||||
F2FS_I(inode)->i_pino = dir->i_ino;
|
||||
|
||||
f2fs_put_page(page, 1);
|
||||
mutex_unlock_op(sbi, DENTRY_OPS);
|
||||
}
|
||||
|
||||
void init_dent_inode(struct dentry *dentry, struct page *ipage)
|
||||
{
|
||||
struct f2fs_node *rn;
|
||||
|
||||
if (IS_ERR(ipage))
|
||||
return;
|
||||
|
||||
wait_on_page_writeback(ipage);
|
||||
|
||||
/* copy dentry info. to this inode page */
|
||||
rn = (struct f2fs_node *)page_address(ipage);
|
||||
rn->i.i_namelen = cpu_to_le32(dentry->d_name.len);
|
||||
memcpy(rn->i.i_name, dentry->d_name.name, dentry->d_name.len);
|
||||
set_page_dirty(ipage);
|
||||
}
|
||||
|
||||
static int init_inode_metadata(struct inode *inode, struct dentry *dentry)
|
||||
{
|
||||
struct inode *dir = dentry->d_parent->d_inode;
|
||||
|
||||
if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
|
||||
int err;
|
||||
err = new_inode_page(inode, dentry);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (S_ISDIR(inode->i_mode)) {
|
||||
err = f2fs_make_empty(inode, dir);
|
||||
if (err) {
|
||||
remove_inode_page(inode);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
err = f2fs_init_acl(inode, dir);
|
||||
if (err) {
|
||||
remove_inode_page(inode);
|
||||
return err;
|
||||
}
|
||||
} else {
|
||||
struct page *ipage;
|
||||
ipage = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino);
|
||||
if (IS_ERR(ipage))
|
||||
return PTR_ERR(ipage);
|
||||
init_dent_inode(dentry, ipage);
|
||||
f2fs_put_page(ipage, 1);
|
||||
}
|
||||
if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
|
||||
inc_nlink(inode);
|
||||
f2fs_write_inode(inode, NULL);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void update_parent_metadata(struct inode *dir, struct inode *inode,
|
||||
unsigned int current_depth)
|
||||
{
|
||||
bool need_dir_update = false;
|
||||
|
||||
if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
|
||||
if (S_ISDIR(inode->i_mode)) {
|
||||
inc_nlink(dir);
|
||||
need_dir_update = true;
|
||||
}
|
||||
clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
|
||||
}
|
||||
dir->i_mtime = dir->i_ctime = CURRENT_TIME;
|
||||
if (F2FS_I(dir)->i_current_depth != current_depth) {
|
||||
F2FS_I(dir)->i_current_depth = current_depth;
|
||||
need_dir_update = true;
|
||||
}
|
||||
|
||||
if (need_dir_update)
|
||||
f2fs_write_inode(dir, NULL);
|
||||
else
|
||||
mark_inode_dirty(dir);
|
||||
|
||||
if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
|
||||
clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
||||
}
|
||||
|
||||
static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots)
|
||||
{
|
||||
int bit_start = 0;
|
||||
int zero_start, zero_end;
|
||||
next:
|
||||
zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK,
|
||||
bit_start);
|
||||
if (zero_start >= NR_DENTRY_IN_BLOCK)
|
||||
return NR_DENTRY_IN_BLOCK;
|
||||
|
||||
zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK,
|
||||
zero_start);
|
||||
if (zero_end - zero_start >= slots)
|
||||
return zero_start;
|
||||
|
||||
bit_start = zero_end + 1;
|
||||
|
||||
if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
|
||||
return NR_DENTRY_IN_BLOCK;
|
||||
goto next;
|
||||
}
|
||||
|
||||
int f2fs_add_link(struct dentry *dentry, struct inode *inode)
|
||||
{
|
||||
unsigned int bit_pos;
|
||||
unsigned int level;
|
||||
unsigned int current_depth;
|
||||
unsigned long bidx, block;
|
||||
f2fs_hash_t dentry_hash;
|
||||
struct f2fs_dir_entry *de;
|
||||
unsigned int nbucket, nblock;
|
||||
struct inode *dir = dentry->d_parent->d_inode;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
||||
const char *name = dentry->d_name.name;
|
||||
int namelen = dentry->d_name.len;
|
||||
struct page *dentry_page = NULL;
|
||||
struct f2fs_dentry_block *dentry_blk = NULL;
|
||||
int slots = GET_DENTRY_SLOTS(namelen);
|
||||
int err = 0;
|
||||
int i;
|
||||
|
||||
dentry_hash = f2fs_dentry_hash(name, dentry->d_name.len);
|
||||
level = 0;
|
||||
current_depth = F2FS_I(dir)->i_current_depth;
|
||||
if (F2FS_I(dir)->chash == dentry_hash) {
|
||||
level = F2FS_I(dir)->clevel;
|
||||
F2FS_I(dir)->chash = 0;
|
||||
}
|
||||
|
||||
start:
|
||||
if (current_depth == MAX_DIR_HASH_DEPTH)
|
||||
return -ENOSPC;
|
||||
|
||||
/* Increase the depth, if required */
|
||||
if (level == current_depth)
|
||||
++current_depth;
|
||||
|
||||
nbucket = dir_buckets(level);
|
||||
nblock = bucket_blocks(level);
|
||||
|
||||
bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket));
|
||||
|
||||
for (block = bidx; block <= (bidx + nblock - 1); block++) {
|
||||
mutex_lock_op(sbi, DENTRY_OPS);
|
||||
dentry_page = get_new_data_page(dir, block, true);
|
||||
if (IS_ERR(dentry_page)) {
|
||||
mutex_unlock_op(sbi, DENTRY_OPS);
|
||||
return PTR_ERR(dentry_page);
|
||||
}
|
||||
|
||||
dentry_blk = kmap(dentry_page);
|
||||
bit_pos = room_for_filename(dentry_blk, slots);
|
||||
if (bit_pos < NR_DENTRY_IN_BLOCK)
|
||||
goto add_dentry;
|
||||
|
||||
kunmap(dentry_page);
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
mutex_unlock_op(sbi, DENTRY_OPS);
|
||||
}
|
||||
|
||||
/* Move to next level to find the empty slot for new dentry */
|
||||
++level;
|
||||
goto start;
|
||||
add_dentry:
|
||||
err = init_inode_metadata(inode, dentry);
|
||||
if (err)
|
||||
goto fail;
|
||||
|
||||
wait_on_page_writeback(dentry_page);
|
||||
|
||||
de = &dentry_blk->dentry[bit_pos];
|
||||
de->hash_code = dentry_hash;
|
||||
de->name_len = cpu_to_le16(namelen);
|
||||
memcpy(dentry_blk->filename[bit_pos], name, namelen);
|
||||
de->ino = cpu_to_le32(inode->i_ino);
|
||||
set_de_type(de, inode);
|
||||
for (i = 0; i < slots; i++)
|
||||
test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
|
||||
set_page_dirty(dentry_page);
|
||||
|
||||
update_parent_metadata(dir, inode, current_depth);
|
||||
|
||||
/* update parent inode number before releasing dentry page */
|
||||
F2FS_I(inode)->i_pino = dir->i_ino;
|
||||
fail:
|
||||
kunmap(dentry_page);
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
mutex_unlock_op(sbi, DENTRY_OPS);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* It only removes the dentry from the dentry page,corresponding name
|
||||
* entry in name page does not need to be touched during deletion.
|
||||
*/
|
||||
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
|
||||
struct inode *inode)
|
||||
{
|
||||
struct f2fs_dentry_block *dentry_blk;
|
||||
unsigned int bit_pos;
|
||||
struct address_space *mapping = page->mapping;
|
||||
struct inode *dir = mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
||||
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
|
||||
void *kaddr = page_address(page);
|
||||
int i;
|
||||
|
||||
mutex_lock_op(sbi, DENTRY_OPS);
|
||||
|
||||
lock_page(page);
|
||||
wait_on_page_writeback(page);
|
||||
|
||||
dentry_blk = (struct f2fs_dentry_block *)kaddr;
|
||||
bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry;
|
||||
for (i = 0; i < slots; i++)
|
||||
test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
|
||||
|
||||
/* Let's check and deallocate this dentry page */
|
||||
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK,
|
||||
0);
|
||||
kunmap(page); /* kunmap - pair of f2fs_find_entry */
|
||||
set_page_dirty(page);
|
||||
|
||||
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
|
||||
|
||||
if (inode && S_ISDIR(inode->i_mode)) {
|
||||
drop_nlink(dir);
|
||||
f2fs_write_inode(dir, NULL);
|
||||
} else {
|
||||
mark_inode_dirty(dir);
|
||||
}
|
||||
|
||||
if (inode) {
|
||||
inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
|
||||
drop_nlink(inode);
|
||||
if (S_ISDIR(inode->i_mode)) {
|
||||
drop_nlink(inode);
|
||||
i_size_write(inode, 0);
|
||||
}
|
||||
f2fs_write_inode(inode, NULL);
|
||||
if (inode->i_nlink == 0)
|
||||
add_orphan_inode(sbi, inode->i_ino);
|
||||
}
|
||||
|
||||
if (bit_pos == NR_DENTRY_IN_BLOCK) {
|
||||
truncate_hole(dir, page->index, page->index + 1);
|
||||
clear_page_dirty_for_io(page);
|
||||
ClearPageUptodate(page);
|
||||
dec_page_count(sbi, F2FS_DIRTY_DENTS);
|
||||
inode_dec_dirty_dents(dir);
|
||||
}
|
||||
f2fs_put_page(page, 1);
|
||||
|
||||
mutex_unlock_op(sbi, DENTRY_OPS);
|
||||
}
|
||||
|
||||
int f2fs_make_empty(struct inode *inode, struct inode *parent)
|
||||
{
|
||||
struct page *dentry_page;
|
||||
struct f2fs_dentry_block *dentry_blk;
|
||||
struct f2fs_dir_entry *de;
|
||||
void *kaddr;
|
||||
|
||||
dentry_page = get_new_data_page(inode, 0, true);
|
||||
if (IS_ERR(dentry_page))
|
||||
return PTR_ERR(dentry_page);
|
||||
|
||||
kaddr = kmap_atomic(dentry_page);
|
||||
dentry_blk = (struct f2fs_dentry_block *)kaddr;
|
||||
|
||||
de = &dentry_blk->dentry[0];
|
||||
de->name_len = cpu_to_le16(1);
|
||||
de->hash_code = 0;
|
||||
de->ino = cpu_to_le32(inode->i_ino);
|
||||
memcpy(dentry_blk->filename[0], ".", 1);
|
||||
set_de_type(de, inode);
|
||||
|
||||
de = &dentry_blk->dentry[1];
|
||||
de->hash_code = 0;
|
||||
de->name_len = cpu_to_le16(2);
|
||||
de->ino = cpu_to_le32(parent->i_ino);
|
||||
memcpy(dentry_blk->filename[1], "..", 2);
|
||||
set_de_type(de, inode);
|
||||
|
||||
test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
|
||||
test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
|
||||
kunmap_atomic(kaddr);
|
||||
|
||||
set_page_dirty(dentry_page);
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool f2fs_empty_dir(struct inode *dir)
|
||||
{
|
||||
unsigned long bidx;
|
||||
struct page *dentry_page;
|
||||
unsigned int bit_pos;
|
||||
struct f2fs_dentry_block *dentry_blk;
|
||||
unsigned long nblock = dir_blocks(dir);
|
||||
|
||||
for (bidx = 0; bidx < nblock; bidx++) {
|
||||
void *kaddr;
|
||||
dentry_page = get_lock_data_page(dir, bidx);
|
||||
if (IS_ERR(dentry_page)) {
|
||||
if (PTR_ERR(dentry_page) == -ENOENT)
|
||||
continue;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
kaddr = kmap_atomic(dentry_page);
|
||||
dentry_blk = (struct f2fs_dentry_block *)kaddr;
|
||||
if (bidx == 0)
|
||||
bit_pos = 2;
|
||||
else
|
||||
bit_pos = 0;
|
||||
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK,
|
||||
bit_pos);
|
||||
kunmap_atomic(kaddr);
|
||||
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
|
||||
if (bit_pos < NR_DENTRY_IN_BLOCK)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir)
|
||||
{
|
||||
unsigned long pos = file->f_pos;
|
||||
struct inode *inode = file->f_dentry->d_inode;
|
||||
unsigned long npages = dir_blocks(inode);
|
||||
unsigned char *types = NULL;
|
||||
unsigned int bit_pos = 0, start_bit_pos = 0;
|
||||
int over = 0;
|
||||
struct f2fs_dentry_block *dentry_blk = NULL;
|
||||
struct f2fs_dir_entry *de = NULL;
|
||||
struct page *dentry_page = NULL;
|
||||
unsigned int n = 0;
|
||||
unsigned char d_type = DT_UNKNOWN;
|
||||
int slots;
|
||||
|
||||
types = f2fs_filetype_table;
|
||||
bit_pos = (pos % NR_DENTRY_IN_BLOCK);
|
||||
n = (pos / NR_DENTRY_IN_BLOCK);
|
||||
|
||||
for ( ; n < npages; n++) {
|
||||
dentry_page = get_lock_data_page(inode, n);
|
||||
if (IS_ERR(dentry_page))
|
||||
continue;
|
||||
|
||||
start_bit_pos = bit_pos;
|
||||
dentry_blk = kmap(dentry_page);
|
||||
while (bit_pos < NR_DENTRY_IN_BLOCK) {
|
||||
d_type = DT_UNKNOWN;
|
||||
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
||||
NR_DENTRY_IN_BLOCK,
|
||||
bit_pos);
|
||||
if (bit_pos >= NR_DENTRY_IN_BLOCK)
|
||||
break;
|
||||
|
||||
de = &dentry_blk->dentry[bit_pos];
|
||||
if (types && de->file_type < F2FS_FT_MAX)
|
||||
d_type = types[de->file_type];
|
||||
|
||||
over = filldir(dirent,
|
||||
dentry_blk->filename[bit_pos],
|
||||
le16_to_cpu(de->name_len),
|
||||
(n * NR_DENTRY_IN_BLOCK) + bit_pos,
|
||||
le32_to_cpu(de->ino), d_type);
|
||||
if (over) {
|
||||
file->f_pos += bit_pos - start_bit_pos;
|
||||
goto success;
|
||||
}
|
||||
slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
|
||||
bit_pos += slots;
|
||||
}
|
||||
bit_pos = 0;
|
||||
file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK;
|
||||
kunmap(dentry_page);
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
dentry_page = NULL;
|
||||
}
|
||||
success:
|
||||
if (dentry_page && !IS_ERR(dentry_page)) {
|
||||
kunmap(dentry_page);
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct file_operations f2fs_dir_operations = {
|
||||
.llseek = generic_file_llseek,
|
||||
.read = generic_read_dir,
|
||||
.readdir = f2fs_readdir,
|
||||
.fsync = f2fs_sync_file,
|
||||
.unlocked_ioctl = f2fs_ioctl,
|
||||
};
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,636 @@
|
|||
/*
|
||||
* fs/f2fs/file.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/stat.h>
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/writeback.h>
|
||||
#include <linux/falloc.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/mount.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "segment.h"
|
||||
#include "xattr.h"
|
||||
#include "acl.h"
|
||||
|
||||
static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
|
||||
struct vm_fault *vmf)
|
||||
{
|
||||
struct page *page = vmf->page;
|
||||
struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
block_t old_blk_addr;
|
||||
struct dnode_of_data dn;
|
||||
int err;
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
|
||||
sb_start_pagefault(inode->i_sb);
|
||||
|
||||
mutex_lock_op(sbi, DATA_NEW);
|
||||
|
||||
/* block allocation */
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, page->index, 0);
|
||||
if (err) {
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
goto out;
|
||||
}
|
||||
|
||||
old_blk_addr = dn.data_blkaddr;
|
||||
|
||||
if (old_blk_addr == NULL_ADDR) {
|
||||
err = reserve_new_block(&dn);
|
||||
if (err) {
|
||||
f2fs_put_dnode(&dn);
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
f2fs_put_dnode(&dn);
|
||||
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
|
||||
lock_page(page);
|
||||
if (page->mapping != inode->i_mapping ||
|
||||
page_offset(page) >= i_size_read(inode) ||
|
||||
!PageUptodate(page)) {
|
||||
unlock_page(page);
|
||||
err = -EFAULT;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* check to see if the page is mapped already (no holes)
|
||||
*/
|
||||
if (PageMappedToDisk(page))
|
||||
goto out;
|
||||
|
||||
/* fill the page */
|
||||
wait_on_page_writeback(page);
|
||||
|
||||
/* page is wholly or partially inside EOF */
|
||||
if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
|
||||
unsigned offset;
|
||||
offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
|
||||
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
|
||||
}
|
||||
set_page_dirty(page);
|
||||
SetPageUptodate(page);
|
||||
|
||||
file_update_time(vma->vm_file);
|
||||
out:
|
||||
sb_end_pagefault(inode->i_sb);
|
||||
return block_page_mkwrite_return(err);
|
||||
}
|
||||
|
||||
static const struct vm_operations_struct f2fs_file_vm_ops = {
|
||||
.fault = filemap_fault,
|
||||
.page_mkwrite = f2fs_vm_page_mkwrite,
|
||||
};
|
||||
|
||||
static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
|
||||
{
|
||||
struct dentry *dentry;
|
||||
nid_t pino;
|
||||
|
||||
inode = igrab(inode);
|
||||
dentry = d_find_any_alias(inode);
|
||||
if (!dentry) {
|
||||
iput(inode);
|
||||
return 0;
|
||||
}
|
||||
pino = dentry->d_parent->d_inode->i_ino;
|
||||
dput(dentry);
|
||||
iput(inode);
|
||||
return !is_checkpointed_node(sbi, pino);
|
||||
}
|
||||
|
||||
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
|
||||
{
|
||||
struct inode *inode = file->f_mapping->host;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
unsigned long long cur_version;
|
||||
int ret = 0;
|
||||
bool need_cp = false;
|
||||
struct writeback_control wbc = {
|
||||
.sync_mode = WB_SYNC_ALL,
|
||||
.nr_to_write = LONG_MAX,
|
||||
.for_reclaim = 0,
|
||||
};
|
||||
|
||||
if (inode->i_sb->s_flags & MS_RDONLY)
|
||||
return 0;
|
||||
|
||||
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
mutex_lock(&inode->i_mutex);
|
||||
|
||||
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
|
||||
goto out;
|
||||
|
||||
mutex_lock(&sbi->cp_mutex);
|
||||
cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
|
||||
mutex_unlock(&sbi->cp_mutex);
|
||||
|
||||
if (F2FS_I(inode)->data_version != cur_version &&
|
||||
!(inode->i_state & I_DIRTY))
|
||||
goto out;
|
||||
F2FS_I(inode)->data_version--;
|
||||
|
||||
if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
|
||||
need_cp = true;
|
||||
if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
|
||||
need_cp = true;
|
||||
if (!space_for_roll_forward(sbi))
|
||||
need_cp = true;
|
||||
if (need_to_sync_dir(sbi, inode))
|
||||
need_cp = true;
|
||||
|
||||
f2fs_write_inode(inode, NULL);
|
||||
|
||||
if (need_cp) {
|
||||
/* all the dirty node pages should be flushed for POR */
|
||||
ret = f2fs_sync_fs(inode->i_sb, 1);
|
||||
clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
|
||||
} else {
|
||||
while (sync_node_pages(sbi, inode->i_ino, &wbc) == 0)
|
||||
f2fs_write_inode(inode, NULL);
|
||||
filemap_fdatawait_range(sbi->node_inode->i_mapping,
|
||||
0, LONG_MAX);
|
||||
}
|
||||
out:
|
||||
mutex_unlock(&inode->i_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
||||
{
|
||||
file_accessed(file);
|
||||
vma->vm_ops = &f2fs_file_vm_ops;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
|
||||
{
|
||||
int nr_free = 0, ofs = dn->ofs_in_node;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
|
||||
struct f2fs_node *raw_node;
|
||||
__le32 *addr;
|
||||
|
||||
raw_node = page_address(dn->node_page);
|
||||
addr = blkaddr_in_node(raw_node) + ofs;
|
||||
|
||||
for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
|
||||
block_t blkaddr = le32_to_cpu(*addr);
|
||||
if (blkaddr == NULL_ADDR)
|
||||
continue;
|
||||
|
||||
update_extent_cache(NULL_ADDR, dn);
|
||||
invalidate_blocks(sbi, blkaddr);
|
||||
dec_valid_block_count(sbi, dn->inode, 1);
|
||||
nr_free++;
|
||||
}
|
||||
if (nr_free) {
|
||||
set_page_dirty(dn->node_page);
|
||||
sync_inode_page(dn);
|
||||
}
|
||||
dn->ofs_in_node = ofs;
|
||||
return nr_free;
|
||||
}
|
||||
|
||||
void truncate_data_blocks(struct dnode_of_data *dn)
|
||||
{
|
||||
truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
|
||||
}
|
||||
|
||||
static void truncate_partial_data_page(struct inode *inode, u64 from)
|
||||
{
|
||||
unsigned offset = from & (PAGE_CACHE_SIZE - 1);
|
||||
struct page *page;
|
||||
|
||||
if (!offset)
|
||||
return;
|
||||
|
||||
page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
|
||||
if (IS_ERR(page))
|
||||
return;
|
||||
|
||||
lock_page(page);
|
||||
wait_on_page_writeback(page);
|
||||
zero_user(page, offset, PAGE_CACHE_SIZE - offset);
|
||||
set_page_dirty(page);
|
||||
f2fs_put_page(page, 1);
|
||||
}
|
||||
|
||||
static int truncate_blocks(struct inode *inode, u64 from)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
unsigned int blocksize = inode->i_sb->s_blocksize;
|
||||
struct dnode_of_data dn;
|
||||
pgoff_t free_from;
|
||||
int count = 0;
|
||||
int err;
|
||||
|
||||
free_from = (pgoff_t)
|
||||
((from + blocksize - 1) >> (sbi->log_blocksize));
|
||||
|
||||
mutex_lock_op(sbi, DATA_TRUNC);
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
|
||||
if (err) {
|
||||
if (err == -ENOENT)
|
||||
goto free_next;
|
||||
mutex_unlock_op(sbi, DATA_TRUNC);
|
||||
return err;
|
||||
}
|
||||
|
||||
if (IS_INODE(dn.node_page))
|
||||
count = ADDRS_PER_INODE;
|
||||
else
|
||||
count = ADDRS_PER_BLOCK;
|
||||
|
||||
count -= dn.ofs_in_node;
|
||||
BUG_ON(count < 0);
|
||||
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
|
||||
truncate_data_blocks_range(&dn, count);
|
||||
free_from += count;
|
||||
}
|
||||
|
||||
f2fs_put_dnode(&dn);
|
||||
free_next:
|
||||
err = truncate_inode_blocks(inode, free_from);
|
||||
mutex_unlock_op(sbi, DATA_TRUNC);
|
||||
|
||||
/* lastly zero out the first data page */
|
||||
truncate_partial_data_page(inode, from);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
void f2fs_truncate(struct inode *inode)
|
||||
{
|
||||
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
|
||||
S_ISLNK(inode->i_mode)))
|
||||
return;
|
||||
|
||||
if (!truncate_blocks(inode, i_size_read(inode))) {
|
||||
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
||||
mark_inode_dirty(inode);
|
||||
}
|
||||
|
||||
f2fs_balance_fs(F2FS_SB(inode->i_sb));
|
||||
}
|
||||
|
||||
static int f2fs_getattr(struct vfsmount *mnt,
|
||||
struct dentry *dentry, struct kstat *stat)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
