staging: crypto: skein: cleanup whitespace around operators/punc.

Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Jason Cooper 2014-03-24 01:49:07 +00:00 committed by Greg Kroah-Hartman
parent cd4811a64c
commit a0d5dd8432
6 changed files with 642 additions and 645 deletions

View File

@ -29,12 +29,12 @@
***************************************************************************/
#ifndef RotL_64
#define RotL_64(x,N) (((x) << (N)) | ((x) >> (64-(N))))
#define RotL_64(x, N) (((x) << (N)) | ((x) >> (64-(N))))
#endif
/* below two prototype assume we are handed aligned data */
#define Skein_Put64_LSB_First(dst08,src64,bCnt) memcpy(dst08,src64,bCnt)
#define Skein_Get64_LSB_First(dst64,src08,wCnt) memcpy(dst64,src08,8*(wCnt))
#define Skein_Put64_LSB_First(dst08, src64, bCnt) memcpy(dst08, src64, bCnt)
#define Skein_Get64_LSB_First(dst64, src08, wCnt) memcpy(dst64, src08, 8*(wCnt))
#define Skein_Swap64(w64) (w64)
enum
@ -44,24 +44,24 @@ enum
SKEIN_BAD_HASHLEN = 2
};
#define SKEIN_MODIFIER_WORDS ( 2) /* number of modifier (tweak) words */
#define SKEIN_MODIFIER_WORDS (2) /* number of modifier (tweak) words */
#define SKEIN_256_STATE_WORDS ( 4)
#define SKEIN_512_STATE_WORDS ( 8)
#define SKEIN_256_STATE_WORDS (4)
#define SKEIN_512_STATE_WORDS (8)
#define SKEIN1024_STATE_WORDS (16)
#define SKEIN_MAX_STATE_WORDS (16)
#define SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)
#define SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)
#define SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)
#define SKEIN_256_STATE_BYTES (8*SKEIN_256_STATE_WORDS)
#define SKEIN_512_STATE_BYTES (8*SKEIN_512_STATE_WORDS)
#define SKEIN1024_STATE_BYTES (8*SKEIN1024_STATE_WORDS)
#define SKEIN_256_STATE_BITS (64*SKEIN_256_STATE_WORDS)
#define SKEIN_512_STATE_BITS (64*SKEIN_512_STATE_WORDS)
#define SKEIN1024_STATE_BITS (64*SKEIN1024_STATE_WORDS)
#define SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)
#define SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
#define SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)
#define SKEIN_256_BLOCK_BYTES (8*SKEIN_256_STATE_WORDS)
#define SKEIN_512_BLOCK_BYTES (8*SKEIN_512_STATE_WORDS)
#define SKEIN1024_BLOCK_BYTES (8*SKEIN1024_STATE_WORDS)
struct skein_ctx_hdr
{
@ -92,17 +92,17 @@ struct skein1024_ctx /* 1024-bit Skein hash context
};
/* Skein APIs for (incremental) "straight hashing" */
int Skein_256_Init (struct skein_256_ctx *ctx, size_t hashBitLen);
int Skein_512_Init (struct skein_512_ctx *ctx, size_t hashBitLen);
int Skein1024_Init (struct skein1024_ctx *ctx, size_t hashBitLen);
int Skein_256_Init(struct skein_256_ctx *ctx, size_t hashBitLen);
int Skein_512_Init(struct skein_512_ctx *ctx, size_t hashBitLen);
int Skein1024_Init(struct skein1024_ctx *ctx, size_t hashBitLen);
int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt);
int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt);
int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt);
int Skein_256_Final (struct skein_256_ctx *ctx, u8 *hashVal);
int Skein_512_Final (struct skein_512_ctx *ctx, u8 *hashVal);
int Skein1024_Final (struct skein1024_ctx *ctx, u8 *hashVal);
int Skein_256_Final(struct skein_256_ctx *ctx, u8 *hashVal);
int Skein_512_Final(struct skein_512_ctx *ctx, u8 *hashVal);
int Skein1024_Final(struct skein1024_ctx *ctx, u8 *hashVal);
/*
** Skein APIs for "extended" initialization: MAC keys, tree hashing.
@ -135,9 +135,9 @@ int Skein1024_Final_Pad(struct skein1024_ctx *ctx, u8 *hashVal);
#define SKEIN_TREE_HASH (1)
#endif
#if SKEIN_TREE_HASH
int Skein_256_Output (struct skein_256_ctx *ctx, u8 *hashVal);
int Skein_512_Output (struct skein_512_ctx *ctx, u8 *hashVal);
int Skein1024_Output (struct skein1024_ctx *ctx, u8 *hashVal);
int Skein_256_Output(struct skein_256_ctx *ctx, u8 *hashVal);
int Skein_512_Output(struct skein_512_ctx *ctx, u8 *hashVal);
int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal);
#endif
/*****************************************************************
@ -158,18 +158,18 @@ int Skein1024_Output (struct skein1024_ctx *ctx, u8 *hashVal);
#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* bit 127 : final block flag */
/* tweak word T[1]: flag bit definition(s) */
#define SKEIN_T