generic_fillattr(inode, stat);
|
||||
stat->blocks <<= 3;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
static void __setattr_copy(struct inode *inode, const struct iattr *attr)
|
||||
{
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
unsigned int ia_valid = attr->ia_valid;
|
||||
|
||||
if (ia_valid & ATTR_UID)
|
||||
inode->i_uid = attr->ia_uid;
|
||||
if (ia_valid & ATTR_GID)
|
||||
inode->i_gid = attr->ia_gid;
|
||||
if (ia_valid & ATTR_ATIME)
|
||||
inode->i_atime = timespec_trunc(attr->ia_atime,
|
||||
inode->i_sb->s_time_gran);
|
||||
if (ia_valid & ATTR_MTIME)
|
||||
inode->i_mtime = timespec_trunc(attr->ia_mtime,
|
||||
inode->i_sb->s_time_gran);
|
||||
if (ia_valid & ATTR_CTIME)
|
||||
inode->i_ctime = timespec_trunc(attr->ia_ctime,
|
||||
inode->i_sb->s_time_gran);
|
||||
if (ia_valid & ATTR_MODE) {
|
||||
umode_t mode = attr->ia_mode;
|
||||
|
||||
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
|
||||
mode &= ~S_ISGID;
|
||||
set_acl_inode(fi, mode);
|
||||
}
|
||||
}
|
||||
#else
|
||||
#define __setattr_copy setattr_copy
|
||||
#endif
|
||||
|
||||
int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
int err;
|
||||
|
||||
err = inode_change_ok(inode, attr);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if ((attr->ia_valid & ATTR_SIZE) &&
|
||||
attr->ia_size != i_size_read(inode)) {
|
||||
truncate_setsize(inode, attr->ia_size);
|
||||
f2fs_truncate(inode);
|
||||
}
|
||||
|
||||
__setattr_copy(inode, attr);
|
||||
|
||||
if (attr->ia_valid & ATTR_MODE) {
|
||||
err = f2fs_acl_chmod(inode);
|
||||
if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
|
||||
inode->i_mode = fi->i_acl_mode;
|
||||
clear_inode_flag(fi, FI_ACL_MODE);
|
||||
}
|
||||
}
|
||||
|
||||
mark_inode_dirty(inode);
|
||||
return err;
|
||||
}
|
||||
|
||||
const struct inode_operations f2fs_file_inode_operations = {
|
||||
.getattr = f2fs_getattr,
|
||||
.setattr = f2fs_setattr,
|
||||
.get_acl = f2fs_get_acl,
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
.setxattr = generic_setxattr,
|
||||
.getxattr = generic_getxattr,
|
||||
.listxattr = f2fs_listxattr,
|
||||
.removexattr = generic_removexattr,
|
||||
#endif
|
||||
};
|
||||
|
||||
static void fill_zero(struct inode *inode, pgoff_t index,
|
||||
loff_t start, loff_t len)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
if (!len)
|
||||
return;
|
||||
|
||||
page = get_new_data_page(inode, index, false);
|
||||
|
||||
if (!IS_ERR(page)) {
|
||||
wait_on_page_writeback(page);
|
||||
zero_user(page, start, len);
|
||||
set_page_dirty(page);
|
||||
f2fs_put_page(page, 1);
|
||||
}
|
||||
}
|
||||
|
||||
int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
|
||||
{
|
||||
pgoff_t index;
|
||||
int err;
|
||||
|
||||
for (index = pg_start; index < pg_end; index++) {
|
||||
struct dnode_of_data dn;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
|
||||
mutex_lock_op(sbi, DATA_TRUNC);
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
err = get_dnode_of_data(&dn, index, RDONLY_NODE);
|
||||
if (err) {
|
||||
mutex_unlock_op(sbi, DATA_TRUNC);
|
||||
if (err == -ENOENT)
|
||||
continue;
|
||||
return err;
|
||||
}
|
||||
|
||||
if (dn.data_blkaddr != NULL_ADDR)
|
||||
truncate_data_blocks_range(&dn, 1);
|
||||
f2fs_put_dnode(&dn);
|
||||
mutex_unlock_op(sbi, DATA_TRUNC);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
|
||||
{
|
||||
pgoff_t pg_start, pg_end;
|
||||
loff_t off_start, off_end;
|
||||
int ret = 0;
|
||||
|
||||
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
|
||||
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
|
||||
|
||||
off_start = offset & (PAGE_CACHE_SIZE - 1);
|
||||
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
|
||||
|
||||
if (pg_start == pg_end) {
|
||||
fill_zero(inode, pg_start, off_start,
|
||||
off_end - off_start);
|
||||
} else {
|
||||
if (off_start)
|
||||
fill_zero(inode, pg_start++, off_start,
|
||||
PAGE_CACHE_SIZE - off_start);
|
||||
if (off_end)
|
||||
fill_zero(inode, pg_end, 0, off_end);
|
||||
|
||||
if (pg_start < pg_end) {
|
||||
struct address_space *mapping = inode->i_mapping;
|
||||
loff_t blk_start, blk_end;
|
||||
|
||||
blk_start = pg_start << PAGE_CACHE_SHIFT;
|
||||
blk_end = pg_end << PAGE_CACHE_SHIFT;
|
||||
truncate_inode_pages_range(mapping, blk_start,
|
||||
blk_end - 1);
|
||||
ret = truncate_hole(inode, pg_start, pg_end);
|
||||
}
|
||||
}
|
||||
|
||||
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
||||
i_size_read(inode) <= (offset + len)) {
|
||||
i_size_write(inode, offset);
|
||||
mark_inode_dirty(inode);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int expand_inode_data(struct inode *inode, loff_t offset,
|
||||
loff_t len, int mode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
pgoff_t index, pg_start, pg_end;
|
||||
loff_t new_size = i_size_read(inode);
|
||||
loff_t off_start, off_end;
|
||||
int ret = 0;
|
||||
|
||||
ret = inode_newsize_ok(inode, (len + offset));
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
|
||||
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
|
||||
|
||||
off_start = offset & (PAGE_CACHE_SIZE - 1);
|
||||
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
|
||||
|
||||
for (index = pg_start; index <= pg_end; index++) {
|
||||
struct dnode_of_data dn;
|
||||
|
||||
mutex_lock_op(sbi, DATA_NEW);
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
ret = get_dnode_of_data(&dn, index, 0);
|
||||
if (ret) {
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
break;
|
||||
}
|
||||
|
||||
if (dn.data_blkaddr == NULL_ADDR) {
|
||||
ret = reserve_new_block(&dn);
|
||||
if (ret) {
|
||||
f2fs_put_dnode(&dn);
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
break;
|
||||
}
|
||||
}
|
||||
f2fs_put_dnode(&dn);
|
||||
|
||||
mutex_unlock_op(sbi, DATA_NEW);
|
||||
|
||||
if (pg_start == pg_end)
|
||||
new_size = offset + len;
|
||||
else if (index == pg_start && off_start)
|
||||
new_size = (index + 1) << PAGE_CACHE_SHIFT;
|
||||
else if (index == pg_end)
|
||||
new_size = (index << PAGE_CACHE_SHIFT) + off_end;
|
||||
else
|
||||
new_size += PAGE_CACHE_SIZE;
|
||||
}
|
||||
|
||||
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
||||
i_size_read(inode) < new_size) {
|
||||
i_size_write(inode, new_size);
|
||||
mark_inode_dirty(inode);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static long f2fs_fallocate(struct file *file, int mode,
|
||||
loff_t offset, loff_t len)
|
||||
{
|
||||
struct inode *inode = file->f_path.dentry->d_inode;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
long ret;
|
||||
|
||||
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
if (mode & FALLOC_FL_PUNCH_HOLE)
|
||||
ret = punch_hole(inode, offset, len, mode);
|
||||
else
|
||||
ret = expand_inode_data(inode, offset, len, mode);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
|
||||
#define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
|
||||
|
||||
static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
|
||||
{
|
||||
if (S_ISDIR(mode))
|
||||
return flags;
|
||||
else if (S_ISREG(mode))
|
||||
return flags & F2FS_REG_FLMASK;
|
||||
else
|
||||
return flags & F2FS_OTHER_FLMASK;
|
||||
}
|
||||
|
||||
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
struct inode *inode = filp->f_dentry->d_inode;
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
unsigned int flags;
|
||||
int ret;
|
||||
|
||||
switch (cmd) {
|
||||
case FS_IOC_GETFLAGS:
|
||||
flags = fi->i_flags & FS_FL_USER_VISIBLE;
|
||||
return put_user(flags, (int __user *) arg);
|
||||
case FS_IOC_SETFLAGS:
|
||||
{
|
||||
unsigned int oldflags;
|
||||
|
||||
ret = mnt_want_write(filp->f_path.mnt);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!inode_owner_or_capable(inode)) {
|
||||
ret = -EACCES;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (get_user(flags, (int __user *) arg)) {
|
||||
ret = -EFAULT;
|
||||
goto out;
|
||||
}
|
||||
|
||||
flags = f2fs_mask_flags(inode->i_mode, flags);
|
||||
|
||||
mutex_lock(&inode->i_mutex);
|
||||
|
||||
oldflags = fi->i_flags;
|
||||
|
||||
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
|
||||
if (!capable(CAP_LINUX_IMMUTABLE)) {
|
||||
mutex_unlock(&inode->i_mutex);
|
||||
ret = -EPERM;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
flags = flags & FS_FL_USER_MODIFIABLE;
|
||||
flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
|
||||
fi->i_flags = flags;
|
||||
mutex_unlock(&inode->i_mutex);
|
||||
|
||||
f2fs_set_inode_flags(inode);
|
||||
inode->i_ctime = CURRENT_TIME;
|
||||
mark_inode_dirty(inode);
|
||||
out:
|
||||
mnt_drop_write(filp->f_path.mnt);
|
||||
return ret;
|
||||
}
|
||||
default:
|
||||
return -ENOTTY;
|
||||
}
|
||||
}
|
||||
|
||||
const struct file_operations f2fs_file_operations = {
|
||||
.llseek = generic_file_llseek,
|
||||
.read = do_sync_read,
|
||||
.write = do_sync_write,
|
||||
.aio_read = generic_file_aio_read,
|
||||
.aio_write = generic_file_aio_write,
|
||||
.open = generic_file_open,
|
||||
.mmap = f2fs_file_mmap,
|
||||
.fsync = f2fs_sync_file,
|
||||
.fallocate = f2fs_fallocate,
|
||||
.unlocked_ioctl = f2fs_ioctl,
|
||||
.splice_read = generic_file_splice_read,
|
||||
.splice_write = generic_file_splice_write,
|
||||
};
|
|
@ -0,0 +1,742 @@
|
|||
/*
|
||||
* fs/f2fs/gc.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/backing-dev.h>
|
||||
#include <linux/proc_fs.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/freezer.h>
|
||||
#include <linux/blkdev.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "segment.h"
|
||||
#include "gc.h"
|
||||
|
||||
static struct kmem_cache *winode_slab;
|
||||
|
||||
static int gc_thread_func(void *data)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = data;
|
||||
wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
|
||||
long wait_ms;
|
||||
|
||||
wait_ms = GC_THREAD_MIN_SLEEP_TIME;
|
||||
|
||||
do {
|
||||
if (try_to_freeze())
|
||||
continue;
|
||||
else
|
||||
wait_event_interruptible_timeout(*wq,
|
||||
kthread_should_stop(),
|
||||
msecs_to_jiffies(wait_ms));
|
||||
if (kthread_should_stop())
|
||||
break;
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
|
||||
if (!test_opt(sbi, BG_GC))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* [GC triggering condition]
|
||||
* 0. GC is not conducted currently.
|
||||
* 1. There are enough dirty segments.
|
||||
* 2. IO subsystem is idle by checking the # of writeback pages.
|
||||
* 3. IO subsystem is idle by checking the # of requests in
|
||||
* bdev's request list.
|
||||
*
|
||||
* Note) We have to avoid triggering GCs too much frequently.
|
||||
* Because it is possible that some segments can be
|
||||
* invalidated soon after by user update or deletion.
|
||||
* So, I'd like to wait some time to collect dirty segments.
|
||||
*/
|
||||
if (!mutex_trylock(&sbi->gc_mutex))
|
||||
continue;
|
||||
|
||||
if (!is_idle(sbi)) {
|
||||
wait_ms = increase_sleep_time(wait_ms);
|
||||
mutex_unlock(&sbi->gc_mutex);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (has_enough_invalid_blocks(sbi))
|
||||
wait_ms = decrease_sleep_time(wait_ms);
|
||||
else
|
||||
wait_ms = increase_sleep_time(wait_ms);
|
||||
|
||||
sbi->bg_gc++;
|
||||
|
||||
if (f2fs_gc(sbi, 1) == GC_NONE)
|
||||
wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
|
||||
else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
|
||||
wait_ms = GC_THREAD_MAX_SLEEP_TIME;
|
||||
|
||||
} while (!kthread_should_stop());
|
||||
return 0;
|
||||
}
|
||||
|
||||
int start_gc_thread(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_gc_kthread *gc_th;
|
||||
|
||||
gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
|
||||
if (!gc_th)
|
||||
return -ENOMEM;
|
||||
|
||||
sbi->gc_thread = gc_th;
|
||||
init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
|
||||
sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
|
||||
GC_THREAD_NAME);
|
||||
if (IS_ERR(gc_th->f2fs_gc_task)) {
|
||||
kfree(gc_th);
|
||||
return -ENOMEM;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void stop_gc_thread(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
|
||||
if (!gc_th)
|
||||
return;
|
||||
kthread_stop(gc_th->f2fs_gc_task);
|
||||
kfree(gc_th);
|
||||
sbi->gc_thread = NULL;
|
||||
}
|
||||
|
||||
static int select_gc_type(int gc_type)
|
||||
{
|
||||
return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
|
||||
}
|
||||
|
||||
static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
|
||||
int type, struct victim_sel_policy *p)
|
||||
{
|
||||
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
||||
|
||||
if (p->alloc_mode) {
|
||||
p->gc_mode = GC_GREEDY;
|
||||
p->dirty_segmap = dirty_i->dirty_segmap[type];
|
||||
p->ofs_unit = 1;
|
||||
} else {
|
||||
p->gc_mode = select_gc_type(gc_type);
|
||||
p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
|
||||
p->ofs_unit = sbi->segs_per_sec;
|
||||
}
|
||||
p->offset = sbi->last_victim[p->gc_mode];
|
||||
}
|
||||
|
||||
static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
|
||||
struct victim_sel_policy *p)
|
||||
{
|
||||
if (p->gc_mode == GC_GREEDY)
|
||||
return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
|
||||
else if (p->gc_mode == GC_CB)
|
||||
return UINT_MAX;
|
||||
else /* No other gc_mode */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
||||
unsigned int segno;
|
||||
|
||||
/*
|
||||
* If the gc_type is FG_GC, we can select victim segments
|
||||
* selected by background GC before.
|
||||
* Those segments guarantee they have small valid blocks.
|
||||
*/
|
||||
segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
|
||||
TOTAL_SEGS(sbi), 0);
|
||||
if (segno < TOTAL_SEGS(sbi)) {
|
||||
clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
|
||||
return segno;
|
||||
}
|
||||
return NULL_SEGNO;
|
||||
}
|
||||
|
||||
static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
unsigned int secno = GET_SECNO(sbi, segno);
|
||||
unsigned int start = secno * sbi->segs_per_sec;
|
||||
unsigned long long mtime = 0;
|
||||
unsigned int vblocks;
|
||||
unsigned char age = 0;
|
||||
unsigned char u;
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < sbi->segs_per_sec; i++)
|
||||
mtime += get_seg_entry(sbi, start + i)->mtime;
|
||||
vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
|
||||
|
||||
mtime = div_u64(mtime, sbi->segs_per_sec);
|
||||
vblocks = div_u64(vblocks, sbi->segs_per_sec);
|
||||
|
||||
u = (vblocks * 100) >> sbi->log_blocks_per_seg;
|
||||
|
||||
/* Handle if the system time is changed by user */
|
||||
if (mtime < sit_i->min_mtime)
|
||||
sit_i->min_mtime = mtime;
|
||||
if (mtime > sit_i->max_mtime)
|
||||
sit_i->max_mtime = mtime;
|
||||
if (sit_i->max_mtime != sit_i->min_mtime)
|
||||
age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
|
||||
sit_i->max_mtime - sit_i->min_mtime);
|
||||
|
||||
return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
|
||||
}
|
||||
|
||||
static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
|
||||
struct victim_sel_policy *p)
|
||||
{
|
||||
if (p->alloc_mode == SSR)
|
||||
return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
||||
|
||||
/* alloc_mode == LFS */
|
||||
if (p->gc_mode == GC_GREEDY)
|
||||
return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
|
||||
else
|
||||
return get_cb_cost(sbi, segno);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is called from two pathes.
|
||||
* One is garbage collection and the other is SSR segment selection.
|
||||
* When it is called during GC, it just gets a victim segment
|
||||
* and it does not remove it from dirty seglist.
|
||||
* When it is called from SSR segment selection, it finds a segment
|
||||
* which has minimum valid blocks and removes it from dirty seglist.
|
||||
*/
|
||||
static int get_victim_by_default(struct f2fs_sb_info *sbi,
|
||||
unsigned int *result, int gc_type, int type, char alloc_mode)
|
||||
{
|
||||
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
||||
struct victim_sel_policy p;
|
||||
unsigned int segno;
|
||||
int nsearched = 0;
|
||||
|
||||
p.alloc_mode = alloc_mode;
|
||||
select_policy(sbi, gc_type, type, &p);
|
||||
|
||||
p.min_segno = NULL_SEGNO;
|
||||
p.min_cost = get_max_cost(sbi, &p);
|
||||
|
||||
mutex_lock(&dirty_i->seglist_lock);
|
||||
|
||||
if (p.alloc_mode == LFS && gc_type == FG_GC) {
|
||||
p.min_segno = check_bg_victims(sbi);
|
||||
if (p.min_segno != NULL_SEGNO)
|
||||
goto got_it;
|
||||
}
|
||||
|
||||
while (1) {
|
||||
unsigned long cost;
|
||||
|
||||
segno = find_next_bit(p.dirty_segmap,
|
||||
TOTAL_SEGS(sbi), p.offset);
|
||||
if (segno >= TOTAL_SEGS(sbi)) {
|
||||
if (sbi->last_victim[p.gc_mode]) {
|
||||
sbi->last_victim[p.gc_mode] = 0;
|
||||
p.offset = 0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
|
||||
|
||||
if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
|
||||
continue;
|
||||
if (gc_type == BG_GC &&
|
||||
test_bit(segno, dirty_i->victim_segmap[BG_GC]))
|
||||
continue;
|
||||
if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
|
||||
continue;
|
||||
|
||||
cost = get_gc_cost(sbi, segno, &p);
|
||||
|
||||
if (p.min_cost > cost) {
|
||||
p.min_segno = segno;
|
||||
p.min_cost = cost;
|
||||
}
|
||||
|
||||
if (cost == get_max_cost(sbi, &p))
|
||||
continue;
|
||||
|
||||
if (nsearched++ >= MAX_VICTIM_SEARCH) {
|
||||
sbi->last_victim[p.gc_mode] = segno;
|
||||
break;
|
||||
}
|
||||
}
|
||||
got_it:
|
||||
if (p.min_segno != NULL_SEGNO) {
|
||||
*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
|
||||
if (p.alloc_mode == LFS) {
|
||||
int i;
|
||||
for (i = 0; i < p.ofs_unit; i++)
|
||||
set_bit(*result + i,
|
||||
dirty_i->victim_segmap[gc_type]);
|
||||
}
|
||||
}
|
||||
mutex_unlock(&dirty_i->seglist_lock);
|
||||
|
||||
return (p.min_segno == NULL_SEGNO) ? 0 : 1;
|
||||
}
|
||||
|
||||
static const struct victim_selection default_v_ops = {
|
||||
.get_victim = get_victim_by_default,
|
||||
};
|
||||
|
||||
static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
|
||||
{
|
||||
struct list_head *this;
|
||||
struct inode_entry *ie;
|
||||
|
||||
list_for_each(this, ilist) {
|
||||
ie = list_entry(this, struct inode_entry, list);
|
||||
if (ie->inode->i_ino == ino)
|
||||
return ie->inode;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void add_gc_inode(struct inode *inode, struct list_head *ilist)
|
||||
{
|
||||
struct list_head *this;
|
||||
struct inode_entry *new_ie, *ie;
|
||||
|
||||
list_for_each(this, ilist) {
|
||||
ie = list_entry(this, struct inode_entry, list);
|
||||
if (ie->inode == inode) {
|
||||
iput(inode);
|
||||
return;
|
||||
}
|
||||
}
|
||||
repeat:
|
||||
new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
|
||||
if (!new_ie) {
|
||||
cond_resched();
|
||||
goto repeat;
|
||||
}
|
||||
new_ie->inode = inode;
|
||||
list_add_tail(&new_ie->list, ilist);
|
||||
}
|
||||
|
||||
static void put_gc_inode(struct list_head *ilist)
|
||||
{
|
||||
struct inode_entry *ie, *next_ie;
|
||||
list_for_each_entry_safe(ie, next_ie, ilist, list) {
|
||||
iput(ie->inode);
|
||||
list_del(&ie->list);
|
||||
kmem_cache_free(winode_slab, ie);
|
||||
}
|
||||
}
|
||||
|
||||
static int check_valid_map(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno, int offset)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
struct seg_entry *sentry;
|
||||
int ret;
|
||||
|
||||
mutex_lock(&sit_i->sentry_lock);
|
||||
sentry = get_seg_entry(sbi, segno);
|
||||
ret = f2fs_test_bit(offset, sentry->cur_valid_map);
|
||||
mutex_unlock(&sit_i->sentry_lock);
|
||||
return ret ? GC_OK : GC_NEXT;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function compares node address got in summary with that in NAT.
|
||||
* On validity, copy that node with cold status, otherwise (invalid node)
|
||||
* ignore that.
|
||||
*/
|
||||
static int gc_node_segment(struct f2fs_sb_info *sbi,
|
||||
struct f2fs_summary *sum, unsigned int segno, int gc_type)
|
||||
{
|
||||
bool initial = true;
|
||||
struct f2fs_summary *entry;
|
||||
int off;
|
||||
|
||||
next_step:
|
||||
entry = sum;
|
||||
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
||||
nid_t nid = le32_to_cpu(entry->nid);
|
||||
struct page *node_page;
|
||||
int err;
|
||||
|
||||
/*
|
||||
* It makes sure that free segments are able to write
|
||||
* all the dirty node pages before CP after this CP.
|
||||
* So let's check the space of dirty node pages.
|
||||
*/
|
||||
if (should_do_checkpoint(sbi)) {
|
||||
mutex_lock(&sbi->cp_mutex);
|
||||
block_operations(sbi);
|
||||
return GC_BLOCKED;
|
||||
}
|
||||
|
||||
err = check_valid_map(sbi, segno, off);
|
||||
if (err == GC_ERROR)
|
||||
return err;
|
||||
else if (err == GC_NEXT)
|
||||
continue;
|
||||
|
||||
if (initial) {
|
||||
ra_node_page(sbi, nid);
|
||||
continue;
|
||||
}
|
||||
node_page = get_node_page(sbi, nid);
|
||||
if (IS_ERR(node_page))
|
||||
continue;
|
||||
|
||||
/* set page dirty and write it */
|
||||
if (!PageWriteback(node_page))
|
||||
set_page_dirty(node_page);
|
||||
f2fs_put_page(node_page, 1);
|
||||
stat_inc_node_blk_count(sbi, 1);
|
||||
}
|
||||
if (initial) {
|
||||
initial = false;
|
||||
goto next_step;
|
||||
}
|
||||
|
||||
if (gc_type == FG_GC) {
|
||||
struct writeback_control wbc = {
|
||||
.sync_mode = WB_SYNC_ALL,
|
||||
.nr_to_write = LONG_MAX,
|
||||
.for_reclaim = 0,
|
||||
};
|
||||
sync_node_pages(sbi, 0, &wbc);
|
||||
}
|
||||
return GC_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate start block index that this node page contains
|
||||
*/
|
||||
block_t start_bidx_of_node(unsigned int node_ofs)
|
||||
{
|
||||
block_t start_bidx;
|
||||
unsigned int bidx, indirect_blks;
|
||||
int dec;
|
||||
|
||||
indirect_blks = 2 * NIDS_PER_BLOCK + 4;
|
||||
|
||||
start_bidx = 1;
|
||||
if (node_ofs == 0) {
|
||||
start_bidx = 0;
|
||||
} else if (node_ofs <= 2) {
|
||||
bidx = node_ofs - 1;
|
||||
} else if (node_ofs <= indirect_blks) {
|
||||
dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
|
||||
bidx = node_ofs - 2 - dec;
|
||||
} else {
|
||||
dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
|
||||
bidx = node_ofs - 5 - dec;
|
||||
}
|
||||
|
||||
if (start_bidx)
|
||||
start_bidx = bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
|
||||
return start_bidx;
|
||||
}
|
||||
|
||||
static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
||||
struct node_info *dni, block_t blkaddr, unsigned int *nofs)
|
||||
{
|
||||
struct page *node_page;
|
||||
nid_t nid;
|
||||
unsigned int ofs_in_node;
|
||||
block_t source_blkaddr;
|
||||
|
||||
nid = le32_to_cpu(sum->nid);
|
||||
ofs_in_node = le16_to_cpu(sum->ofs_in_node);
|
||||
|
||||
node_page = get_node_page(sbi, nid);
|
||||
if (IS_ERR(node_page))
|
||||
return GC_NEXT;
|
||||
|
||||
get_node_info(sbi, nid, dni);
|
||||
|
||||
if (sum->version != dni->version) {
|
||||
f2fs_put_page(node_page, 1);
|
||||
return GC_NEXT;
|
||||
}
|
||||
|
||||
*nofs = ofs_of_node(node_page);
|
||||
source_blkaddr = datablock_addr(node_page, ofs_in_node);
|
||||
f2fs_put_page(node_page, 1);
|
||||
|
||||
if (source_blkaddr != blkaddr)
|
||||
return GC_NEXT;
|
||||
return GC_OK;
|
||||
}
|
||||
|
||||
static void move_data_page(struct inode *inode, struct page *page, int gc_type)
|
||||
{
|
||||
if (page->mapping != inode->i_mapping)
|
||||
goto out;
|
||||
|
||||
if (inode != page->mapping->host)
|
||||
goto out;
|
||||
|
||||
if (PageWriteback(page))
|
||||
goto out;
|
||||
|
||||
if (gc_type == BG_GC) {
|
||||
set_page_dirty(page);
|
||||
set_cold_data(page);
|
||||
} else {
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
mutex_lock_op(sbi, DATA_WRITE);
|
||||
if (clear_page_dirty_for_io(page) &&
|
||||
S_ISDIR(inode->i_mode)) {
|
||||
dec_page_count(sbi, F2FS_DIRTY_DENTS);
|
||||
inode_dec_dirty_dents(inode);
|
||||
}
|
||||
set_cold_data(page);
|
||||
do_write_data_page(page);
|
||||
mutex_unlock_op(sbi, DATA_WRITE);
|
||||
clear_cold_data(page);
|
||||
}
|
||||
out:
|
||||
f2fs_put_page(page, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function tries to get parent node of victim data block, and identifies
|
||||
* data block validity. If the block is valid, copy that with cold status and
|
||||
* modify parent node.
|
||||
* If the parent node is not valid or the data block address is different,
|
||||
* the victim data block is ignored.
|
||||
*/
|
||||
static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
||||
struct list_head *ilist, unsigned int segno, int gc_type)
|
||||
{
|
||||
struct super_block *sb = sbi->sb;
|
||||
struct f2fs_summary *entry;
|
||||
block_t start_addr;
|
||||
int err, off;
|
||||
int phase = 0;
|
||||
|
||||
start_addr = START_BLOCK(sbi, segno);
|
||||
|
||||
next_step:
|
||||
entry = sum;
|
||||
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
||||
struct page *data_page;
|
||||
struct inode *inode;
|
||||
struct node_info dni; /* dnode info for the data */
|
||||
unsigned int ofs_in_node, nofs;
|
||||
block_t start_bidx;
|
||||
|
||||
/*
|
||||
* It makes sure that free segments are able to write
|
||||
* all the dirty node pages before CP after this CP.
|
||||
* So let's check the space of dirty node pages.
|
||||
*/
|
||||
if (should_do_checkpoint(sbi)) {
|
||||
mutex_lock(&sbi->cp_mutex);
|
||||
block_operations(sbi);
|
||||
err = GC_BLOCKED;
|
||||
goto stop;
|
||||
}
|
||||
|
||||
err = check_valid_map(sbi, segno, off);
|
||||
if (err == GC_ERROR)
|
||||
goto stop;
|
||||
else if (err == GC_NEXT)
|
||||
continue;
|
||||
|
||||
if (phase == 0) {
|
||||
ra_node_page(sbi, le32_to_cpu(entry->nid));
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Get an inode by ino with checking validity */
|
||||
err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs);
|
||||
if (err == GC_ERROR)
|
||||
goto stop;
|
||||
else if (err == GC_NEXT)
|
||||
continue;
|
||||
|
||||
if (phase == 1) {
|
||||
ra_node_page(sbi, dni.ino);
|
||||
continue;
|
||||
}
|
||||
|
||||
start_bidx = start_bidx_of_node(nofs);
|
||||
ofs_in_node = le16_to_cpu(entry->ofs_in_node);
|
||||
|
||||
if (phase == 2) {
|
||||
inode = f2fs_iget_nowait(sb, dni.ino);
|
||||
if (IS_ERR(inode))
|
||||
continue;
|
||||
|
||||
data_page = find_data_page(inode,
|
||||
start_bidx + ofs_in_node);
|
||||
if (IS_ERR(data_page))
|
||||
goto next_iput;
|
||||
|
||||
f2fs_put_page(data_page, 0);
|
||||
add_gc_inode(inode, ilist);
|
||||
} else {
|
||||
inode = find_gc_inode(dni.ino, ilist);
|
||||
if (inode) {
|
||||
data_page = get_lock_data_page(inode,
|
||||
start_bidx + ofs_in_node);
|
||||
if (IS_ERR(data_page))
|
||||
continue;
|
||||
move_data_page(inode, data_page, gc_type);
|
||||
stat_inc_data_blk_count(sbi, 1);
|
||||
}
|
||||
}
|
||||
continue;
|
||||
next_iput:
|
||||
iput(inode);
|
||||
}
|
||||
if (++phase < 4)
|
||||
goto next_step;
|
||||
err = GC_DONE;
|
||||
stop:
|
||||
if (gc_type == FG_GC)
|
||||
f2fs_submit_bio(sbi, DATA, true);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
|
||||
int gc_type, int type)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
int ret;
|
||||
mutex_lock(&sit_i->sentry_lock);
|
||||
ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
|
||||
mutex_unlock(&sit_i->sentry_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
|
||||
struct list_head *ilist, int gc_type)
|
||||
{
|
||||
struct page *sum_page;
|
||||
struct f2fs_summary_block *sum;
|
||||
int ret = GC_DONE;
|
||||
|
||||
/* read segment summary of victim */
|
||||
sum_page = get_sum_page(sbi, segno);
|
||||
if (IS_ERR(sum_page))
|
||||
return GC_ERROR;
|
||||
|
||||
/*
|
||||
* CP needs to lock sum_page. In this time, we don't need
|
||||
* to lock this page, because this summary page is not gone anywhere.
|
||||
* Also, this page is not gonna be updated before GC is done.
|
||||
*/
|
||||
unlock_page(sum_page);
|
||||
sum = page_address(sum_page);
|
||||
|
||||
switch (GET_SUM_TYPE((&sum->footer))) {
|
||||
case SUM_TYPE_NODE:
|
||||
ret = gc_node_segment(sbi, sum->entries, segno, gc_type);
|
||||
break;
|
||||
case SUM_TYPE_DATA:
|
||||
ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
|
||||
break;
|
||||
}
|
||||
stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
|
||||
stat_inc_call_count(sbi->stat_info);
|
||||
|
||||
f2fs_put_page(sum_page, 0);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int f2fs_gc(struct f2fs_sb_info *sbi, int nGC)
|
||||
{
|
||||
unsigned int segno;
|
||||
int old_free_secs, cur_free_secs;
|
||||
int gc_status, nfree;
|
||||
struct list_head ilist;
|
||||
int gc_type = BG_GC;
|
||||
|
||||
INIT_LIST_HEAD(&ilist);
|
||||
gc_more:
|
||||
nfree = 0;
|
||||
gc_status = GC_NONE;
|
||||
|
||||
if (has_not_enough_free_secs(sbi))
|
||||
old_free_secs = reserved_sections(sbi);
|
||||
else
|
||||
old_free_secs = free_sections(sbi);
|
||||
|
||||
while (sbi->sb->s_flags & MS_ACTIVE) {
|
||||
int i;
|
||||
if (has_not_enough_free_secs(sbi))
|
||||
gc_type = FG_GC;
|
||||
|
||||
cur_free_secs = free_sections(sbi) + nfree;
|
||||
|
||||
/* We got free space successfully. */
|
||||
if (nGC < cur_free_secs - old_free_secs)
|
||||
break;
|
||||
|
||||
if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
|
||||
break;
|
||||
|
||||
for (i = 0; i < sbi->segs_per_sec; i++) {
|
||||
/*
|
||||
* do_garbage_collect will give us three gc_status:
|
||||
* GC_ERROR, GC_DONE, and GC_BLOCKED.
|
||||
* If GC is finished uncleanly, we have to return
|
||||
* the victim to dirty segment list.
|
||||
*/
|
||||
gc_status = do_garbage_collect(sbi, segno + i,
|
||||
&ilist, gc_type);
|
||||
if (gc_status != GC_DONE)
|
||||
goto stop;
|
||||
nfree++;
|
||||
}
|
||||
}
|
||||
stop:
|
||||
if (has_not_enough_free_secs(sbi) || gc_status == GC_BLOCKED) {
|
||||
write_checkpoint(sbi, (gc_status == GC_BLOCKED), false);
|
||||
if (nfree)
|
||||
goto gc_more;
|
||||
}
|
||||
mutex_unlock(&sbi->gc_mutex);
|
||||
|
||||
put_gc_inode(&ilist);
|
||||
BUG_ON(!list_empty(&ilist));
|
||||
return gc_status;
|
||||
}
|
||||
|
||||
void build_gc_manager(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
DIRTY_I(sbi)->v_ops = &default_v_ops;
|
||||
}
|
||||
|
||||
int create_gc_caches(void)
|
||||
{
|
||||
winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
|
||||
sizeof(struct inode_entry), NULL);
|
||||
if (!winode_slab)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void destroy_gc_caches(void)
|
||||
{
|
||||
kmem_cache_destroy(winode_slab);
|
||||
}
|
|
@ -0,0 +1,117 @@
|
|||
/*
|
||||
* fs/f2fs/gc.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#define GC_THREAD_NAME "f2fs_gc_task"
|
||||
#define GC_THREAD_MIN_WB_PAGES 1 /*
|
||||
* a threshold to determine
|
||||
* whether IO subsystem is idle
|
||||
* or not
|
||||
*/
|
||||
#define GC_THREAD_MIN_SLEEP_TIME 10000 /* milliseconds */
|
||||
#define GC_THREAD_MAX_SLEEP_TIME 30000
|
||||
#define GC_THREAD_NOGC_SLEEP_TIME 10000
|
||||
#define LIMIT_INVALID_BLOCK 40 /* percentage over total user space */
|
||||
#define LIMIT_FREE_BLOCK 40 /* percentage over invalid + free space */
|
||||
|
||||
/* Search max. number of dirty segments to select a victim segment */
|
||||
#define MAX_VICTIM_SEARCH 20
|
||||
|
||||
enum {
|
||||
GC_NONE = 0,
|
||||
GC_ERROR,
|
||||
GC_OK,
|
||||
GC_NEXT,
|
||||
GC_BLOCKED,
|
||||
GC_DONE,
|
||||
};
|
||||
|
||||
struct f2fs_gc_kthread {
|
||||
struct task_struct *f2fs_gc_task;
|
||||
wait_queue_head_t gc_wait_queue_head;
|
||||
};
|
||||
|
||||
struct inode_entry {
|
||||
struct list_head list;
|
||||
struct inode *inode;
|
||||
};
|
||||
|
||||
/*
|
||||
* inline functions
|
||||
*/
|
||||
static inline block_t free_user_blocks(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
if (free_segments(sbi) < overprovision_segments(sbi))
|
||||
return 0;
|
||||
else
|
||||
return (free_segments(sbi) - overprovision_segments(sbi))
|
||||
<< sbi->log_blocks_per_seg;
|
||||
}
|
||||
|
||||
static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return (long)(sbi->user_block_count * LIMIT_INVALID_BLOCK) / 100;
|
||||
}
|
||||
|
||||
static inline block_t limit_free_user_blocks(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
block_t reclaimable_user_blocks = sbi->user_block_count -
|
||||
written_block_count(sbi);
|
||||
return (long)(reclaimable_user_blocks * LIMIT_FREE_BLOCK) / 100;
|
||||
}
|
||||
|
||||
static inline long increase_sleep_time(long wait)
|
||||
{
|
||||
wait += GC_THREAD_MIN_SLEEP_TIME;
|
||||
if (wait > GC_THREAD_MAX_SLEEP_TIME)
|
||||
wait = GC_THREAD_MAX_SLEEP_TIME;
|
||||
return wait;
|
||||
}
|
||||
|
||||
static inline long decrease_sleep_time(long wait)
|
||||
{
|
||||
wait -= GC_THREAD_MIN_SLEEP_TIME;
|
||||
if (wait <= GC_THREAD_MIN_SLEEP_TIME)
|
||||
wait = GC_THREAD_MIN_SLEEP_TIME;
|
||||
return wait;
|
||||
}
|
||||
|
||||
static inline bool has_enough_invalid_blocks(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
block_t invalid_user_blocks = sbi->user_block_count -
|
||||
written_block_count(sbi);
|
||||
/*
|
||||
* Background GC is triggered with the following condition.
|
||||
* 1. There are a number of invalid blocks.
|
||||
* 2. There is not enough free space.
|
||||
*/
|
||||
if (invalid_user_blocks > limit_invalid_user_blocks(sbi) &&
|
||||
free_user_blocks(sbi) < limit_free_user_blocks(sbi))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline int is_idle(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct block_device *bdev = sbi->sb->s_bdev;
|
||||
struct request_queue *q = bdev_get_queue(bdev);
|
||||
struct request_list *rl = &q->root_rl;
|
||||
return !(rl->count[BLK_RW_SYNC]) && !(rl->count[BLK_RW_ASYNC]);
|
||||
}
|
||||
|
||||
static inline bool should_do_checkpoint(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
unsigned int pages_per_sec = sbi->segs_per_sec *
|
||||
(1 << sbi->log_blocks_per_seg);
|
||||
int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1)
|
||||
>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
|
||||
int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1)
|
||||
>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
|
||||
return free_sections(sbi) <= (node_secs + 2 * dent_secs + 2);
|
||||
}
|
|
@ -0,0 +1,97 @@
|
|||
/*
|
||||
* fs/f2fs/hash.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* Portions of this code from linux/fs/ext3/hash.c
|
||||
*
|
||||
* Copyright (C) 2002 by Theodore Ts'o
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/types.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/cryptohash.h>
|
||||
#include <linux/pagemap.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
|
||||
/*
|
||||
* Hashing code copied from ext3
|
||||
*/
|
||||
#define DELTA 0x9E3779B9
|
||||
|
||||
static void TEA_transform(unsigned int buf[4], unsigned int const in[])
|
||||
{
|
||||
__u32 sum = 0;
|
||||
__u32 b0 = buf[0], b1 = buf[1];
|
||||
__u32 a = in[0], b = in[1], c = in[2], d = in[3];
|
||||
int n = 16;
|
||||
|
||||
do {
|
||||
sum += DELTA;
|
||||
b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b);
|
||||
b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d);
|
||||
} while (--n);
|
||||
|
||||
buf[0] += b0;
|
||||
buf[1] += b1;
|
||||
}
|
||||
|
||||
static void str2hashbuf(const char *msg, int len, unsigned int *buf, int num)
|
||||
{
|
||||
unsigned pad, val;
|
||||
int i;
|
||||
|
||||
pad = (__u32)len | ((__u32)len << 8);
|
||||
pad |= pad << 16;
|
||||
|
||||
val = pad;
|
||||
if (len > num * 4)
|
||||
len = num * 4;
|
||||
for (i = 0; i < len; i++) {
|
||||
if ((i % 4) == 0)
|
||||
val = pad;
|
||||
val = msg[i] + (val << 8);
|
||||
if ((i % 4) == 3) {
|
||||
*buf++ = val;
|
||||
val = pad;
|
||||
num--;
|
||||
}
|
||||
}
|
||||
if (--num >= 0)
|
||||
*buf++ = val;
|
||||
while (--num >= 0)
|
||||
*buf++ = pad;
|
||||
}
|
||||
|
||||
f2fs_hash_t f2fs_dentry_hash(const char *name, int len)
|
||||
{
|
||||
__u32 hash, minor_hash;
|
||||
f2fs_hash_t f2fs_hash;
|
||||
const char *p;
|
||||
__u32 in[8], buf[4];
|
||||
|
||||
/* Initialize the default seed for the hash checksum functions */
|
||||
buf[0] = 0x67452301;
|
||||
buf[1] = 0xefcdab89;
|
||||
buf[2] = 0x98badcfe;
|
||||
buf[3] = 0x10325476;
|
||||
|
||||
p = name;
|
||||
while (len > 0) {
|
||||
str2hashbuf(p, len, in, 4);
|
||||
TEA_transform(buf, in);
|
||||
len -= 16;
|
||||
p += 16;
|
||||
}
|
||||
hash = buf[0];
|
||||
minor_hash = buf[1];
|
||||
|
||||
f2fs_hash = cpu_to_le32(hash & ~F2FS_HASH_COL_BIT);
|
||||
return f2fs_hash;
|
||||
}
|
|
@ -0,0 +1,268 @@
|
|||
/*
|
||||
* fs/f2fs/inode.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/writeback.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
|
||||
struct f2fs_iget_args {
|
||||
u64 ino;
|
||||
int on_free;
|
||||
};
|
||||
|
||||
void f2fs_set_inode_flags(struct inode *inode)
|
||||
{
|
||||
unsigned int flags = F2FS_I(inode)->i_flags;
|
||||
|
||||
inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
|
||||
S_NOATIME | S_DIRSYNC);
|
||||
|
||||
if (flags & FS_SYNC_FL)
|
||||
inode->i_flags |= S_SYNC;
|
||||
if (flags & FS_APPEND_FL)
|
||||
inode->i_flags |= S_APPEND;
|
||||
if (flags & FS_IMMUTABLE_FL)
|
||||
inode->i_flags |= S_IMMUTABLE;
|
||||
if (flags & FS_NOATIME_FL)
|
||||
inode->i_flags |= S_NOATIME;
|
||||
if (flags & FS_DIRSYNC_FL)
|
||||
inode->i_flags |= S_DIRSYNC;
|
||||
}
|
||||
|
||||
static int f2fs_iget_test(struct inode *inode, void *data)
|
||||
{
|
||||
struct f2fs_iget_args *args = data;
|
||||
|
||||
if (inode->i_ino != args->ino)
|
||||
return 0;
|
||||
if (inode->i_state & (I_FREEING | I_WILL_FREE)) {
|
||||
args->on_free = 1;
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
struct inode *f2fs_iget_nowait(struct super_block *sb, unsigned long ino)
|
||||
{
|
||||
struct f2fs_iget_args args = {
|
||||
.ino = ino,
|
||||
.on_free = 0
|
||||
};
|
||||
struct inode *inode = ilookup5(sb, ino, f2fs_iget_test, &args);
|
||||
|
||||
if (inode)
|
||||
return inode;
|
||||
if (!args.on_free)
|
||||
return f2fs_iget(sb, ino);
|
||||
return ERR_PTR(-ENOENT);
|
||||
}
|
||||
|
||||
static int do_read_inode(struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct page *node_page;
|
||||
struct f2fs_node *rn;
|
||||
struct f2fs_inode *ri;
|
||||
|
||||
/* Check if ino is within scope */
|
||||
check_nid_range(sbi, inode->i_ino);
|
||||
|
||||
node_page = get_node_page(sbi, inode->i_ino);
|
||||
if (IS_ERR(node_page))
|
||||
return PTR_ERR(node_page);
|
||||
|
||||
rn = page_address(node_page);
|
||||
ri = &(rn->i);
|
||||
|
||||
inode->i_mode = le16_to_cpu(ri->i_mode);
|
||||
i_uid_write(inode, le32_to_cpu(ri->i_uid));
|
||||
i_gid_write(inode, le32_to_cpu(ri->i_gid));
|
||||
set_nlink(inode, le32_to_cpu(ri->i_links));
|
||||
inode->i_size = le64_to_cpu(ri->i_size);
|
||||
inode->i_blocks = le64_to_cpu(ri->i_blocks);
|
||||
|
||||
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
|
||||
inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
|
||||
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
|
||||
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
|
||||
inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
|
||||
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
|
||||
inode->i_generation = le32_to_cpu(ri->i_generation);
|
||||
|
||||
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
|
||||
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
|
||||
fi->i_flags = le32_to_cpu(ri->i_flags);
|
||||
fi->flags = 0;
|
||||
fi->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver) - 1;
|
||||
fi->i_advise = ri->i_advise;
|
||||
fi->i_pino = le32_to_cpu(ri->i_pino);
|
||||
get_extent_info(&fi->ext, ri->i_ext);
|
||||
f2fs_put_page(node_page, 1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *inode;
|
||||
int ret;
|
||||
|
||||
inode = iget_locked(sb, ino);
|
||||
if (!inode)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
if (!(inode->i_state & I_NEW))
|
||||
return inode;
|
||||
if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
|
||||
goto make_now;
|
||||
|
||||
ret = do_read_inode(inode);
|
||||
if (ret)
|
||||
goto bad_inode;
|
||||
|
||||
if (!sbi->por_doing && inode->i_nlink == 0) {
|
||||
ret = -ENOENT;
|
||||
goto bad_inode;
|
||||
}
|
||||
|
||||
make_now:
|
||||
if (ino == F2FS_NODE_INO(sbi)) {
|
||||
inode->i_mapping->a_ops = &f2fs_node_aops;
|
||||
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
|
||||
} else if (ino == F2FS_META_INO(sbi)) {
|
||||
inode->i_mapping->a_ops = &f2fs_meta_aops;
|
||||
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
|
||||
} else if (S_ISREG(inode->i_mode)) {
|
||||
inode->i_op = &f2fs_file_inode_operations;
|
||||
inode->i_fop = &f2fs_file_operations;
|
||||
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
||||
} else if (S_ISDIR(inode->i_mode)) {
|
||||
inode->i_op = &f2fs_dir_inode_operations;
|
||||
inode->i_fop = &f2fs_dir_operations;
|
||||
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
||||
mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
|
||||
__GFP_ZERO);
|
||||
} else if (S_ISLNK(inode->i_mode)) {
|
||||
inode->i_op = &f2fs_symlink_inode_operations;
|
||||
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
||||
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
|
||||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
|
||||
inode->i_op = &f2fs_special_inode_operations;
|
||||
init_special_inode(inode, inode->i_mode, inode->i_rdev);
|
||||
} else {
|
||||
ret = -EIO;
|
||||
goto bad_inode;
|
||||
}
|
||||
unlock_new_inode(inode);
|
||||
|
||||
return inode;
|
||||
|
||||
bad_inode:
|
||||
iget_failed(inode);
|
||||
return ERR_PTR(ret);
|
||||
}
|
||||
|
||||
void update_inode(struct inode *inode, struct page *node_page)
|
||||
{
|
||||
struct f2fs_node *rn;
|
||||
struct f2fs_inode *ri;
|
||||
|
||||
wait_on_page_writeback(node_page);
|
||||
|
||||
rn = page_address(node_page);
|
||||
ri = &(rn->i);
|
||||
|
||||
ri->i_mode = cpu_to_le16(inode->i_mode);
|
||||
ri->i_advise = F2FS_I(inode)->i_advise;
|
||||
ri->i_uid = cpu_to_le32(i_uid_read(inode));
|
||||
ri->i_gid = cpu_to_le32(i_gid_read(inode));
|
||||
ri->i_links = cpu_to_le32(inode->i_nlink);
|
||||
ri->i_size = cpu_to_le64(i_size_read(inode));
|
||||
ri->i_blocks = cpu_to_le64(inode->i_blocks);
|
||||
set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
|
||||
|
||||
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
|
||||
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
|
||||
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
|
||||
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
|
||||
ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
|
||||
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
|
||||
ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
|
||||
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
|
||||
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
|
||||
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
|
||||
ri->i_generation = cpu_to_le32(inode->i_generation);
|
||||
set_page_dirty(node_page);
|
||||
}
|
||||
|
||||
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct page *node_page;
|
||||
bool need_lock = false;
|
||||
|
||||
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
|
||||
inode->i_ino == F2FS_META_INO(sbi))
|
||||
return 0;
|
||||
|
||||
node_page = get_node_page(sbi, inode->i_ino);
|
||||
if (IS_ERR(node_page))
|
||||
return PTR_ERR(node_page);
|
||||
|
||||
if (!PageDirty(node_page)) {
|
||||
need_lock = true;
|
||||
f2fs_put_page(node_page, 1);
|
||||
mutex_lock(&sbi->write_inode);
|
||||
node_page = get_node_page(sbi, inode->i_ino);
|
||||
if (IS_ERR(node_page)) {
|
||||
mutex_unlock(&sbi->write_inode);
|
||||
return PTR_ERR(node_page);
|
||||
}
|
||||
}
|
||||
update_inode(inode, node_page);
|
||||
f2fs_put_page(node_page, 1);
|
||||
if (need_lock)
|
||||
mutex_unlock(&sbi->write_inode);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called at the last iput() if i_nlink is zero
|
||||
*/
|
||||
void f2fs_evict_inode(struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
|
||||
truncate_inode_pages(&inode->i_data, 0);
|
||||
|
||||
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
|
||||
inode->i_ino == F2FS_META_INO(sbi))
|
||||
goto no_delete;
|
||||
|
||||
BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
|
||||
remove_dirty_dir_inode(inode);
|
||||
|
||||
if (inode->i_nlink || is_bad_inode(inode))
|
||||
goto no_delete;
|
||||
|
||||
set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
|
||||
i_size_write(inode, 0);
|
||||
|
||||
if (F2FS_HAS_BLOCKS(inode))
|
||||
f2fs_truncate(inode);
|
||||
|
||||
remove_inode_page(inode);
|
||||
no_delete:
|
||||
clear_inode(inode);
|
||||
}
|
|
@ -0,0 +1,503 @@
|
|||
/*
|
||||
* fs/f2fs/namei.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/ctype.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "xattr.h"
|
||||
#include "acl.h"
|
||||
|
||||
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
|
||||
{
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
nid_t ino;
|
||||
struct inode *inode;
|
||||
bool nid_free = false;
|
||||
int err;
|
||||
|
||||
inode = new_inode(sb);
|
||||
if (!inode)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
mutex_lock_op(sbi, NODE_NEW);
|
||||
if (!alloc_nid(sbi, &ino)) {
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
err = -ENOSPC;
|
||||
goto fail;
|
||||
}
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
|
||||
inode->i_uid = current_fsuid();
|
||||
|
||||
if (dir->i_mode & S_ISGID) {
|
||||
inode->i_gid = dir->i_gid;
|
||||
if (S_ISDIR(mode))
|
||||
mode |= S_ISGID;
|
||||
} else {
|
||||
inode->i_gid = current_fsgid();
|
||||
}
|
||||
|
||||
inode->i_ino = ino;
|
||||
inode->i_mode = mode;
|
||||
inode->i_blocks = 0;
|
||||
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
|
||||
inode->i_generation = sbi->s_next_generation++;
|
||||
|
||||
err = insert_inode_locked(inode);
|
||||
if (err) {
|
||||
err = -EINVAL;
|
||||
nid_free = true;
|
||||
goto out;
|
||||
}
|
||||
|
||||
mark_inode_dirty(inode);
|
||||
return inode;
|
||||
|
||||
out:
|
||||
clear_nlink(inode);
|
||||
unlock_new_inode(inode);
|
||||
fail:
|
||||
iput(inode);
|
||||
if (nid_free)
|
||||
alloc_nid_failed(sbi, ino);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
static int is_multimedia_file(const unsigned char *s, const char *sub)
|
||||
{
|
||||
int slen = strlen(s);
|
||||
int sublen = strlen(sub);
|
||||
int ret;
|
||||
|
||||
if (sublen > slen)
|
||||
return 1;
|
||||
|
||||
ret = memcmp(s + slen - sublen, sub, sublen);
|
||||
if (ret) { /* compare upper case */
|
||||
int i;
|
||||
char upper_sub[8];
|
||||
for (i = 0; i < sublen && i < sizeof(upper_sub); i++)
|
||||
upper_sub[i] = toupper(sub[i]);
|
||||
return memcmp(s + slen - sublen, upper_sub, sublen);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set multimedia files as cold files for hot/cold data separation
|
||||
*/
|
||||
static inline void set_cold_file(struct f2fs_sb_info *sbi, struct inode *inode,
|
||||
const unsigned char *name)
|
||||
{
|
||||
int i;
|
||||
__u8 (*extlist)[8] = sbi->raw_super->extension_list;
|
||||
|
||||
int count = le32_to_cpu(sbi->raw_super->extension_count);
|
||||
for (i = 0; i < count; i++) {
|
||||
if (!is_multimedia_file(name, extlist[i])) {
|
||||
F2FS_I(inode)->i_advise |= FADVISE_COLD_BIT;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
|
||||
bool excl)
|
||||
{
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *inode;
|
||||
nid_t ino = 0;
|
||||
int err;
|
||||
|
||||
inode = f2fs_new_inode(dir, mode);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
|
||||
set_cold_file(sbi, inode, dentry->d_name.name);
|
||||
|
||||
inode->i_op = &f2fs_file_inode_operations;
|
||||
inode->i_fop = &f2fs_file_operations;
|
||||
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
||||
ino = inode->i_ino;
|
||||
|
||||
err = f2fs_add_link(dentry, inode);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
alloc_nid_done(sbi, ino);
|
||||
|
||||
if (!sbi->por_doing)
|
||||
d_instantiate(dentry, inode);
|
||||
unlock_new_inode(inode);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
return 0;
|
||||
out:
|
||||
clear_nlink(inode);
|
||||
unlock_new_inode(inode);
|
||||
iput(inode);
|
||||
alloc_nid_failed(sbi, ino);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
|
||||
struct dentry *dentry)
|
||||
{
|
||||
struct inode *inode = old_dentry->d_inode;
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
int err;
|
||||
|
||||
inode->i_ctime = CURRENT_TIME;
|
||||
atomic_inc(&inode->i_count);
|
||||
|
||||
set_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
||||
err = f2fs_add_link(dentry, inode);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
d_instantiate(dentry, inode);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
return 0;
|
||||
out:
|
||||
clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
||||
iput(inode);
|
||||
return err;
|
||||
}
|
||||
|
||||
struct dentry *f2fs_get_parent(struct dentry *child)
|
||||
{
|
||||
struct qstr dotdot = QSTR_INIT("..", 2);
|
||||
unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
|
||||
if (!ino)
|
||||
return ERR_PTR(-ENOENT);
|
||||
return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
|
||||
}
|
||||
|
||||
static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
|
||||
unsigned int flags)
|
||||
{
|
||||
struct inode *inode = NULL;
|
||||
struct f2fs_dir_entry *de;
|
||||
struct page *page;
|
||||
|
||||
if (dentry->d_name.len > F2FS_MAX_NAME_LEN)
|
||||
return ERR_PTR(-ENAMETOOLONG);
|
||||
|
||||
de = f2fs_find_entry(dir, &dentry->d_name, &page);
|
||||
if (de) {
|
||||
nid_t ino = le32_to_cpu(de->ino);
|
||||
kunmap(page);
|
||||
f2fs_put_page(page, 0);
|
||||
|
||||
inode = f2fs_iget(dir->i_sb, ino);
|
||||
if (IS_ERR(inode))
|
||||
return ERR_CAST(inode);
|
||||
}
|
||||
|
||||
return d_splice_alias(inode, dentry);
|
||||
}
|
||||
|
||||
static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
|
||||
{
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *inode = dentry->d_inode;
|
||||
struct f2fs_dir_entry *de;
|
||||
struct page *page;
|
||||
int err = -ENOENT;
|
||||
|
||||
de = f2fs_find_entry(dir, &dentry->d_name, &page);
|
||||
if (!de)
|
||||
goto fail;
|
||||
|
||||
err = check_orphan_space(sbi);
|
||||
if (err) {
|
||||
kunmap(page);
|
||||
f2fs_put_page(page, 0);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
f2fs_delete_entry(de, page, inode);
|
||||
|
||||
/* In order to evict this inode, we set it dirty */
|
||||
mark_inode_dirty(inode);
|
||||
f2fs_balance_fs(sbi);
|
||||
fail:
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
|
||||
const char *symname)
|
||||
{
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *inode;
|
||||
unsigned symlen = strlen(symname) + 1;
|
||||
int err;
|
||||
|
||||
inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
inode->i_op = &f2fs_symlink_inode_operations;
|
||||
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
||||
|
||||
err = f2fs_add_link(dentry, inode);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
err = page_symlink(inode, symname, symlen);
|
||||
alloc_nid_done(sbi, inode->i_ino);
|
||||
|
||||
d_instantiate(dentry, inode);
|
||||
unlock_new_inode(inode);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
|
||||
return err;
|
||||
out:
|
||||
clear_nlink(inode);
|
||||
unlock_new_inode(inode);
|
||||
iput(inode);
|
||||
alloc_nid_failed(sbi, inode->i_ino);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
||||
struct inode *inode;
|
||||
int err;
|
||||
|
||||
inode = f2fs_new_inode(dir, S_IFDIR | mode);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
inode->i_op = &f2fs_dir_inode_operations;
|
||||
inode->i_fop = &f2fs_dir_operations;
|
||||
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
||||
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
|
||||
|
||||
set_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
||||
err = f2fs_add_link(dentry, inode);
|
||||
if (err)
|
||||
goto out_fail;
|
||||
|
||||
alloc_nid_done(sbi, inode->i_ino);
|
||||
|
||||
d_instantiate(dentry, inode);
|
||||
unlock_new_inode(inode);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
return 0;
|
||||
|
||||
out_fail:
|
||||
clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
||||
clear_nlink(inode);
|
||||
unlock_new_inode(inode);
|
||||
iput(inode);
|
||||
alloc_nid_failed(sbi, inode->i_ino);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
if (f2fs_empty_dir(inode))
|
||||
return f2fs_unlink(dir, dentry);
|
||||
return -ENOTEMPTY;
|
||||
}
|
||||
|
||||
static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
|
||||
umode_t mode, dev_t rdev)
|
||||
{
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *inode;
|
||||
int err = 0;
|
||||
|
||||
if (!new_valid_dev(rdev))
|
||||
return -EINVAL;
|
||||
|
||||
inode = f2fs_new_inode(dir, mode);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
init_special_inode(inode, inode->i_mode, rdev);
|
||||
inode->i_op = &f2fs_special_inode_operations;
|
||||
|
||||
err = f2fs_add_link(dentry, inode);
|
||||
if (err)
|
||||
goto out;
|
||||
|
||||
alloc_nid_done(sbi, inode->i_ino);
|
||||
d_instantiate(dentry, inode);
|
||||
unlock_new_inode(inode);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
|
||||
return 0;
|
||||
out:
|
||||
clear_nlink(inode);
|
||||
unlock_new_inode(inode);
|
||||
iput(inode);
|
||||
alloc_nid_failed(sbi, inode->i_ino);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
||||
struct inode *new_dir, struct dentry *new_dentry)
|
||||
{
|
||||
struct super_block *sb = old_dir->i_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *old_inode = old_dentry->d_inode;
|
||||
struct inode *new_inode = new_dentry->d_inode;
|
||||
struct page *old_dir_page;
|
||||
struct page *old_page;
|
||||
struct f2fs_dir_entry *old_dir_entry = NULL;
|
||||
struct f2fs_dir_entry *old_entry;
|
||||
struct f2fs_dir_entry *new_entry;
|
||||
int err = -ENOENT;
|
||||
|
||||
old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
|
||||
if (!old_entry)
|
||||
goto out;
|
||||
|
||||
if (S_ISDIR(old_inode->i_mode)) {
|
||||
err = -EIO;
|
||||
old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
|
||||
if (!old_dir_entry)
|
||||
goto out_old;
|
||||
}
|
||||
|
||||
mutex_lock_op(sbi, RENAME);
|
||||
|
||||
if (new_inode) {
|
||||
struct page *new_page;
|
||||
|
||||
err = -ENOTEMPTY;
|
||||
if (old_dir_entry && !f2fs_empty_dir(new_inode))
|
||||
goto out_dir;
|
||||
|
||||
err = -ENOENT;
|
||||
new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
|
||||
&new_page);
|
||||
if (!new_entry)
|
||||
goto out_dir;
|
||||
|
||||
f2fs_set_link(new_dir, new_entry, new_page, old_inode);
|
||||
|
||||
new_inode->i_ctime = CURRENT_TIME;
|
||||
if (old_dir_entry)
|
||||
drop_nlink(new_inode);
|
||||
drop_nlink(new_inode);
|
||||
if (!new_inode->i_nlink)
|
||||
add_orphan_inode(sbi, new_inode->i_ino);
|
||||
f2fs_write_inode(new_inode, NULL);
|
||||
} else {
|
||||
err = f2fs_add_link(new_dentry, old_inode);
|
||||
if (err)
|
||||
goto out_dir;
|
||||
|
||||
if (old_dir_entry) {
|
||||
inc_nlink(new_dir);
|
||||
f2fs_write_inode(new_dir, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
old_inode->i_ctime = CURRENT_TIME;
|
||||
set_inode_flag(F2FS_I(old_inode), FI_NEED_CP);
|
||||
mark_inode_dirty(old_inode);
|
||||
|
||||
f2fs_delete_entry(old_entry, old_page, NULL);
|
||||
|
||||
if (old_dir_entry) {
|
||||
if (old_dir != new_dir) {
|
||||
f2fs_set_link(old_inode, old_dir_entry,
|
||||
old_dir_page, new_dir);
|
||||
} else {
|
||||
kunmap(old_dir_page);
|
||||
f2fs_put_page(old_dir_page, 0);
|
||||
}
|
||||
drop_nlink(old_dir);
|
||||
f2fs_write_inode(old_dir, NULL);
|
||||
}
|
||||
|
||||
mutex_unlock_op(sbi, RENAME);
|
||||
|
||||
f2fs_balance_fs(sbi);
|
||||
return 0;
|
||||
|
||||
out_dir:
|
||||
if (old_dir_entry) {
|
||||
kunmap(old_dir_page);
|
||||
f2fs_put_page(old_dir_page, 0);
|
||||
}
|
||||
mutex_unlock_op(sbi, RENAME);
|
||||
out_old:
|
||||
kunmap(old_page);
|
||||
f2fs_put_page(old_page, 0);
|
||||
out:
|
||||
return err;
|
||||
}
|
||||
|
||||
const struct inode_operations f2fs_dir_inode_operations = {
|
||||
.create = f2fs_create,
|
||||
.lookup = f2fs_lookup,
|
||||
.link = f2fs_link,
|
||||
.unlink = f2fs_unlink,
|
||||
.symlink = f2fs_symlink,
|
||||
.mkdir = f2fs_mkdir,
|
||||
.rmdir = f2fs_rmdir,
|
||||
.mknod = f2fs_mknod,
|
||||
.rename = f2fs_rename,
|
||||
.setattr = f2fs_setattr,
|
||||
.get_acl = f2fs_get_acl,
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
.setxattr = generic_setxattr,
|
||||
.getxattr = generic_getxattr,
|
||||
.listxattr = f2fs_listxattr,
|
||||
.removexattr = generic_removexattr,
|
||||
#endif
|
||||
};
|
||||
|
||||
const struct inode_operations f2fs_symlink_inode_operations = {
|
||||
.readlink = generic_readlink,
|
||||
.follow_link = page_follow_link_light,
|
||||
.put_link = page_put_link,
|
||||
.setattr = f2fs_setattr,
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
.setxattr = generic_setxattr,
|
||||
.getxattr = generic_getxattr,
|
||||
.listxattr = f2fs_listxattr,
|
||||
.removexattr = generic_removexattr,
|
||||
#endif
|
||||
};
|
||||
|
||||
const struct inode_operations f2fs_special_inode_operations = {
|
||||
.setattr = f2fs_setattr,
|
||||
.get_acl = f2fs_get_acl,
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
.setxattr = generic_setxattr,
|
||||
.getxattr = generic_getxattr,
|
||||
.listxattr = f2fs_listxattr,
|
||||
.removexattr = generic_removexattr,
|
||||
#endif
|
||||
};
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,353 @@
|
|||
/*
|
||||
* fs/f2fs/node.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
/* start node id of a node block dedicated to the given node id */
|
||||
#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
|
||||
|
||||
/* node block offset on the NAT area dedicated to the given start node id */
|
||||
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
|
||||
|
||||
/* # of pages to perform readahead before building free nids */
|
||||
#define FREE_NID_PAGES 4
|
||||
|
||||
/* maximum # of free node ids to produce during build_free_nids */
|
||||
#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
|
||||
|
||||
/* maximum readahead size for node during getting data blocks */
|
||||
#define MAX_RA_NODE 128
|
||||
|
||||
/* maximum cached nat entries to manage memory footprint */
|
||||
#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
|
||||
|
||||
/* vector size for gang look-up from nat cache that consists of radix tree */
|
||||
#define NATVEC_SIZE 64
|
||||
|
||||
/*
|
||||
* For node information
|
||||
*/
|
||||
struct node_info {
|
||||
nid_t nid; /* node id */
|
||||
nid_t ino; /* inode number of the node's owner */
|
||||
block_t blk_addr; /* block address of the node */
|
||||
unsigned char version; /* version of the node */
|
||||
};
|
||||
|
||||
struct nat_entry {
|
||||
struct list_head list; /* for clean or dirty nat list */
|
||||
bool checkpointed; /* whether it is checkpointed or not */
|
||||
struct node_info ni; /* in-memory node information */
|
||||
};
|
||||
|
||||
#define nat_get_nid(nat) (nat->ni.nid)
|
||||
#define nat_set_nid(nat, n) (nat->ni.nid = n)
|
||||
#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
|
||||
#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
|
||||
#define nat_get_ino(nat) (nat->ni.ino)
|
||||
#define nat_set_ino(nat, i) (nat->ni.ino = i)
|
||||
#define nat_get_version(nat) (nat->ni.version)
|
||||
#define nat_set_version(nat, v) (nat->ni.version = v)
|
||||
|
||||
#define __set_nat_cache_dirty(nm_i, ne) \
|
||||
list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
|
||||
#define __clear_nat_cache_dirty(nm_i, ne) \
|
||||
list_move_tail(&ne->list, &nm_i->nat_entries);
|
||||
#define inc_node_version(version) (++version)
|
||||
|
||||
static inline void node_info_from_raw_nat(struct node_info *ni,
|
||||
struct f2fs_nat_entry *raw_ne)
|
||||
{
|
||||
ni->ino = le32_to_cpu(raw_ne->ino);
|
||||
ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
|
||||
ni->version = raw_ne->version;
|
||||
}
|
||||
|
||||
/*
|
||||
* For free nid mangement
|
||||
*/
|
||||
enum nid_state {
|
||||
NID_NEW, /* newly added to free nid list */
|
||||
NID_ALLOC /* it is allocated */
|
||||
};
|
||||
|
||||
struct free_nid {
|
||||
struct list_head list; /* for free node id list */
|
||||
nid_t nid; /* node id */
|
||||
int state; /* in use or not: NID_NEW or NID_ALLOC */
|
||||
};
|
||||
|
||||
static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
struct free_nid *fnid;
|
||||
|
||||
if (nm_i->fcnt <= 0)
|
||||
return -1;
|
||||
spin_lock(&nm_i->free_nid_list_lock);
|
||||
fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
|
||||
*nid = fnid->nid;
|
||||
spin_unlock(&nm_i->free_nid_list_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* inline functions
|
||||
*/
|
||||
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
|
||||
}
|
||||
|
||||
static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
pgoff_t block_off;
|
||||
pgoff_t block_addr;
|
||||
int seg_off;
|
||||
|
||||
block_off = NAT_BLOCK_OFFSET(start);
|
||||
seg_off = block_off >> sbi->log_blocks_per_seg;
|
||||
|
||||
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
|
||||
(seg_off << sbi->log_blocks_per_seg << 1) +
|
||||
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
|
||||
|
||||
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
||||
block_addr += sbi->blocks_per_seg;
|
||||
|
||||
return block_addr;
|
||||
}
|
||||
|
||||
static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
|
||||
pgoff_t block_addr)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
|
||||
block_addr -= nm_i->nat_blkaddr;
|
||||
if ((block_addr >> sbi->log_blocks_per_seg) % 2)
|
||||
block_addr -= sbi->blocks_per_seg;
|
||||
else
|
||||
block_addr += sbi->blocks_per_seg;
|
||||
|
||||
return block_addr + nm_i->nat_blkaddr;
|
||||
}
|
||||
|
||||
static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
|
||||
{
|
||||
unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
|
||||
|
||||
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
||||
f2fs_clear_bit(block_off, nm_i->nat_bitmap);
|
||||
else
|
||||
f2fs_set_bit(block_off, nm_i->nat_bitmap);
|
||||
}
|
||||
|
||||
static inline void fill_node_footer(struct page *page, nid_t nid,
|
||||
nid_t ino, unsigned int ofs, bool reset)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
if (reset)
|
||||
memset(rn, 0, sizeof(*rn));
|
||||
rn->footer.nid = cpu_to_le32(nid);
|
||||
rn->footer.ino = cpu_to_le32(ino);
|
||||
rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline void copy_node_footer(struct page *dst, struct page *src)
|
||||
{
|
||||
void *src_addr = page_address(src);
|
||||
void *dst_addr = page_address(dst);
|
||||
struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
|
||||
struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
|
||||
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
|
||||
}
|
||||
|
||||
static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
|
||||
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
rn->footer.cp_ver = ckpt->checkpoint_ver;
|
||||
rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
|
||||
}
|
||||
|
||||
static inline nid_t ino_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le32_to_cpu(rn->footer.ino);
|
||||
}
|
||||
|
||||
static inline nid_t nid_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le32_to_cpu(rn->footer.nid);
|
||||
}
|
||||
|
||||
static inline unsigned int ofs_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag >> OFFSET_BIT_SHIFT;
|
||||
}
|
||||
|
||||
static inline unsigned long long cpver_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le64_to_cpu(rn->footer.cp_ver);
|
||||
}
|
||||
|
||||
static inline block_t next_blkaddr_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le32_to_cpu(rn->footer.next_blkaddr);
|
||||
}
|
||||
|
||||
/*
|
||||
* f2fs assigns the following node offsets described as (num).
|
||||
* N = NIDS_PER_BLOCK
|
||||
*
|
||||
* Inode block (0)
|
||||
* |- direct node (1)
|
||||
* |- direct node (2)
|
||||
* |- indirect node (3)
|
||||
* | `- direct node (4 => 4 + N - 1)
|
||||
* |- indirect node (4 + N)
|
||||
* | `- direct node (5 + N => 5 + 2N - 1)
|
||||
* `- double indirect node (5 + 2N)
|
||||
* `- indirect node (6 + 2N)
|
||||
* `- direct node (x(N + 1))
|
||||
*/
|
||||
static inline bool IS_DNODE(struct page *node_page)
|
||||
{
|
||||
unsigned int ofs = ofs_of_node(node_page);
|
||||
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
|
||||
ofs == 5 + 2 * NIDS_PER_BLOCK)
|
||||
return false;
|
||||
if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
|
||||
ofs -= 6 + 2 * NIDS_PER_BLOCK;
|
||||
if ((long int)ofs % (NIDS_PER_BLOCK + 1))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
|
||||
{
|
||||
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
|
||||
|
||||
wait_on_page_writeback(p);
|
||||
|
||||
if (i)
|
||||
rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
|
||||
else
|
||||
rn->in.nid[off] = cpu_to_le32(nid);
|
||||
set_page_dirty(p);
|
||||
}
|
||||
|
||||
static inline nid_t get_nid(struct page *p, int off, bool i)
|
||||
{
|
||||
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
|
||||
if (i)
|
||||
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
|
||||
return le32_to_cpu(rn->in.nid[off]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Coldness identification:
|
||||
* - Mark cold files in f2fs_inode_info
|
||||
* - Mark cold node blocks in their node footer
|
||||
* - Mark cold data pages in page cache
|
||||
*/
|
||||
static inline int is_cold_file(struct inode *inode)
|
||||
{
|
||||
return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
|
||||
}
|
||||
|
||||
static inline int is_cold_data(struct page *page)
|
||||
{
|
||||
return PageChecked(page);
|
||||
}
|
||||
|
||||
static inline void set_cold_data(struct page *page)
|
||||
{
|
||||
SetPageChecked(page);
|
||||
}
|
||||
|
||||
static inline void clear_cold_data(struct page *page)
|
||||
{
|
||||
ClearPageChecked(page);
|
||||
}
|
||||
|
||||
static inline int is_cold_node(struct page *page)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag & (0x1 << COLD_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline unsigned char is_fsync_dnode(struct page *page)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag & (0x1 << FSYNC_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline unsigned char is_dent_dnode(struct page *page)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag & (0x1 << DENT_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline void set_cold_node(struct inode *inode, struct page *page)
|
||||
{
|
||||
struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
|
||||
if (S_ISDIR(inode->i_mode))
|
||||
flag &= ~(0x1 << COLD_BIT_SHIFT);
|
||||
else
|
||||
flag |= (0x1 << COLD_BIT_SHIFT);
|
||||
rn->footer.flag = cpu_to_le32(flag);
|
||||
}
|
||||
|
||||
static inline void set_fsync_mark(struct page *page, int mark)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
if (mark)
|
||||
flag |= (0x1 << FSYNC_BIT_SHIFT);
|
||||
else
|
||||
flag &= ~(0x1 << FSYNC_BIT_SHIFT);
|
||||
rn->footer.flag = cpu_to_le32(flag);
|
||||
}
|
||||
|
||||
static inline void set_dentry_mark(struct page *page, int mark)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
if (mark)
|
||||
flag |= (0x1 << DENT_BIT_SHIFT);
|
||||
else
|
||||
flag &= ~(0x1 << DENT_BIT_SHIFT);
|
||||
rn->footer.flag = cpu_to_le32(flag);
|
||||
}
|
|
@ -0,0 +1,375 @@
|
|||
/*
|
||||
* fs/f2fs/recovery.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/fs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "segment.h"
|
||||
|
||||
static struct kmem_cache *fsync_entry_slab;
|
||||
|
||||
bool space_for_roll_forward(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
|
||||
> sbi->user_block_count)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
|
||||
nid_t ino)
|
||||
{
|
||||
struct list_head *this;
|
||||
struct fsync_inode_entry *entry;
|
||||
|
||||
list_for_each(this, head) {
|
||||
entry = list_entry(this, struct fsync_inode_entry, list);
|
||||
if (entry->inode->i_ino == ino)
|
||||
return entry;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int recover_dentry(struct page *ipage, struct inode *inode)
|
||||
{
|
||||
struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage);
|
||||
struct f2fs_inode *raw_inode = &(raw_node->i);
|
||||
struct dentry dent, parent;
|
||||
struct f2fs_dir_entry *de;
|
||||
struct page *page;
|
||||
struct inode *dir;
|
||||
int err = 0;
|
||||
|
||||
if (!is_dent_dnode(ipage))
|
||||
goto out;
|
||||
|
||||
dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino));
|
||||
if (IS_ERR(dir)) {
|
||||
err = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
parent.d_inode = dir;
|
||||
dent.d_parent = &parent;
|
||||
dent.d_name.len = le32_to_cpu(raw_inode->i_namelen);
|
||||
dent.d_name.name = raw_inode->i_name;
|
||||
|
||||
de = f2fs_find_entry(dir, &dent.d_name, &page);
|
||||
if (de) {
|
||||
kunmap(page);
|
||||
f2fs_put_page(page, 0);
|
||||
} else {
|
||||
f2fs_add_link(&dent, inode);
|
||||
}
|
||||
iput(dir);
|
||||
out:
|
||||
kunmap(ipage);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int recover_inode(struct inode *inode, struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
|
||||
struct f2fs_inode *raw_inode = &(raw_node->i);
|
||||
|
||||
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
|
||||
i_size_write(inode, le64_to_cpu(raw_inode->i_size));
|
||||
inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
|
||||
inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
|
||||
inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
|
||||
inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
|
||||
inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
|
||||
inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
|
||||
|
||||
return recover_dentry(node_page, inode);
|
||||
}
|
||||
|
||||
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
|
||||
{
|
||||
unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
|
||||
struct curseg_info *curseg;
|
||||
struct page *page;
|
||||
block_t blkaddr;
|
||||
int err = 0;
|
||||
|
||||
/* get node pages in the current segment */
|
||||
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
|
||||
blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
|
||||
|
||||
/* read node page */
|
||||
page = alloc_page(GFP_F2FS_ZERO);
|
||||
if (IS_ERR(page))
|
||||
return PTR_ERR(page);
|
||||
lock_page(page);
|
||||
|
||||
while (1) {
|
||||
struct fsync_inode_entry *entry;
|
||||
|
||||
if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
|
||||
goto out;
|
||||
|
||||
if (cp_ver != cpver_of_node(page))
|
||||
goto out;
|
||||
|
||||
if (!is_fsync_dnode(page))
|
||||
goto next;
|
||||
|
||||
entry = get_fsync_inode(head, ino_of_node(page));
|
||||
if (entry) {
|
||||
entry->blkaddr = blkaddr;
|
||||
if (IS_INODE(page) && is_dent_dnode(page))
|
||||
set_inode_flag(F2FS_I(entry->inode),
|
||||
FI_INC_LINK);
|
||||
} else {
|
||||
if (IS_INODE(page) && is_dent_dnode(page)) {
|
||||
if (recover_inode_page(sbi, page)) {
|
||||
err = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
/* add this fsync inode to the list */
|
||||
entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
|
||||
if (!entry) {
|
||||
err = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
INIT_LIST_HEAD(&entry->list);
|
||||
list_add_tail(&entry->list, head);
|
||||
|
||||
entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
|
||||
if (IS_ERR(entry->inode)) {
|
||||
err = PTR_ERR(entry->inode);
|
||||
goto out;
|
||||
}
|
||||
entry->blkaddr = blkaddr;
|
||||
}
|
||||
if (IS_INODE(page)) {
|
||||
err = recover_inode(entry->inode, page);
|
||||
if (err)
|
||||
goto out;
|
||||
}
|
||||
next:
|
||||
/* check next segment */
|
||||
blkaddr = next_blkaddr_of_node(page);
|
||||
ClearPageUptodate(page);
|
||||
}
|
||||
out:
|
||||
unlock_page(page);
|
||||
__free_pages(page, 0);
|
||||
return err;
|
||||
}
|
||||
|
||||
static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi,
|
||||
struct list_head *head)
|
||||
{
|
||||
struct list_head *this;
|
||||
struct fsync_inode_entry *entry;
|
||||
list_for_each(this, head) {
|
||||
entry = list_entry(this, struct fsync_inode_entry, list);
|
||||
iput(entry->inode);
|
||||
list_del(&entry->list);
|
||||
kmem_cache_free(fsync_entry_slab, entry);
|
||||
}
|
||||
}
|
||||
|
||||
static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
|
||||
block_t blkaddr)
|
||||
{
|
||||
struct seg_entry *sentry;
|
||||
unsigned int segno = GET_SEGNO(sbi, blkaddr);
|
||||
unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
|
||||
(sbi->blocks_per_seg - 1);
|
||||
struct f2fs_summary sum;
|
||||
nid_t ino;
|
||||
void *kaddr;
|
||||
struct inode *inode;
|
||||
struct page *node_page;
|
||||
block_t bidx;
|
||||
int i;
|
||||
|
||||
sentry = get_seg_entry(sbi, segno);
|
||||
if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
|
||||
return;
|
||||
|
||||
/* Get the previous summary */
|
||||
for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, i);
|
||||
if (curseg->segno == segno) {
|
||||
sum = curseg->sum_blk->entries[blkoff];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i > CURSEG_COLD_DATA) {
|
||||
struct page *sum_page = get_sum_page(sbi, segno);
|
||||
struct f2fs_summary_block *sum_node;
|
||||
kaddr = page_address(sum_page);
|
||||
sum_node = (struct f2fs_summary_block *)kaddr;
|
||||
sum = sum_node->entries[blkoff];
|
||||
f2fs_put_page(sum_page, 1);
|
||||
}
|
||||
|
||||
/* Get the node page */
|
||||
node_page = get_node_page(sbi, le32_to_cpu(sum.nid));
|
||||
bidx = start_bidx_of_node(ofs_of_node(node_page)) +
|
||||
le16_to_cpu(sum.ofs_in_node);
|
||||
ino = ino_of_node(node_page);
|
||||
f2fs_put_page(node_page, 1);
|
||||
|
||||
/* Deallocate previous index in the node page */
|
||||
inode = f2fs_iget_nowait(sbi->sb, ino);
|
||||
truncate_hole(inode, bidx, bidx + 1);
|
||||
iput(inode);
|
||||
}
|
||||
|
||||
static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
|
||||
struct page *page, block_t blkaddr)
|
||||
{
|
||||
unsigned int start, end;
|
||||
struct dnode_of_data dn;
|
||||
struct f2fs_summary sum;
|
||||
struct node_info ni;
|
||||
|
||||
start = start_bidx_of_node(ofs_of_node(page));
|
||||
if (IS_INODE(page))
|
||||
end = start + ADDRS_PER_INODE;
|
||||
else
|
||||
end = start + ADDRS_PER_BLOCK;
|
||||
|
||||
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
||||
if (get_dnode_of_data(&dn, start, 0))
|
||||
return;
|
||||
|
||||
wait_on_page_writeback(dn.node_page);
|
||||
|
||||
get_node_info(sbi, dn.nid, &ni);
|
||||
BUG_ON(ni.ino != ino_of_node(page));
|
||||
BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
|
||||
|
||||
for (; start < end; start++) {
|
||||
block_t src, dest;
|
||||
|
||||
src = datablock_addr(dn.node_page, dn.ofs_in_node);
|
||||
dest = datablock_addr(page, dn.ofs_in_node);
|
||||
|
||||
if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
|
||||
if (src == NULL_ADDR) {
|
||||
int err = reserve_new_block(&dn);
|
||||
/* We should not get -ENOSPC */
|
||||
BUG_ON(err);
|
||||
}
|
||||
|
||||
/* Check the previous node page having this index */
|
||||
check_index_in_prev_nodes(sbi, dest);
|
||||
|
||||
set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
|
||||
|
||||
/* write dummy data page */
|
||||
recover_data_page(sbi, NULL, &sum, src, dest);
|
||||
update_extent_cache(dest, &dn);
|
||||
}
|
||||
dn.ofs_in_node++;
|
||||
}
|
||||
|
||||
/* write node page in place */
|
||||
set_summary(&sum, dn.nid, 0, 0);
|
||||
if (IS_INODE(dn.node_page))
|
||||
sync_inode_page(&dn);
|
||||
|
||||
copy_node_footer(dn.node_page, page);
|
||||
fill_node_footer(dn.node_page, dn.nid, ni.ino,
|
||||
ofs_of_node(page), false);
|
||||
set_page_dirty(dn.node_page);
|
||||
|
||||
recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
|
||||
f2fs_put_dnode(&dn);
|
||||
}
|
||||
|
||||
static void recover_data(struct f2fs_sb_info *sbi,
|
||||
struct list_head *head, int type)
|
||||
{
|
||||
unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
|
||||
struct curseg_info *curseg;
|
||||
struct page *page;
|
||||
block_t blkaddr;
|
||||
|
||||
/* get node pages in the current segment */
|
||||
curseg = CURSEG_I(sbi, type);
|
||||
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
|
||||
|
||||
/* read node page */
|
||||
page = alloc_page(GFP_NOFS | __GFP_ZERO);
|
||||
if (IS_ERR(page))
|
||||
return;
|
||||
lock_page(page);
|
||||
|
||||
while (1) {
|
||||
struct fsync_inode_entry *entry;
|
||||
|
||||
if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
|
||||
goto out;
|
||||
|
||||
if (cp_ver != cpver_of_node(page))
|
||||
goto out;
|
||||
|
||||
entry = get_fsync_inode(head, ino_of_node(page));
|
||||
if (!entry)
|
||||
goto next;
|
||||
|
||||
do_recover_data(sbi, entry->inode, page, blkaddr);
|
||||
|
||||
if (entry->blkaddr == blkaddr) {
|
||||
iput(entry->inode);
|
||||
list_del(&entry->list);
|
||||
kmem_cache_free(fsync_entry_slab, entry);
|
||||
}
|
||||
next:
|
||||
/* check next segment */
|
||||
blkaddr = next_blkaddr_of_node(page);
|
||||
ClearPageUptodate(page);
|
||||
}
|
||||
out:
|
||||
unlock_page(page);
|
||||
__free_pages(page, 0);
|
||||
|
||||
allocate_new_segments(sbi);
|
||||
}
|
||||
|
||||
void recover_fsync_data(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct list_head inode_list;
|
||||
|
||||
fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
|
||||
sizeof(struct fsync_inode_entry), NULL);
|
||||
if (unlikely(!fsync_entry_slab))
|
||||
return;
|
||||
|
||||
INIT_LIST_HEAD(&inode_list);
|
||||
|
||||
/* step #1: find fsynced inode numbers */
|
||||
if (find_fsync_dnodes(sbi, &inode_list))
|
||||
goto out;
|
||||
|
||||
if (list_empty(&inode_list))
|
||||
goto out;
|
||||
|
||||
/* step #2: recover data */
|
||||
sbi->por_doing = 1;
|
||||
recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
|
||||
sbi->por_doing = 0;
|
||||
BUG_ON(!list_empty(&inode_list));
|
||||
out:
|
||||
destroy_fsync_dnodes(sbi, &inode_list);
|
||||
kmem_cache_destroy(fsync_entry_slab);
|
||||
write_checkpoint(sbi, false, false);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,618 @@
|
|||
/*
|
||||
* fs/f2fs/segment.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
/* constant macro */
|
||||
#define NULL_SEGNO ((unsigned int)(~0))
|
||||
|
||||
/* V: Logical segment # in volume, R: Relative segment # in main area */
|
||||
#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
|
||||
#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
|
||||
|
||||
#define IS_DATASEG(t) \
|
||||
((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
|
||||
(t == CURSEG_WARM_DATA))
|
||||
|
||||
#define IS_NODESEG(t) \
|
||||
((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
|
||||
(t == CURSEG_WARM_NODE))
|
||||
|
||||
#define IS_CURSEG(sbi, segno) \
|
||||
((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
|
||||
|
||||
#define IS_CURSEC(sbi, secno) \
|
||||
((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
|
||||
sbi->segs_per_sec)) \
|
||||
|
||||
#define START_BLOCK(sbi, segno) \
|
||||
(SM_I(sbi)->seg0_blkaddr + \
|
||||
(GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
|
||||
#define NEXT_FREE_BLKADDR(sbi, curseg) \
|
||||
(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
|
||||
|
||||
#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
|
||||
|
||||
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
|
||||
((blk_addr) - SM_I(sbi)->seg0_blkaddr)
|
||||
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
|
||||
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
|
||||
#define GET_SEGNO(sbi, blk_addr) \
|
||||
(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
|
||||
NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
|
||||
GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
|
||||
#define GET_SECNO(sbi, segno) \
|
||||
((segno) / sbi->segs_per_sec)
|
||||
#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
|
||||
((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
|
||||
|
||||
#define GET_SUM_BLOCK(sbi, segno) \
|
||||
((sbi->sm_info->ssa_blkaddr) + segno)
|
||||
|
||||
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
|
||||
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
|
||||
|
||||
#define SIT_ENTRY_OFFSET(sit_i, segno) \
|
||||
(segno % sit_i->sents_per_block)
|
||||
#define SIT_BLOCK_OFFSET(sit_i, segno) \
|
||||
(segno / SIT_ENTRY_PER_BLOCK)
|
||||
#define START_SEGNO(sit_i, segno) \
|
||||
(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
|
||||
#define f2fs_bitmap_size(nr) \
|
||||
(BITS_TO_LONGS(nr) * sizeof(unsigned long))
|
||||
#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
|
||||
|
||||
#define SECTOR_FROM_BLOCK(sbi, blk_addr) \
|
||||
(blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
|
||||
|
||||
/* during checkpoint, bio_private is used to synchronize the last bio */
|
||||
struct bio_private {
|
||||
struct f2fs_sb_info *sbi;
|
||||
bool is_sync;
|
||||
void *wait;
|
||||
};
|
||||
|
||||
/*
|
||||
* indicate a block allocation direction: RIGHT and LEFT.
|
||||
* RIGHT means allocating new sections towards the end of volume.
|
||||
* LEFT means the opposite direction.
|
||||
*/
|
||||
enum {
|
||||
ALLOC_RIGHT = 0,
|
||||
ALLOC_LEFT
|
||||
};
|
||||
|
||||
/*
|
||||
* In the victim_sel_policy->alloc_mode, there are two block allocation modes.
|
||||
* LFS writes data sequentially with cleaning operations.
|
||||
* SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
|
||||
*/
|
||||
enum {
|
||||
LFS = 0,
|
||||
SSR
|
||||
};
|
||||
|
||||
/*
|
||||
* In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
|
||||
* GC_CB is based on cost-benefit algorithm.
|
||||
* GC_GREEDY is based on greedy algorithm.
|
||||
*/
|
||||
enum {
|
||||
GC_CB = 0,
|
||||
GC_GREEDY
|
||||
};
|
||||
|
||||
/*
|
||||
* BG_GC means the background cleaning job.
|
||||
* FG_GC means the on-demand cleaning job.
|
||||
*/
|
||||
enum {
|
||||
BG_GC = 0,
|
||||
FG_GC
|
||||
};
|
||||
|
||||
/* for a function parameter to select a victim segment */
|
||||
struct victim_sel_policy {
|
||||
int alloc_mode; /* LFS or SSR */
|
||||
int gc_mode; /* GC_CB or GC_GREEDY */
|
||||
unsigned long *dirty_segmap; /* dirty segment bitmap */
|
||||
unsigned int offset; /* last scanned bitmap offset */
|
||||
unsigned int ofs_unit; /* bitmap search unit */
|
||||
unsigned int min_cost; /* minimum cost */
|
||||
unsigned int min_segno; /* segment # having min. cost */
|
||||
};
|
||||
|
||||
struct seg_entry {
|
||||
unsigned short valid_blocks; /* # of valid blocks */
|
||||
unsigned char *cur_valid_map; /* validity bitmap of blocks */
|
||||
/*
|
||||
* # of valid blocks and the validity bitmap stored in the the last
|
||||
* checkpoint pack. This information is used by the SSR mode.
|
||||
*/
|
||||
unsigned short ckpt_valid_blocks;
|
||||
unsigned char *ckpt_valid_map;
|
||||
unsigned char type; /* segment type like CURSEG_XXX_TYPE */
|
||||
unsigned long long mtime; /* modification time of the segment */
|
||||
};
|
||||
|
||||
struct sec_entry {
|
||||
unsigned int valid_blocks; /* # of valid blocks in a section */
|
||||
};
|
||||
|
||||
struct segment_allocation {
|
||||
void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
|
||||
};
|
||||
|
||||
struct sit_info {
|
||||
const struct segment_allocation *s_ops;
|
||||
|
||||
block_t sit_base_addr; /* start block address of SIT area */
|
||||
block_t sit_blocks; /* # of blocks used by SIT area */
|
||||
block_t written_valid_blocks; /* # of valid blocks in main area */
|
||||
char *sit_bitmap; /* SIT bitmap pointer */
|
||||
unsigned int bitmap_size; /* SIT bitmap size */
|
||||
|
||||
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
|
||||
unsigned int dirty_sentries; /* # of dirty sentries */
|
||||
unsigned int sents_per_block; /* # of SIT entries per block */
|
||||
struct mutex sentry_lock; /* to protect SIT cache */
|
||||
struct seg_entry *sentries; /* SIT segment-level cache */
|
||||
struct sec_entry *sec_entries; /* SIT section-level cache */
|
||||
|
||||
/* for cost-benefit algorithm in cleaning procedure */
|
||||
unsigned long long elapsed_time; /* elapsed time after mount */
|
||||
unsigned long long mounted_time; /* mount time */
|
||||
unsigned long long min_mtime; /* min. modification time */
|
||||
unsigned long long max_mtime; /* max. modification time */
|
||||
};
|
||||
|
||||
struct free_segmap_info {
|
||||
unsigned int start_segno; /* start segment number logically */
|
||||
unsigned int free_segments; /* # of free segments */
|
||||
unsigned int free_sections; /* # of free sections */
|
||||
rwlock_t segmap_lock; /* free segmap lock */
|
||||
unsigned long *free_segmap; /* free segment bitmap */
|
||||
unsigned long *free_secmap; /* free section bitmap */
|
||||
};
|
||||
|
||||
/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
|
||||
enum dirty_type {
|
||||
DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
|
||||
DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
|
||||
DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
|
||||
DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
|
||||
DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
|
||||
DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
|
||||
DIRTY, /* to count # of dirty segments */
|
||||
PRE, /* to count # of entirely obsolete segments */
|
||||
NR_DIRTY_TYPE
|
||||
};
|
||||
|
||||
struct dirty_seglist_info {
|
||||
const struct victim_selection *v_ops; /* victim selction operation */
|
||||
unsigned long *dirty_segmap[NR_DIRTY_TYPE];
|
||||
struct mutex seglist_lock; /* lock for segment bitmaps */
|
||||
int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
|
||||
unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */
|
||||
};
|
||||
|
||||
/* victim selection function for cleaning and SSR */
|
||||
struct victim_selection {
|
||||
int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
|
||||
int, int, char);
|
||||
};
|
||||
|
||||
/* for active log information */
|
||||
struct curseg_info {
|
||||
struct mutex curseg_mutex; /* lock for consistency */
|
||||
struct f2fs_summary_block *sum_blk; /* cached summary block */
|
||||
unsigned char alloc_type; /* current allocation type */
|
||||
unsigned int segno; /* current segment number */
|
||||
unsigned short next_blkoff; /* next block offset to write */
|
||||
unsigned int zone; /* current zone number */
|
||||
unsigned int next_segno; /* preallocated segment */
|
||||
};
|
||||
|
||||
/*
|
||||
* inline functions
|
||||
*/
|
||||
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
|
||||
}
|
||||
|
||||
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
return &sit_i->sentries[segno];
|
||||
}
|
||||
|
||||
static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
|
||||
}
|
||||
|
||||
static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno, int section)
|
||||
{
|
||||
/*
|
||||
* In order to get # of valid blocks in a section instantly from many
|
||||
* segments, f2fs manages two counting structures separately.
|
||||
*/
|
||||
if (section > 1)
|
||||
return get_sec_entry(sbi, segno)->valid_blocks;
|
||||
else
|
||||
return get_seg_entry(sbi, segno)->valid_blocks;
|
||||
}
|
||||
|
||||
static inline void seg_info_from_raw_sit(struct seg_entry *se,
|
||||
struct f2fs_sit_entry *rs)
|
||||
{
|
||||
se->valid_blocks = GET_SIT_VBLOCKS(rs);
|
||||
se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
|
||||
memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
se->type = GET_SIT_TYPE(rs);
|
||||
se->mtime = le64_to_cpu(rs->mtime);
|
||||
}
|
||||
|
||||
static inline void seg_info_to_raw_sit(struct seg_entry *se,
|
||||
struct f2fs_sit_entry *rs)
|
||||
{
|
||||
unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
|
||||
se->valid_blocks;
|
||||
rs->vblocks = cpu_to_le16(raw_vblocks);
|
||||
memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
se->ckpt_valid_blocks = se->valid_blocks;
|
||||
rs->mtime = cpu_to_le64(se->mtime);
|
||||
}
|
||||
|
||||
static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
|
||||
unsigned int max, unsigned int segno)
|
||||
{
|
||||
unsigned int ret;
|
||||
read_lock(&free_i->segmap_lock);
|
||||
ret = find_next_bit(free_i->free_segmap, max, segno);
|
||||
read_unlock(&free_i->segmap_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
unsigned int start_segno = secno * sbi->segs_per_sec;
|
||||
unsigned int next;
|
||||
|
||||
write_lock(&free_i->segmap_lock);
|
||||
clear_bit(segno, free_i->free_segmap);
|
||||
free_i->free_segments++;
|
||||
|
||||
next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
|
||||
if (next >= start_segno + sbi->segs_per_sec) {
|
||||
clear_bit(secno, free_i->free_secmap);
|
||||
free_i->free_sections++;
|
||||
}
|
||||
write_unlock(&free_i->segmap_lock);
|
||||
}
|
||||
|
||||
static inline void __set_inuse(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
set_bit(segno, free_i->free_segmap);
|
||||
free_i->free_segments--;
|
||||
if (!test_and_set_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections--;
|
||||
}
|
||||
|
||||
static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
unsigned int start_segno = secno * sbi->segs_per_sec;
|
||||
unsigned int next;
|
||||
|
||||
write_lock(&free_i->segmap_lock);
|
||||
if (test_and_clear_bit(segno, free_i->free_segmap)) {
|
||||
free_i->free_segments++;
|
||||
|
||||
next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
|
||||
start_segno);
|
||||
if (next >= start_segno + sbi->segs_per_sec) {
|
||||
if (test_and_clear_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections++;
|
||||
}
|
||||
}
|
||||
write_unlock(&free_i->segmap_lock);
|
||||
}
|
||||
|
||||
static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
write_lock(&free_i->segmap_lock);
|
||||
if (!test_and_set_bit(segno, free_i->free_segmap)) {
|
||||
free_i->free_segments--;
|
||||
if (!test_and_set_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections--;
|
||||
}
|
||||
write_unlock(&free_i->segmap_lock);
|
||||
}
|
||||
|
||||
static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
|
||||
void *dst_addr)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
|
||||
}
|
||||
|
||||
static inline block_t written_block_count(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
block_t vblocks;
|
||||
|
||||
mutex_lock(&sit_i->sentry_lock);
|
||||
vblocks = sit_i->written_valid_blocks;
|
||||
mutex_unlock(&sit_i->sentry_lock);
|
||||
|
||||
return vblocks;
|
||||
}
|
||||
|
||||
static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int free_segs;
|
||||
|
||||
read_lock(&free_i->segmap_lock);
|
||||
free_segs = free_i->free_segments;
|
||||
read_unlock(&free_i->segmap_lock);
|
||||
|
||||
return free_segs;
|
||||
}
|
||||
|
||||
static inline int reserved_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return SM_I(sbi)->reserved_segments;
|
||||
}
|
||||
|
||||
static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int free_secs;
|
||||
|
||||
read_lock(&free_i->segmap_lock);
|
||||
free_secs = free_i->free_sections;
|
||||
read_unlock(&free_i->segmap_lock);
|
||||
|
||||
return free_secs;
|
||||
}
|
||||
|
||||
static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return DIRTY_I(sbi)->nr_dirty[PRE];
|
||||
}
|
||||
|
||||
static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
|
||||
}
|
||||
|
||||
static inline int overprovision_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return SM_I(sbi)->ovp_segments;
|
||||
}
|
||||
|
||||
static inline int overprovision_sections(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
|
||||
}
|
||||
|
||||
static inline int reserved_sections(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
|
||||
}
|
||||
|
||||
static inline bool need_SSR(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return (free_sections(sbi) < overprovision_sections(sbi));
|
||||
}
|
||||
|
||||
static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return DIRTY_I(sbi)->v_ops->get_victim(sbi,
|
||||
&(curseg)->next_segno, BG_GC, type, SSR);
|
||||
}
|
||||
|
||||
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return free_sections(sbi) <= reserved_sections(sbi);
|
||||
}
|
||||
|
||||
static inline int utilization(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return (long int)valid_user_blocks(sbi) * 100 /
|
||||
(long int)sbi->user_block_count;
|
||||
}
|
||||
|
||||
/*
|
||||
* Sometimes f2fs may be better to drop out-of-place update policy.
|
||||
* So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
|
||||
* data in the original place likewise other traditional file systems.
|
||||
* But, currently set 100 in percentage, which means it is disabled.
|
||||
* See below need_inplace_update().
|
||||
*/
|
||||
#define MIN_IPU_UTIL 100
|
||||
static inline bool need_inplace_update(struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
if (S_ISDIR(inode->i_mode))
|
||||
return false;
|
||||
if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
|
||||
int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return curseg->segno;
|
||||
}
|
||||
|
||||
static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
|
||||
int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return curseg->alloc_type;
|
||||
}
|
||||
|
||||
static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return curseg->next_blkoff;
|
||||
}
|
||||
|
||||
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
unsigned int end_segno = SM_I(sbi)->segment_count - 1;
|
||||
BUG_ON(segno > end_segno);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is used for only debugging.
|
||||
* NOTE: In future, we have to remove this function.
|
||||
*/
|
||||
static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
|
||||
{
|
||||
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
||||
block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
|
||||
block_t start_addr = sm_info->seg0_blkaddr;
|
||||
block_t end_addr = start_addr + total_blks - 1;
|
||||
BUG_ON(blk_addr < start_addr);
|
||||
BUG_ON(blk_addr > end_addr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Summary block is always treated as invalid block
|
||||
*/
|
||||
static inline void check_block_count(struct f2fs_sb_info *sbi,
|
||||
int segno, struct f2fs_sit_entry *raw_sit)
|
||||
{
|
||||
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
||||
unsigned int end_segno = sm_info->segment_count - 1;
|
||||
int valid_blocks = 0;
|
||||
int i;
|
||||
|
||||
/* check segment usage */
|
||||
BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
|
||||
|
||||
/* check boundary of a given segment number */
|
||||
BUG_ON(segno > end_segno);
|
||||
|
||||
/* check bitmap with valid block count */
|
||||
for (i = 0; i < sbi->blocks_per_seg; i++)
|
||||
if (f2fs_test_bit(i, raw_sit->valid_map))
|
||||
valid_blocks++;
|
||||
BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
|
||||
}
|
||||
|
||||
static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
|
||||
unsigned int start)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
|
||||
block_t blk_addr = sit_i->sit_base_addr + offset;
|
||||
|
||||
check_seg_range(sbi, start);
|
||||
|
||||
/* calculate sit block address */
|
||||
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
|
||||
blk_addr += sit_i->sit_blocks;
|
||||
|
||||
return blk_addr;
|
||||
}
|
||||
|
||||
static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
|
||||
pgoff_t block_addr)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
block_addr -= sit_i->sit_base_addr;
|
||||
if (block_addr < sit_i->sit_blocks)
|
||||
block_addr += sit_i->sit_blocks;
|
||||
else
|
||||
block_addr -= sit_i->sit_blocks;
|
||||
|
||||
return block_addr + sit_i->sit_base_addr;
|
||||
}
|
||||
|
||||
static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
|
||||
{
|
||||
unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
|
||||
|
||||
if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
|
||||
f2fs_clear_bit(block_off, sit_i->sit_bitmap);
|
||||
else
|
||||
f2fs_set_bit(block_off, sit_i->sit_bitmap);
|
||||
}
|
||||
|
||||
static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
|
||||
sit_i->mounted_time;
|
||||
}
|
||||
|
||||
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
|
||||
unsigned int ofs_in_node, unsigned char version)
|
||||
{
|
||||
sum->nid = cpu_to_le32(nid);
|
||||
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
|
||||
sum->version = version;
|
||||
}
|
||||
|
||||
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return __start_cp_addr(sbi) +
|
||||
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
|
||||
}
|
||||
|
||||
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
|
||||
{
|
||||
return __start_cp_addr(sbi) +
|
||||
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
|
||||
- (base + 1) + type;
|
||||
}
|
|
@ -0,0 +1,657 @@
|
|||
/*
|
||||
* fs/f2fs/super.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/module.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/statfs.h>
|
||||
#include <linux/proc_fs.h>
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/backing-dev.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/parser.h>
|
||||
#include <linux/mount.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/exportfs.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "node.h"
|
||||
#include "xattr.h"
|
||||
|
||||
static struct kmem_cache *f2fs_inode_cachep;
|
||||
|
||||
enum {
|
||||
Opt_gc_background_off,
|
||||
Opt_disable_roll_forward,
|
||||
Opt_discard,
|
||||
Opt_noheap,
|
||||
Opt_nouser_xattr,
|
||||
Opt_noacl,
|
||||
Opt_active_logs,
|
||||
Opt_disable_ext_identify,
|
||||
Opt_err,
|
||||
};
|
||||
|
||||
static match_table_t f2fs_tokens = {
|
||||
{Opt_gc_background_off, "background_gc_off"},
|
||||
{Opt_disable_roll_forward, "disable_roll_forward"},
|
||||
{Opt_discard, "discard"},
|
||||
{Opt_noheap, "no_heap"},
|
||||
{Opt_nouser_xattr, "nouser_xattr"},
|
||||
{Opt_noacl, "noacl"},
|
||||
{Opt_active_logs, "active_logs=%u"},
|
||||
{Opt_disable_ext_identify, "disable_ext_identify"},
|
||||
{Opt_err, NULL},
|
||||
};
|
||||
|
||||
static void init_once(void *foo)
|
||||
{
|
||||
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
|
||||
|
||||
inode_init_once(&fi->vfs_inode);
|
||||
}
|
||||
|
||||
static struct inode *f2fs_alloc_inode(struct super_block *sb)
|
||||
{
|
||||
struct f2fs_inode_info *fi;
|
||||
|
||||
fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_NOFS | __GFP_ZERO);
|
||||
if (!fi)
|
||||
return NULL;
|
||||
|
||||
init_once((void *) fi);
|
||||
|
||||
/* Initilize f2fs-specific inode info */
|
||||
fi->vfs_inode.i_version = 1;
|
||||
atomic_set(&fi->dirty_dents, 0);
|
||||
fi->i_current_depth = 1;
|
||||
fi->i_advise = 0;
|
||||
rwlock_init(&fi->ext.ext_lock);
|
||||
|
||||
set_inode_flag(fi, FI_NEW_INODE);
|
||||
|
||||
return &fi->vfs_inode;
|
||||
}
|
||||
|
||||
static void f2fs_i_callback(struct rcu_head *head)
|
||||
{
|
||||
struct inode *inode = container_of(head, struct inode, i_rcu);
|
||||
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
|
||||
}
|
||||
|
||||
static void f2fs_destroy_inode(struct inode *inode)
|
||||
{
|
||||
call_rcu(&inode->i_rcu, f2fs_i_callback);
|
||||
}
|
||||
|
||||
static void f2fs_put_super(struct super_block *sb)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
|
||||
f2fs_destroy_stats(sbi);
|
||||
stop_gc_thread(sbi);
|
||||
|
||||
write_checkpoint(sbi, false, true);
|
||||
|
||||
iput(sbi->node_inode);
|
||||
iput(sbi->meta_inode);
|
||||
|
||||
/* destroy f2fs internal modules */
|
||||
destroy_node_manager(sbi);
|
||||
destroy_segment_manager(sbi);
|
||||
|
||||
kfree(sbi->ckpt);
|
||||
|
||||
sb->s_fs_info = NULL;
|
||||
brelse(sbi->raw_super_buf);
|
||||
kfree(sbi);
|
||||
}
|
||||
|
||||
int f2fs_sync_fs(struct super_block *sb, int sync)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
int ret = 0;
|
||||
|
||||
if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
|
||||
return 0;
|
||||
|
||||
if (sync)
|
||||
write_checkpoint(sbi, false, false);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
||||
{
|
||||
struct super_block *sb = dentry->d_sb;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
|
||||
block_t total_count, user_block_count, start_count, ovp_count;
|
||||
|
||||
total_count = le64_to_cpu(sbi->raw_super->block_count);
|
||||
user_block_count = sbi->user_block_count;
|
||||
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
|
||||
ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
|
||||
buf->f_type = F2FS_SUPER_MAGIC;
|
||||
buf->f_bsize = sbi->blocksize;
|
||||
|
||||
buf->f_blocks = total_count - start_count;
|
||||
buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
|
||||
buf->f_bavail = user_block_count - valid_user_blocks(sbi);
|
||||
|
||||
buf->f_files = valid_inode_count(sbi);
|
||||
buf->f_ffree = sbi->total_node_count - valid_node_count(sbi);
|
||||
|
||||
buf->f_namelen = F2FS_MAX_NAME_LEN;
|
||||
buf->f_fsid.val[0] = (u32)id;
|
||||
buf->f_fsid.val[1] = (u32)(id >> 32);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
|
||||
|
||||
if (test_opt(sbi, BG_GC))
|
||||
seq_puts(seq, ",background_gc_on");
|
||||
else
|
||||
seq_puts(seq, ",background_gc_off");
|
||||
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
|
||||
seq_puts(seq, ",disable_roll_forward");
|
||||
if (test_opt(sbi, DISCARD))
|
||||
seq_puts(seq, ",discard");
|
||||
if (test_opt(sbi, NOHEAP))
|
||||
seq_puts(seq, ",no_heap_alloc");
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
if (test_opt(sbi, XATTR_USER))
|
||||
seq_puts(seq, ",user_xattr");
|
||||
else
|
||||
seq_puts(seq, ",nouser_xattr");
|
||||
#endif
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
if (test_opt(sbi, POSIX_ACL))
|
||||
seq_puts(seq, ",acl");
|
||||
else
|
||||
seq_puts(seq, ",noacl");
|
||||
#endif
|
||||
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
|
||||
seq_puts(seq, ",disable_ext_indentify");
|
||||
|
||||
seq_printf(seq, ",active_logs=%u", sbi->active_logs);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct super_operations f2fs_sops = {
|
||||
.alloc_inode = f2fs_alloc_inode,
|
||||
.destroy_inode = f2fs_destroy_inode,
|
||||
.write_inode = f2fs_write_inode,
|
||||
.show_options = f2fs_show_options,
|
||||
.evict_inode = f2fs_evict_inode,
|
||||
.put_super = f2fs_put_super,
|
||||
.sync_fs = f2fs_sync_fs,
|
||||
.statfs = f2fs_statfs,
|
||||
};
|
||||
|
||||
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
|
||||
u64 ino, u32 generation)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct inode *inode;
|
||||
|
||||
if (ino < F2FS_ROOT_INO(sbi))
|
||||
return ERR_PTR(-ESTALE);
|
||||
|
||||
/*
|
||||
* f2fs_iget isn't quite right if the inode is currently unallocated!
|
||||
* However f2fs_iget currently does appropriate checks to handle stale
|
||||
* inodes so everything is OK.
|
||||
*/
|
||||
inode = f2fs_iget(sb, ino);
|
||||
if (IS_ERR(inode))
|
||||
return ERR_CAST(inode);
|
||||
if (generation && inode->i_generation != generation) {
|
||||
/* we didn't find the right inode.. */
|
||||
iput(inode);
|
||||
return ERR_PTR(-ESTALE);
|
||||
}
|
||||
return inode;
|
||||
}
|
||||
|
||||
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
|
||||
int fh_len, int fh_type)
|
||||
{
|
||||
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
|
||||
f2fs_nfs_get_inode);
|
||||
}
|
||||
|
||||
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
|
||||
int fh_len, int fh_type)
|
||||
{
|
||||
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
|
||||
f2fs_nfs_get_inode);
|
||||
}
|
||||
|
||||
static const struct export_operations f2fs_export_ops = {
|
||||
.fh_to_dentry = f2fs_fh_to_dentry,
|
||||
.fh_to_parent = f2fs_fh_to_parent,
|
||||
.get_parent = f2fs_get_parent,
|
||||
};
|
||||
|
||||
static int parse_options(struct f2fs_sb_info *sbi, char *options)
|
||||
{
|
||||
substring_t args[MAX_OPT_ARGS];
|
||||
char *p;
|
||||
int arg = 0;
|
||||
|
||||
if (!options)
|
||||
return 0;
|
||||
|
||||
while ((p = strsep(&options, ",")) != NULL) {
|
||||
int token;
|
||||
if (!*p)
|
||||
continue;
|
||||
/*
|
||||
* Initialize args struct so we know whether arg was
|
||||
* found; some options take optional arguments.
|
||||
*/
|
||||
args[0].to = args[0].from = NULL;
|
||||
token = match_token(p, f2fs_tokens, args);
|
||||
|
||||
switch (token) {
|
||||
case Opt_gc_background_off:
|
||||
clear_opt(sbi, BG_GC);
|
||||
break;
|
||||
case Opt_disable_roll_forward:
|
||||
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
||||
break;
|
||||
case Opt_discard:
|
||||
set_opt(sbi, DISCARD);
|
||||
break;
|
||||
case Opt_noheap:
|
||||
set_opt(sbi, NOHEAP);
|
||||
break;
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
case Opt_nouser_xattr:
|
||||
clear_opt(sbi, XATTR_USER);
|
||||
break;
|
||||
#else
|
||||
case Opt_nouser_xattr:
|
||||
pr_info("nouser_xattr options not supported\n");
|
||||
break;
|
||||
#endif
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
case Opt_noacl:
|
||||
clear_opt(sbi, POSIX_ACL);
|
||||
break;
|
||||
#else
|
||||
case Opt_noacl:
|
||||
pr_info("noacl options not supported\n");
|
||||
break;
|
||||
#endif
|
||||
case Opt_active_logs:
|
||||
if (args->from && match_int(args, &arg))
|
||||
return -EINVAL;
|
||||
if (arg != 2 && arg != 4 && arg != 6)
|
||||
return -EINVAL;
|
||||
sbi->active_logs = arg;
|
||||
break;
|
||||
case Opt_disable_ext_identify:
|
||||
set_opt(sbi, DISABLE_EXT_IDENTIFY);
|
||||
break;
|
||||
default:
|
||||
pr_err("Unrecognized mount option \"%s\" or missing value\n",
|
||||
p);
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static loff_t max_file_size(unsigned bits)
|
||||
{
|
||||
loff_t result = ADDRS_PER_INODE;
|
||||
loff_t leaf_count = ADDRS_PER_BLOCK;
|
||||
|
||||
/* two direct node blocks */
|
||||
result += (leaf_count * 2);
|
||||
|
||||
/* two indirect node blocks */
|
||||
leaf_count *= NIDS_PER_BLOCK;
|
||||
result += (leaf_count * 2);
|
||||
|
||||
/* one double indirect node block */
|
||||
leaf_count *= NIDS_PER_BLOCK;
|
||||
result += leaf_count;
|
||||
|
||||
result <<= bits;
|
||||
return result;
|
||||
}
|
||||
|
||||
static int sanity_check_raw_super(struct f2fs_super_block *raw_super)
|
||||
{
|
||||
unsigned int blocksize;
|
||||
|
||||
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic))
|
||||
return 1;
|
||||
|
||||
/* Currently, support only 4KB block size */
|
||||
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
|
||||
if (blocksize != PAGE_CACHE_SIZE)
|
||||
return 1;
|
||||
if (le32_to_cpu(raw_super->log_sectorsize) !=
|
||||
F2FS_LOG_SECTOR_SIZE)
|
||||
return 1;
|
||||
if (le32_to_cpu(raw_super->log_sectors_per_block) !=
|
||||
F2FS_LOG_SECTORS_PER_BLOCK)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sanity_check_ckpt(struct f2fs_super_block *raw_super,
|
||||
struct f2fs_checkpoint *ckpt)
|
||||
{
|
||||
unsigned int total, fsmeta;
|
||||
|
||||
total = le32_to_cpu(raw_super->segment_count);
|
||||
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
|
||||
fsmeta += le32_to_cpu(raw_super->segment_count_sit);
|
||||
fsmeta += le32_to_cpu(raw_super->segment_count_nat);
|
||||
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
|
||||
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
|
||||
|
||||
if (fsmeta >= total)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void init_sb_info(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct f2fs_super_block *raw_super = sbi->raw_super;
|
||||
int i;
|
||||
|
||||
sbi->log_sectors_per_block =
|
||||
le32_to_cpu(raw_super->log_sectors_per_block);
|
||||
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
|
||||
sbi->blocksize = 1 << sbi->log_blocksize;
|
||||
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
||||
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
|
||||
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
|
||||
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
|
||||
sbi->total_sections = le32_to_cpu(raw_super->section_count);
|
||||
sbi->total_node_count =
|
||||
(le32_to_cpu(raw_super->segment_count_nat) / 2)
|
||||
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
|
||||
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
|
||||
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
|
||||
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
|
||||
|
||||
for (i = 0; i < NR_COUNT_TYPE; i++)
|
||||
atomic_set(&sbi->nr_pages[i], 0);
|
||||
}
|
||||
|
||||
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
|
||||
{
|
||||
struct f2fs_sb_info *sbi;
|
||||
struct f2fs_super_block *raw_super;
|
||||
struct buffer_head *raw_super_buf;
|
||||
struct inode *root;
|
||||
long err = -EINVAL;
|
||||
int i;
|
||||
|
||||
/* allocate memory for f2fs-specific super block info */
|
||||
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
|
||||
if (!sbi)
|
||||
return -ENOMEM;
|
||||
|
||||
/* set a temporary block size */
|
||||
if (!sb_set_blocksize(sb, F2FS_BLKSIZE))
|
||||
goto free_sbi;
|
||||
|
||||
/* read f2fs raw super block */
|
||||
raw_super_buf = sb_bread(sb, 0);
|
||||
if (!raw_super_buf) {
|
||||
err = -EIO;
|
||||
goto free_sbi;
|
||||
}
|
||||
raw_super = (struct f2fs_super_block *)
|
||||
((char *)raw_super_buf->b_data + F2FS_SUPER_OFFSET);
|
||||
|
||||
/* init some FS parameters */
|
||||
sbi->active_logs = NR_CURSEG_TYPE;
|
||||
|
||||
set_opt(sbi, BG_GC);
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
set_opt(sbi, XATTR_USER);
|
||||
#endif
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
set_opt(sbi, POSIX_ACL);
|
||||
#endif
|
||||
/* parse mount options */
|
||||
if (parse_options(sbi, (char *)data))
|
||||
goto free_sb_buf;
|
||||
|
||||
/* sanity checking of raw super */
|
||||
if (sanity_check_raw_super(raw_super))
|
||||
goto free_sb_buf;
|
||||
|
||||
sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
|
||||
sb->s_max_links = F2FS_LINK_MAX;
|
||||
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
|
||||
|
||||
sb->s_op = &f2fs_sops;
|
||||
sb->s_xattr = f2fs_xattr_handlers;
|
||||
sb->s_export_op = &f2fs_export_ops;
|
||||
sb->s_magic = F2FS_SUPER_MAGIC;
|
||||
sb->s_fs_info = sbi;
|
||||
sb->s_time_gran = 1;
|
||||
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
|
||||
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
|
||||
memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
|
||||
|
||||
/* init f2fs-specific super block info */
|
||||
sbi->sb = sb;
|
||||
sbi->raw_super = raw_super;
|
||||
sbi->raw_super_buf = raw_super_buf;
|
||||
mutex_init(&sbi->gc_mutex);
|
||||
mutex_init(&sbi->write_inode);
|
||||
mutex_init(&sbi->writepages);
|
||||
mutex_init(&sbi->cp_mutex);
|
||||
for (i = 0; i < NR_LOCK_TYPE; i++)
|
||||
mutex_init(&sbi->fs_lock[i]);
|
||||
sbi->por_doing = 0;
|
||||
spin_lock_init(&sbi->stat_lock);
|
||||
init_rwsem(&sbi->bio_sem);
|
||||
init_sb_info(sbi);
|
||||
|
||||
/* get an inode for meta space */
|
||||
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
|
||||
if (IS_ERR(sbi->meta_inode)) {
|
||||
err = PTR_ERR(sbi->meta_inode);
|
||||
goto free_sb_buf;
|
||||
}
|
||||
|
||||
err = get_valid_checkpoint(sbi);
|
||||
if (err)
|
||||
goto free_meta_inode;
|
||||
|
||||
/* sanity checking of checkpoint */
|
||||
err = -EINVAL;
|
||||
if (sanity_check_ckpt(raw_super, sbi->ckpt))
|
||||
goto free_cp;
|
||||
|
||||
sbi->total_valid_node_count =
|
||||
le32_to_cpu(sbi->ckpt->valid_node_count);
|
||||
sbi->total_valid_inode_count =
|
||||
le32_to_cpu(sbi->ckpt->valid_inode_count);
|
||||
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
|
||||
sbi->total_valid_block_count =
|
||||
le64_to_cpu(sbi->ckpt->valid_block_count);
|
||||
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
||||
sbi->alloc_valid_block_count = 0;
|
||||
INIT_LIST_HEAD(&sbi->dir_inode_list);
|
||||
spin_lock_init(&sbi->dir_inode_lock);
|
||||
|
||||
/* init super block */
|
||||
if (!sb_set_blocksize(sb, sbi->blocksize))
|
||||
goto free_cp;
|
||||
|
||||
init_orphan_info(sbi);
|
||||
|
||||
/* setup f2fs internal modules */
|
||||
err = build_segment_manager(sbi);
|
||||
if (err)
|
||||
goto free_sm;
|
||||
err = build_node_manager(sbi);
|
||||
if (err)
|
||||
goto free_nm;
|
||||
|
||||
build_gc_manager(sbi);
|
||||
|
||||
/* get an inode for node space */
|
||||
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
|
||||
if (IS_ERR(sbi->node_inode)) {
|
||||
err = PTR_ERR(sbi->node_inode);
|
||||
goto free_nm;
|
||||
}
|
||||
|
||||
/* if there are nt orphan nodes free them */
|
||||
err = -EINVAL;
|
||||
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) &&
|
||||
recover_orphan_inodes(sbi))
|
||||
goto free_node_inode;
|
||||
|
||||
/* read root inode and dentry */
|
||||
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
|
||||
if (IS_ERR(root)) {
|
||||
err = PTR_ERR(root);
|
||||
goto free_node_inode;
|
||||
}
|
||||
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size)
|
||||
goto free_root_inode;
|
||||
|
||||
sb->s_root = d_make_root(root); /* allocate root dentry */
|
||||
if (!sb->s_root) {
|
||||
err = -ENOMEM;
|
||||
goto free_root_inode;
|
||||
}
|
||||
|
||||
/* recover fsynced data */
|
||||
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) &&
|
||||
!test_opt(sbi, DISABLE_ROLL_FORWARD))
|
||||
recover_fsync_data(sbi);
|
||||
|
||||
/* After POR, we can run background GC thread */
|
||||
err = start_gc_thread(sbi);
|
||||
if (err)
|
||||
goto fail;
|
||||
|
||||
err = f2fs_build_stats(sbi);
|
||||
if (err)
|
||||
goto fail;
|
||||
|
||||
return 0;
|
||||
fail:
|
||||
stop_gc_thread(sbi);
|
||||
free_root_inode:
|
||||
dput(sb->s_root);
|
||||
sb->s_root = NULL;
|
||||
free_node_inode:
|
||||
iput(sbi->node_inode);
|
||||
free_nm:
|
||||
destroy_node_manager(sbi);
|
||||
free_sm:
|
||||
destroy_segment_manager(sbi);
|
||||
free_cp:
|
||||
kfree(sbi->ckpt);
|
||||
free_meta_inode:
|
||||
make_bad_inode(sbi->meta_inode);
|
||||
iput(sbi->meta_inode);
|
||||
free_sb_buf:
|
||||
brelse(raw_super_buf);
|
||||
free_sbi:
|
||||
kfree(sbi);
|
||||
return err;
|
||||
}
|
||||
|
||||
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
|
||||
const char *dev_name, void *data)
|
||||
{
|
||||
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
|
||||
}
|
||||
|
||||
static struct file_system_type f2fs_fs_type = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "f2fs",
|
||||
.mount = f2fs_mount,
|
||||
.kill_sb = kill_block_super,
|
||||
.fs_flags = FS_REQUIRES_DEV,
|
||||
};
|
||||
|
||||
static int init_inodecache(void)
|
||||
{
|
||||
f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
|
||||
sizeof(struct f2fs_inode_info), NULL);
|
||||
if (f2fs_inode_cachep == NULL)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void destroy_inodecache(void)
|
||||
{
|
||||
/*
|
||||
* Make sure all delayed rcu free inodes are flushed before we
|
||||
* destroy cache.
|
||||
*/
|
||||
rcu_barrier();
|
||||
kmem_cache_destroy(f2fs_inode_cachep);
|
||||
}
|
||||
|
||||
static int __init init_f2fs_fs(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = init_inodecache();
|
||||
if (err)
|
||||
goto fail;
|
||||
err = create_node_manager_caches();
|
||||
if (err)
|
||||
goto fail;
|
||||
err = create_gc_caches();
|
||||
if (err)
|
||||
goto fail;
|
||||
err = create_checkpoint_caches();
|
||||
if (err)
|
||||
goto fail;
|
||||
return register_filesystem(&f2fs_fs_type);
|
||||
fail:
|
||||
return err;
|
||||
}
|
||||
|
||||
static void __exit exit_f2fs_fs(void)
|
||||
{
|
||||
destroy_root_stats();
|
||||
unregister_filesystem(&f2fs_fs_type);
|
||||
destroy_checkpoint_caches();
|
||||
destroy_gc_caches();
|
||||
destroy_node_manager_caches();
|
||||
destroy_inodecache();
|
||||
}
|
||||
|
||||
module_init(init_f2fs_fs)
|
||||
module_exit(exit_f2fs_fs)
|
||||
|
||||
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
|
||||
MODULE_DESCRIPTION("Flash Friendly File System");
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,440 @@
|
|||
/*
|
||||
* fs/f2fs/xattr.c
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* Portions of this code from linux/fs/ext2/xattr.c
|
||||
*
|
||||
* Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
|
||||
*
|
||||
* Fix by Harrison Xing <harrison@mountainviewdata.com>.
|
||||
* Extended attributes for symlinks and special files added per
|
||||
* suggestion of Luka Renko <luka.renko@hermes.si>.
|
||||
* xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
|
||||
* Red Hat Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include "f2fs.h"
|
||||
#include "xattr.h"
|
||||
|
||||
static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list,
|
||||
size_t list_size, const char *name, size_t name_len, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
||||
int total_len, prefix_len = 0;
|
||||
const char *prefix = NULL;
|
||||
|
||||
switch (type) {
|
||||
case F2FS_XATTR_INDEX_USER:
|
||||
if (!test_opt(sbi, XATTR_USER))
|
||||
return -EOPNOTSUPP;
|
||||
prefix = XATTR_USER_PREFIX;
|
||||
prefix_len = XATTR_USER_PREFIX_LEN;
|
||||
break;
|
||||
case F2FS_XATTR_INDEX_TRUSTED:
|
||||
if (!capable(CAP_SYS_ADMIN))
|
||||
return -EPERM;
|
||||
prefix = XATTR_TRUSTED_PREFIX;
|
||||
prefix_len = XATTR_TRUSTED_PREFIX_LEN;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
total_len = prefix_len + name_len + 1;
|
||||
if (list && total_len <= list_size) {
|
||||
memcpy(list, prefix, prefix_len);
|
||||
memcpy(list+prefix_len, name, name_len);
|
||||
list[prefix_len + name_len] = '\0';
|
||||
}
|
||||
return total_len;
|
||||
}
|
||||
|
||||
static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name,
|
||||
void *buffer, size_t size, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
||||
|
||||
switch (type) {
|
||||
case F2FS_XATTR_INDEX_USER:
|
||||
if (!test_opt(sbi, XATTR_USER))
|
||||
return -EOPNOTSUPP;
|
||||
break;
|
||||
case F2FS_XATTR_INDEX_TRUSTED:
|
||||
if (!capable(CAP_SYS_ADMIN))
|
||||
return -EPERM;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
if (strcmp(name, "") == 0)
|
||||
return -EINVAL;
|
||||
return f2fs_getxattr(dentry->d_inode, type, name,
|
||||
buffer, size);
|
||||
}
|
||||
|
||||
static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name,
|
||||
const void *value, size_t size, int flags, int type)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
||||
|
||||
switch (type) {
|
||||
case F2FS_XATTR_INDEX_USER:
|
||||
if (!test_opt(sbi, XATTR_USER))
|
||||
return -EOPNOTSUPP;
|
||||
break;
|
||||
case F2FS_XATTR_INDEX_TRUSTED:
|
||||
if (!capable(CAP_SYS_ADMIN))
|
||||
return -EPERM;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
if (strcmp(name, "") == 0)
|
||||
return -EINVAL;
|
||||
|
||||
return f2fs_setxattr(dentry->d_inode, type, name, value, size);
|
||||
}
|
||||
|
||||
static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list,
|
||||
size_t list_size, const char *name, size_t name_len, int type)
|
||||
{
|
||||
const char *xname = F2FS_SYSTEM_ADVISE_PREFIX;
|
||||
size_t size;
|
||||
|
||||
if (type != F2FS_XATTR_INDEX_ADVISE)
|
||||
return 0;
|
||||
|
||||
size = strlen(xname) + 1;
|
||||
if (list && size <= list_size)
|
||||
memcpy(list, xname, size);
|
||||
return size;
|
||||
}
|
||||
|
||||
static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name,
|
||||
void *buffer, size_t size, int type)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
|
||||
if (strcmp(name, "") != 0)
|
||||
return -EINVAL;
|
||||
|
||||
*((char *)buffer) = F2FS_I(inode)->i_advise;
|
||||
return sizeof(char);
|
||||
}
|
||||
|
||||
static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name,
|
||||
const void *value, size_t size, int flags, int type)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
|
||||
if (strcmp(name, "") != 0)
|
||||
return -EINVAL;
|
||||
if (!inode_owner_or_capable(inode))
|
||||
return -EPERM;
|
||||
if (value == NULL)
|
||||
return -EINVAL;
|
||||
|
||||
F2FS_I(inode)->i_advise |= *(char *)value;
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct xattr_handler f2fs_xattr_user_handler = {
|
||||
.prefix = XATTR_USER_PREFIX,
|
||||
.flags = F2FS_XATTR_INDEX_USER,
|
||||
.list = f2fs_xattr_generic_list,
|
||||
.get = f2fs_xattr_generic_get,
|
||||
.set = f2fs_xattr_generic_set,
|
||||
};
|
||||
|
||||
const struct xattr_handler f2fs_xattr_trusted_handler = {
|
||||
.prefix = XATTR_TRUSTED_PREFIX,
|
||||
.flags = F2FS_XATTR_INDEX_TRUSTED,
|
||||
.list = f2fs_xattr_generic_list,
|
||||
.get = f2fs_xattr_generic_get,
|
||||
.set = f2fs_xattr_generic_set,
|
||||
};
|
||||
|
||||
const struct xattr_handler f2fs_xattr_advise_handler = {
|
||||
.prefix = F2FS_SYSTEM_ADVISE_PREFIX,
|
||||
.flags = F2FS_XATTR_INDEX_ADVISE,
|
||||
.list = f2fs_xattr_advise_list,
|
||||
.get = f2fs_xattr_advise_get,
|
||||
.set = f2fs_xattr_advise_set,
|
||||
};
|
||||
|
||||
static const struct xattr_handler *f2fs_xattr_handler_map[] = {
|
||||
[F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
[F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler,
|
||||
[F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler,
|
||||
#endif
|
||||
[F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
|
||||
[F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
|
||||
};
|
||||
|
||||
const struct xattr_handler *f2fs_xattr_handlers[] = {
|
||||
&f2fs_xattr_user_handler,
|
||||
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
||||
&f2fs_xattr_acl_access_handler,
|
||||
&f2fs_xattr_acl_default_handler,
|
||||
#endif
|
||||
&f2fs_xattr_trusted_handler,
|
||||
&f2fs_xattr_advise_handler,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static inline const struct xattr_handler *f2fs_xattr_handler(int name_index)
|
||||
{
|
||||
const struct xattr_handler *handler = NULL;
|
||||
|
||||
if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map))
|
||||
handler = f2fs_xattr_handler_map[name_index];
|
||||
return handler;
|
||||
}
|
||||
|
||||
int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
|
||||
void *buffer, size_t buffer_size)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct f2fs_xattr_entry *entry;
|
||||
struct page *page;
|
||||
void *base_addr;
|
||||
int error = 0, found = 0;
|
||||
int value_len, name_len;
|
||||
|
||||
if (name == NULL)
|
||||
return -EINVAL;
|
||||
name_len = strlen(name);
|
||||
|
||||
if (!fi->i_xattr_nid)
|
||||
return -ENODATA;
|
||||
|
||||
page = get_node_page(sbi, fi->i_xattr_nid);
|
||||
base_addr = page_address(page);
|
||||
|
||||
list_for_each_xattr(entry, base_addr) {
|
||||
if (entry->e_name_index != name_index)
|
||||
continue;
|
||||
if (entry->e_name_len != name_len)
|
||||
continue;
|
||||
if (!memcmp(entry->e_name, name, name_len)) {
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
error = -ENODATA;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
value_len = le16_to_cpu(entry->e_value_size);
|
||||
|
||||
if (buffer && value_len > buffer_size) {
|
||||
error = -ERANGE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if (buffer) {
|
||||
char *pval = entry->e_name + entry->e_name_len;
|
||||
memcpy(buffer, pval, value_len);
|
||||
}
|
||||
error = value_len;
|
||||
|
||||
cleanup:
|
||||
f2fs_put_page(page, 1);
|
||||
return error;
|
||||
}
|
||||
|
||||
ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct f2fs_xattr_entry *entry;
|
||||
struct page *page;
|
||||
void *base_addr;
|
||||
int error = 0;
|
||||
size_t rest = buffer_size;
|
||||
|
||||
if (!fi->i_xattr_nid)
|
||||
return 0;
|
||||
|
||||
page = get_node_page(sbi, fi->i_xattr_nid);
|
||||
base_addr = page_address(page);
|
||||
|
||||
list_for_each_xattr(entry, base_addr) {
|
||||
const struct xattr_handler *handler =
|
||||
f2fs_xattr_handler(entry->e_name_index);
|
||||
size_t size;
|
||||
|
||||
if (!handler)
|
||||
continue;
|
||||
|
||||
size = handler->list(dentry, buffer, rest, entry->e_name,
|
||||
entry->e_name_len, handler->flags);
|
||||
if (buffer && size > rest) {
|
||||
error = -ERANGE;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if (buffer)
|
||||
buffer += size;
|
||||
rest -= size;
|
||||
}
|
||||
error = buffer_size - rest;
|
||||
cleanup:
|
||||
f2fs_put_page(page, 1);
|
||||
return error;
|
||||
}
|
||||
|
||||
int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
|
||||
const void *value, size_t value_len)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct f2fs_xattr_header *header = NULL;
|
||||
struct f2fs_xattr_entry *here, *last;
|
||||
struct page *page;
|
||||
void *base_addr;
|
||||
int error, found, free, name_len, newsize;
|
||||
char *pval;
|
||||
|
||||
if (name == NULL)
|
||||
return -EINVAL;
|
||||
name_len = strlen(name);
|
||||
|
||||
if (value == NULL)
|
||||
value_len = 0;
|
||||
|
||||
if (name_len > 255 || value_len > MAX_VALUE_LEN)
|
||||
return -ERANGE;
|
||||
|
||||
mutex_lock_op(sbi, NODE_NEW);
|
||||
if (!fi->i_xattr_nid) {
|
||||
/* Allocate new attribute block */
|
||||
struct dnode_of_data dn;
|
||||
|
||||
if (!alloc_nid(sbi, &fi->i_xattr_nid)) {
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
return -ENOSPC;
|
||||
}
|
||||
set_new_dnode(&dn, inode, NULL, NULL, fi->i_xattr_nid);
|
||||
mark_inode_dirty(inode);
|
||||
|
||||
page = new_node_page(&dn, XATTR_NODE_OFFSET);
|
||||
if (IS_ERR(page)) {
|
||||
alloc_nid_failed(sbi, fi->i_xattr_nid);
|
||||
fi->i_xattr_nid = 0;
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
return PTR_ERR(page);
|
||||
}
|
||||
|
||||
alloc_nid_done(sbi, fi->i_xattr_nid);
|
||||
base_addr = page_address(page);
|
||||
header = XATTR_HDR(base_addr);
|
||||
header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
|
||||
header->h_refcount = cpu_to_le32(1);
|
||||
} else {
|
||||
/* The inode already has an extended attribute block. */
|
||||
page = get_node_page(sbi, fi->i_xattr_nid);
|
||||
if (IS_ERR(page)) {
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
return PTR_ERR(page);
|
||||
}
|
||||
|
||||
base_addr = page_address(page);
|
||||
header = XATTR_HDR(base_addr);
|
||||
}
|
||||
|
||||
if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
|
||||
error = -EIO;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
/* find entry with wanted name. */
|
||||
found = 0;
|
||||
list_for_each_xattr(here, base_addr) {
|
||||
if (here->e_name_index != name_index)
|
||||
continue;
|
||||
if (here->e_name_len != name_len)
|
||||
continue;
|
||||
if (!memcmp(here->e_name, name, name_len)) {
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
last = here;
|
||||
|
||||
while (!IS_XATTR_LAST_ENTRY(last))
|
||||
last = XATTR_NEXT_ENTRY(last);
|
||||
|
||||
newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) +
|
||||
name_len + value_len);
|
||||
|
||||
/* 1. Check space */
|
||||
if (value) {
|
||||
/* If value is NULL, it is remove operation.
|
||||
* In case of update operation, we caculate free.
|
||||
*/
|
||||
free = MIN_OFFSET - ((char *)last - (char *)header);
|
||||
if (found)
|
||||
free = free - ENTRY_SIZE(here);
|
||||
|
||||
if (free < newsize) {
|
||||
error = -ENOSPC;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* 2. Remove old entry */
|
||||
if (found) {
|
||||
/* If entry is found, remove old entry.
|
||||
* If not found, remove operation is not needed.
|
||||
*/
|
||||
struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
|
||||
int oldsize = ENTRY_SIZE(here);
|
||||
|
||||
memmove(here, next, (char *)last - (char *)next);
|
||||
last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
|
||||
memset(last, 0, oldsize);
|
||||
}
|
||||
|
||||
/* 3. Write new entry */
|
||||
if (value) {
|
||||
/* Before we come here, old entry is removed.
|
||||
* We just write new entry. */
|
||||
memset(last, 0, newsize);
|
||||
last->e_name_index = name_index;
|
||||
last->e_name_len = name_len;
|
||||
memcpy(last->e_name, name, name_len);
|
||||
pval = last->e_name + name_len;
|
||||
memcpy(pval, value, value_len);
|
||||
last->e_value_size = cpu_to_le16(value_len);
|
||||
}
|
||||
|
||||
set_page_dirty(page);
|
||||
f2fs_put_page(page, 1);
|
||||
|
||||
if (is_inode_flag_set(fi, FI_ACL_MODE)) {
|
||||
inode->i_mode = fi->i_acl_mode;
|
||||
inode->i_ctime = CURRENT_TIME;
|
||||
clear_inode_flag(fi, FI_ACL_MODE);
|
||||
}
|
||||
f2fs_write_inode(inode, NULL);
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
|
||||
return 0;
|
||||
cleanup:
|
||||
f2fs_put_page(page, 1);
|
||||
mutex_unlock_op(sbi, NODE_NEW);
|
||||
return error;
|
||||
}
|
|
@ -0,0 +1,145 @@
|
|||
/*
|
||||
* fs/f2fs/xattr.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* Portions of this code from linux/fs/ext2/xattr.h
|
||||
*
|
||||
* On-disk format of extended attributes for the ext2 filesystem.
|
||||
*
|
||||
* (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#ifndef __F2FS_XATTR_H__
|
||||
#define __F2FS_XATTR_H__
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/xattr.h>
|
||||
|
||||
/* Magic value in attribute blocks */
|
||||
#define F2FS_XATTR_MAGIC 0xF2F52011
|
||||
|
||||
/* Maximum number of references to one attribute block */
|
||||
#define F2FS_XATTR_REFCOUNT_MAX 1024
|
||||
|
||||
/* Name indexes */
|
||||
#define F2FS_SYSTEM_ADVISE_PREFIX "system.advise"
|
||||
#define F2FS_XATTR_INDEX_USER 1
|
||||
#define F2FS_XATTR_INDEX_POSIX_ACL_ACCESS 2
|
||||
#define F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT 3
|
||||
#define F2FS_XATTR_INDEX_TRUSTED 4
|
||||
#define F2FS_XATTR_INDEX_LUSTRE 5
|
||||
#define F2FS_XATTR_INDEX_SECURITY 6
|
||||
#define F2FS_XATTR_INDEX_ADVISE 7
|
||||
|
||||
struct f2fs_xattr_header {
|
||||
__le32 h_magic; /* magic number for identification */
|
||||
__le32 h_refcount; /* reference count */
|
||||
__u32 h_reserved[4]; /* zero right now */
|
||||
};
|
||||
|
||||
struct f2fs_xattr_entry {
|
||||
__u8 e_name_index;
|
||||
__u8 e_name_len;
|
||||
__le16 e_value_size; /* size of attribute value */
|
||||
char e_name[0]; /* attribute name */
|
||||
};
|
||||
|
||||
#define XATTR_HDR(ptr) ((struct f2fs_xattr_header *)(ptr))
|
||||
#define XATTR_ENTRY(ptr) ((struct f2fs_xattr_entry *)(ptr))
|
||||
#define XATTR_FIRST_ENTRY(ptr) (XATTR_ENTRY(XATTR_HDR(ptr)+1))
|
||||
#define XATTR_ROUND (3)
|
||||
|
||||
#define XATTR_ALIGN(size) ((size + XATTR_ROUND) & ~XATTR_ROUND)
|
||||
|
||||
#define ENTRY_SIZE(entry) (XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + \
|
||||
entry->e_name_len + le16_to_cpu(entry->e_value_size)))
|
||||
|
||||
#define XATTR_NEXT_ENTRY(entry) ((struct f2fs_xattr_entry *)((char *)(entry) +\
|
||||
ENTRY_SIZE(entry)))
|
||||
|
||||
#define IS_XATTR_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0)
|
||||
|
||||
#define list_for_each_xattr(entry, addr) \
|
||||
for (entry = XATTR_FIRST_ENTRY(addr);\
|
||||
!IS_XATTR_LAST_ENTRY(entry);\
|
||||
entry = XATTR_NEXT_ENTRY(entry))
|
||||
|
||||
|
||||
#define MIN_OFFSET XATTR_ALIGN(PAGE_SIZE - \
|
||||
sizeof(struct node_footer) - \
|
||||
sizeof(__u32))
|
||||
|
||||
#define MAX_VALUE_LEN (MIN_OFFSET - sizeof(struct f2fs_xattr_header) - \
|
||||
sizeof(struct f2fs_xattr_entry))
|
||||
|
||||
/*
|
||||
* On-disk structure of f2fs_xattr
|
||||
* We use only 1 block for xattr.
|
||||
*
|
||||
* +--------------------+
|
||||
* | f2fs_xattr_header |
|
||||
* | |
|
||||
* +--------------------+
|
||||
* | f2fs_xattr_entry |
|
||||
* | .e_name_index = 1 |
|
||||
* | .e_name_len = 3 |
|
||||
* | .e_value_size = 14 |
|
||||
* | .e_name = "foo" |
|
||||
* | "value_of_xattr" |<- value_offs = e_name + e_name_len
|
||||
* +--------------------+
|
||||
* | f2fs_xattr_entry |
|
||||
* | .e_name_index = 4 |
|
||||
* | .e_name = "bar" |
|
||||
* +--------------------+
|
||||
* | |
|
||||
* | Free |
|
||||
* | |
|
||||
* +--------------------+<- MIN_OFFSET
|
||||
* | node_footer |
|
||||
* | (nid, ino, offset) |
|
||||
* +--------------------+
|
||||
*
|
||||
**/
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_XATTR
|
||||
extern const struct xattr_handler f2fs_xattr_user_handler;
|
||||
extern const struct xattr_handler f2fs_xattr_trusted_handler;
|
||||
extern const struct xattr_handler f2fs_xattr_acl_access_handler;
|
||||
extern const struct xattr_handler f2fs_xattr_acl_default_handler;
|
||||
extern const struct xattr_handler f2fs_xattr_advise_handler;
|
||||
|
||||
extern const struct xattr_handler *f2fs_xattr_handlers[];
|
||||
|
||||
extern int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
|
||||
const void *value, size_t value_len);
|
||||
extern int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
|
||||
void *buffer, size_t buffer_size);
|
||||
extern ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer,
|
||||
size_t buffer_size);
|
||||
|
||||
#else
|
||||
|
||||
#define f2fs_xattr_handlers NULL
|
||||
static inline int f2fs_setxattr(struct inode *inode, int name_index,
|
||||
const char *name, const void *value, size_t value_len)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
static inline int f2fs_getxattr(struct inode *inode, int name_index,
|
||||
const char *name, void *buffer, size_t buffer_size)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
static inline ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer,
|
||||
size_t buffer_size)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __F2FS_XATTR_H__ */
|
|
@ -0,0 +1,413 @@
|
|||
/**
|
||||
* include/linux/f2fs_fs.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#ifndef _LINUX_F2FS_FS_H
|
||||
#define _LINUX_F2FS_FS_H
|
||||
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#define F2FS_SUPER_OFFSET 1024 /* byte-size offset */
|
||||
#define F2FS_LOG_SECTOR_SIZE 9 /* 9 bits for 512 byte */
|
||||
#define F2FS_LOG_SECTORS_PER_BLOCK 3 /* 4KB: F2FS_BLKSIZE */
|
||||
#define F2FS_BLKSIZE 4096 /* support only 4KB block */
|
||||
#define F2FS_MAX_EXTENSION 64 /* # of extension entries */
|
||||
|
||||
#define NULL_ADDR 0x0U
|
||||
#define NEW_ADDR -1U
|
||||
|
||||
#define F2FS_ROOT_INO(sbi) (sbi->root_ino_num)
|
||||
#define F2FS_NODE_INO(sbi) (sbi->node_ino_num)
|
||||
#define F2FS_META_INO(sbi) (sbi->meta_ino_num)
|
||||
|
||||
/* This flag is used by node and meta inodes, and by recovery */
|
||||
#define GFP_F2FS_ZERO (GFP_NOFS | __GFP_ZERO)
|
||||
|
||||
/*
|
||||
* For further optimization on multi-head logs, on-disk layout supports maximum
|
||||
* 16 logs by default. The number, 16, is expected to cover all the cases
|
||||
* enoughly. The implementaion currently uses no more than 6 logs.
|
||||
* Half the logs are used for nodes, and the other half are used for data.
|
||||
*/
|
||||
#define MAX_ACTIVE_LOGS 16
|
||||
#define MAX_ACTIVE_NODE_LOGS 8
|
||||
#define MAX_ACTIVE_DATA_LOGS 8
|
||||
|
||||
/*
|
||||
* For superblock
|
||||
*/
|
||||
struct f2fs_super_block {
|
||||
__le32 magic; /* Magic Number */
|
||||
__le16 major_ver; /* Major Version */
|
||||
__le16 minor_ver; /* Minor Version */
|
||||
__le32 log_sectorsize; /* log2 sector size in bytes */
|
||||
__le32 log_sectors_per_block; /* log2 # of sectors per block */
|
||||
__le32 log_blocksize; /* log2 block size in bytes */
|
||||
__le32 log_blocks_per_seg; /* log2 # of blocks per segment */
|
||||
__le32 segs_per_sec; /* # of segments per section */
|
||||
__le32 secs_per_zone; /* # of sections per zone */
|
||||
__le32 checksum_offset; /* checksum offset inside super block */
|
||||
__le64 block_count; /* total # of user blocks */
|
||||
__le32 section_count; /* total # of sections */
|
||||
__le32 segment_count; /* total # of segments */
|
||||
__le32 segment_count_ckpt; /* # of segments for checkpoint */
|
||||
__le32 segment_count_sit; /* # of segments for SIT */
|
||||
__le32 segment_count_nat; /* # of segments for NAT */
|
||||
__le32 segment_count_ssa; /* # of segments for SSA */
|
||||
__le32 segment_count_main; /* # of segments for main area */
|
||||
__le32 segment0_blkaddr; /* start block address of segment 0 */
|
||||
__le32 cp_blkaddr; /* start block address of checkpoint */
|
||||
__le32 sit_blkaddr; /* start block address of SIT */
|
||||
__le32 nat_blkaddr; /* start block address of NAT */
|
||||
__le32 ssa_blkaddr; /* start block address of SSA */
|
||||
__le32 main_blkaddr; /* start block address of main area */
|
||||
__le32 root_ino; /* root inode number */
|
||||
__le32 node_ino; /* node inode number */
|
||||
__le32 meta_ino; /* meta inode number */
|
||||
__u8 uuid[16]; /* 128-bit uuid for volume */
|
||||
__le16 volume_name[512]; /* volume name */
|
||||
__le32 extension_count; /* # of extensions below */
|
||||
__u8 extension_list[F2FS_MAX_EXTENSION][8]; /* extension array */
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For checkpoint
|
||||
*/
|
||||
#define CP_ERROR_FLAG 0x00000008
|
||||
#define CP_COMPACT_SUM_FLAG 0x00000004
|
||||
#define CP_ORPHAN_PRESENT_FLAG 0x00000002
|
||||
#define CP_UMOUNT_FLAG 0x00000001
|
||||
|
||||
struct f2fs_checkpoint {
|
||||
__le64 checkpoint_ver; /* checkpoint block version number */
|
||||
__le64 user_block_count; /* # of user blocks */
|
||||
__le64 valid_block_count; /* # of valid blocks in main area */
|
||||
__le32 rsvd_segment_count; /* # of reserved segments for gc */
|
||||
__le32 overprov_segment_count; /* # of overprovision segments */
|
||||
__le32 free_segment_count; /* # of free segments in main area */
|
||||
|
||||
/* information of current node segments */
|
||||
__le32 cur_node_segno[MAX_ACTIVE_NODE_LOGS];
|
||||
__le16 cur_node_blkoff[MAX_ACTIVE_NODE_LOGS];
|
||||
/* information of current data segments */
|
||||
__le32 cur_data_segno[MAX_ACTIVE_DATA_LOGS];
|
||||
__le16 cur_data_blkoff[MAX_ACTIVE_DATA_LOGS];
|
||||
__le32 ckpt_flags; /* Flags : umount and journal_present */
|
||||
__le32 cp_pack_total_block_count; /* total # of one cp pack */
|
||||
__le32 cp_pack_start_sum; /* start block number of data summary */
|
||||
__le32 valid_node_count; /* Total number of valid nodes */
|
||||
__le32 valid_inode_count; /* Total number of valid inodes */
|
||||
__le32 next_free_nid; /* Next free node number */
|
||||
__le32 sit_ver_bitmap_bytesize; /* Default value 64 */
|
||||
__le32 nat_ver_bitmap_bytesize; /* Default value 256 */
|
||||
__le32 checksum_offset; /* checksum offset inside cp block */
|
||||
__le64 elapsed_time; /* mounted time */
|
||||
/* allocation type of current segment */
|
||||
unsigned char alloc_type[MAX_ACTIVE_LOGS];
|
||||
|
||||
/* SIT and NAT version bitmap */
|
||||
unsigned char sit_nat_version_bitmap[1];
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For orphan inode management
|
||||
*/
|
||||
#define F2FS_ORPHANS_PER_BLOCK 1020
|
||||
|
||||
struct f2fs_orphan_block {
|
||||
__le32 ino[F2FS_ORPHANS_PER_BLOCK]; /* inode numbers */
|
||||
__le32 reserved; /* reserved */
|
||||
__le16 blk_addr; /* block index in current CP */
|
||||
__le16 blk_count; /* Number of orphan inode blocks in CP */
|
||||
__le32 entry_count; /* Total number of orphan nodes in current CP */
|
||||
__le32 check_sum; /* CRC32 for orphan inode block */
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For NODE structure
|
||||
*/
|
||||
struct f2fs_extent {
|
||||
__le32 fofs; /* start file offset of the extent */
|
||||
__le32 blk_addr; /* start block address of the extent */
|
||||
__le32 len; /* lengh of the extent */
|
||||
} __packed;
|
||||
|
||||
#define F2FS_MAX_NAME_LEN 256
|
||||
#define ADDRS_PER_INODE 923 /* Address Pointers in an Inode */
|
||||
#define ADDRS_PER_BLOCK 1018 /* Address Pointers in a Direct Block */
|
||||
#define NIDS_PER_BLOCK 1018 /* Node IDs in an Indirect Block */
|
||||
|
||||
struct f2fs_inode {
|
||||
__le16 i_mode; /* file mode */
|
||||
__u8 i_advise; /* file hints */
|
||||
__u8 i_reserved; /* reserved */
|
||||
__le32 i_uid; /* user ID */
|
||||
__le32 i_gid; /* group ID */
|
||||
__le32 i_links; /* links count */
|
||||
__le64 i_size; /* file size in bytes */
|
||||
__le64 i_blocks; /* file size in blocks */
|
||||
__le64 i_atime; /* access time */
|
||||
__le64 i_ctime; /* change time */
|
||||
__le64 i_mtime; /* modification time */
|
||||
__le32 i_atime_nsec; /* access time in nano scale */
|
||||
__le32 i_ctime_nsec; /* change time in nano scale */
|
||||
__le32 i_mtime_nsec; /* modification time in nano scale */
|
||||
__le32 i_generation; /* file version (for NFS) */
|
||||
__le32 i_current_depth; /* only for directory depth */
|
||||
__le32 i_xattr_nid; /* nid to save xattr */
|
||||
__le32 i_flags; /* file attributes */
|
||||
__le32 i_pino; /* parent inode number */
|
||||
__le32 i_namelen; /* file name length */
|
||||
__u8 i_name[F2FS_MAX_NAME_LEN]; /* file name for SPOR */
|
||||
|
||||
struct f2fs_extent i_ext; /* caching a largest extent */
|
||||
|
||||
__le32 i_addr[ADDRS_PER_INODE]; /* Pointers to data blocks */
|
||||
|
||||
__le32 i_nid[5]; /* direct(2), indirect(2),
|
||||
double_indirect(1) node id */
|
||||
} __packed;
|
||||
|
||||
struct direct_node {
|
||||
__le32 addr[ADDRS_PER_BLOCK]; /* array of data block address */
|
||||
} __packed;
|
||||
|
||||
struct indirect_node {
|
||||
__le32 nid[NIDS_PER_BLOCK]; /* array of data block address */
|
||||
} __packed;
|
||||
|
||||
enum {
|
||||
COLD_BIT_SHIFT = 0,
|
||||
FSYNC_BIT_SHIFT,
|
||||
DENT_BIT_SHIFT,
|
||||
OFFSET_BIT_SHIFT
|
||||
};
|
||||
|
||||
struct node_footer {
|
||||
__le32 nid; /* node id */
|
||||
__le32 ino; /* inode nunmber */
|
||||
__le32 flag; /* include cold/fsync/dentry marks and offset */
|
||||
__le64 cp_ver; /* checkpoint version */
|
||||
__le32 next_blkaddr; /* next node page block address */
|
||||
} __packed;
|
||||
|
||||
struct f2fs_node {
|
||||
/* can be one of three types: inode, direct, and indirect types */
|
||||
union {
|
||||
struct f2fs_inode i;
|
||||
struct direct_node dn;
|
||||
struct indirect_node in;
|
||||
};
|
||||
struct node_footer footer;
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For NAT entries
|
||||
*/
|
||||
#define NAT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_nat_entry))
|
||||
|
||||
struct f2fs_nat_entry {
|
||||
__u8 version; /* latest version of cached nat entry */
|
||||
__le32 ino; /* inode number */
|
||||
__le32 block_addr; /* block address */
|
||||
} __packed;
|
||||
|
||||
struct f2fs_nat_block {
|
||||
struct f2fs_nat_entry entries[NAT_ENTRY_PER_BLOCK];
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For SIT entries
|
||||
*
|
||||
* Each segment is 2MB in size by default so that a bitmap for validity of
|
||||
* there-in blocks should occupy 64 bytes, 512 bits.
|
||||
* Not allow to change this.
|
||||
*/
|
||||
#define SIT_VBLOCK_MAP_SIZE 64
|
||||
#define SIT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_sit_entry))
|
||||
|
||||
/*
|
||||
* Note that f2fs_sit_entry->vblocks has the following bit-field information.
|
||||
* [15:10] : allocation type such as CURSEG_XXXX_TYPE
|
||||
* [9:0] : valid block count
|
||||
*/
|
||||
#define SIT_VBLOCKS_SHIFT 10
|
||||
#define SIT_VBLOCKS_MASK ((1 << SIT_VBLOCKS_SHIFT) - 1)
|
||||
#define GET_SIT_VBLOCKS(raw_sit) \
|
||||
(le16_to_cpu((raw_sit)->vblocks) & SIT_VBLOCKS_MASK)
|
||||
#define GET_SIT_TYPE(raw_sit) \
|
||||
((le16_to_cpu((raw_sit)->vblocks) & ~SIT_VBLOCKS_MASK) \
|
||||
>> SIT_VBLOCKS_SHIFT)
|
||||
|
||||
struct f2fs_sit_entry {
|
||||
__le16 vblocks; /* reference above */
|
||||
__u8 valid_map[SIT_VBLOCK_MAP_SIZE]; /* bitmap for valid blocks */
|
||||
__le64 mtime; /* segment age for cleaning */
|
||||
} __packed;
|
||||
|
||||
struct f2fs_sit_block {
|
||||
struct f2fs_sit_entry entries[SIT_ENTRY_PER_BLOCK];
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For segment summary
|
||||
*
|
||||
* One summary block contains exactly 512 summary entries, which represents
|
||||
* exactly 2MB segment by default. Not allow to change the basic units.
|
||||
*
|
||||
* NOTE: For initializing fields, you must use set_summary
|
||||
*
|
||||
* - If data page, nid represents dnode's nid
|
||||
* - If node page, nid represents the node page's nid.
|
||||
*
|
||||
* The ofs_in_node is used by only data page. It represents offset
|
||||
* from node's page's beginning to get a data block address.
|
||||
* ex) data_blkaddr = (block_t)(nodepage_start_address + ofs_in_node)
|
||||
*/
|
||||
#define ENTRIES_IN_SUM 512
|
||||
#define SUMMARY_SIZE (7) /* sizeof(struct summary) */
|
||||
#define SUM_FOOTER_SIZE (5) /* sizeof(struct summary_footer) */
|
||||
#define SUM_ENTRY_SIZE (SUMMARY_SIZE * ENTRIES_IN_SUM)
|
||||
|
||||
/* a summary entry for a 4KB-sized block in a segment */
|
||||
struct f2fs_summary {
|
||||
__le32 nid; /* parent node id */
|
||||
union {
|
||||
__u8 reserved[3];
|
||||
struct {
|
||||
__u8 version; /* node version number */
|
||||
__le16 ofs_in_node; /* block index in parent node */
|
||||
} __packed;
|
||||
};
|
||||
} __packed;
|
||||
|
||||
/* summary block type, node or data, is stored to the summary_footer */
|
||||
#define SUM_TYPE_NODE (1)
|
||||
#define SUM_TYPE_DATA (0)
|
||||
|
||||
struct summary_footer {
|
||||
unsigned char entry_type; /* SUM_TYPE_XXX */
|
||||
__u32 check_sum; /* summary checksum */
|
||||
} __packed;
|
||||
|
||||
#define SUM_JOURNAL_SIZE (F2FS_BLKSIZE - SUM_FOOTER_SIZE -\
|
||||
SUM_ENTRY_SIZE)
|
||||
#define NAT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
|
||||
sizeof(struct nat_journal_entry))
|
||||
#define NAT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
|
||||
sizeof(struct nat_journal_entry))
|
||||
#define SIT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
|
||||
sizeof(struct sit_journal_entry))
|
||||
#define SIT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
|
||||
sizeof(struct sit_journal_entry))
|
||||
/*
|
||||
* frequently updated NAT/SIT entries can be stored in the spare area in
|
||||
* summary blocks
|
||||
*/
|
||||
enum {
|
||||
NAT_JOURNAL = 0,
|
||||
SIT_JOURNAL
|
||||
};
|
||||
|
||||
struct nat_journal_entry {
|
||||
__le32 nid;
|
||||
struct f2fs_nat_entry ne;
|
||||
} __packed;
|
||||
|
||||
struct nat_journal {
|
||||
struct nat_journal_entry entries[NAT_JOURNAL_ENTRIES];
|
||||
__u8 reserved[NAT_JOURNAL_RESERVED];
|
||||
} __packed;
|
||||
|
||||
struct sit_journal_entry {
|
||||
__le32 segno;
|
||||
struct f2fs_sit_entry se;
|
||||
} __packed;
|
||||
|
||||
struct sit_journal {
|
||||
struct sit_journal_entry entries[SIT_JOURNAL_ENTRIES];
|
||||
__u8 reserved[SIT_JOURNAL_RESERVED];
|
||||
} __packed;
|
||||
|
||||
/* 4KB-sized summary block structure */
|
||||
struct f2fs_summary_block {
|
||||
struct f2fs_summary entries[ENTRIES_IN_SUM];
|
||||
union {
|
||||
__le16 n_nats;
|
||||
__le16 n_sits;
|
||||
};
|
||||
/* spare area is used by NAT or SIT journals */
|
||||
union {
|
||||
struct nat_journal nat_j;
|
||||
struct sit_journal sit_j;
|
||||
};
|
||||
struct summary_footer footer;
|
||||
} __packed;
|
||||
|
||||
/*
|
||||
* For directory operations
|
||||
*/
|
||||
#define F2FS_DOT_HASH 0
|
||||
#define F2FS_DDOT_HASH F2FS_DOT_HASH
|
||||
#define F2FS_MAX_HASH (~((0x3ULL) << 62))
|
||||
#define F2FS_HASH_COL_BIT ((0x1ULL) << 63)
|
||||
|
||||
typedef __le32 f2fs_hash_t;
|
||||
|
||||
/* One directory entry slot covers 8bytes-long file name */
|
||||
#define F2FS_NAME_LEN 8
|
||||
#define F2FS_NAME_LEN_BITS 3
|
||||
|
||||
#define GET_DENTRY_SLOTS(x) ((x + F2FS_NAME_LEN - 1) >> F2FS_NAME_LEN_BITS)
|
||||
|
||||
/* the number of dentry in a block */
|
||||
#define NR_DENTRY_IN_BLOCK 214
|
||||
|
||||
/* MAX level for dir lookup */
|
||||
#define MAX_DIR_HASH_DEPTH 63
|
||||
|
||||
#define SIZE_OF_DIR_ENTRY 11 /* by byte */
|
||||
#define SIZE_OF_DENTRY_BITMAP ((NR_DENTRY_IN_BLOCK + BITS_PER_BYTE - 1) / \
|
||||
BITS_PER_BYTE)
|
||||
#define SIZE_OF_RESERVED (PAGE_SIZE - ((SIZE_OF_DIR_ENTRY + \
|
||||
F2FS_NAME_LEN) * \
|
||||
NR_DENTRY_IN_BLOCK + SIZE_OF_DENTRY_BITMAP))
|
||||
|
||||
/* One directory entry slot representing F2FS_NAME_LEN-sized file name */
|
||||
struct f2fs_dir_entry {
|
||||
__le32 hash_code; /* hash code of file name */
|
||||
__le32 ino; /* inode number */
|
||||
__le16 name_len; /* lengh of file name */
|
||||
__u8 file_type; /* file type */
|
||||
} __packed;
|
||||
|
||||
/* 4KB-sized directory entry block */
|
||||
struct f2fs_dentry_block {
|
||||
/* validity bitmap for directory entries in each block */
|
||||
__u8 dentry_bitmap[SIZE_OF_DENTRY_BITMAP];
|
||||
__u8 reserved[SIZE_OF_RESERVED];
|
||||
struct f2fs_dir_entry dentry[NR_DENTRY_IN_BLOCK];
|
||||
__u8 filename[NR_DENTRY_IN_BLOCK][F2FS_NAME_LEN];
|
||||
} __packed;
|
||||
|
||||
/* file types used in inode_info->flags */
|
||||
enum {
|
||||
F2FS_FT_UNKNOWN,
|
||||
F2FS_FT_REG_FILE,
|
||||
F2FS_FT_DIR,
|
||||
F2FS_FT_CHRDEV,
|
||||
F2FS_FT_BLKDEV,
|
||||
F2FS_FT_FIFO,
|
||||
F2FS_FT_SOCK,
|
||||
F2FS_FT_SYMLINK,
|
||||
F2FS_FT_MAX
|
||||
};
|
||||
|
||||
#endif /* _LINUX_F2FS_FS_H */
|
|
@ -23,6 +23,7 @@
|
|||
#define EXT4_SUPER_MAGIC 0xEF53
|
||||
#define BTRFS_SUPER_MAGIC 0x9123683E
|
||||
#define NILFS_SUPER_MAGIC 0x3434
|
||||
#define F2FS_SUPER_MAGIC 0xF2F52010
|
||||
#define HPFS_SUPER_MAGIC 0xf995e849
|
||||
#define ISOFS_SUPER_MAGIC 0x9660
|
||||
#define JFFS2_SUPER_MAGIC 0x72b6
|
||||
|
|
Loading…
Reference in New Issue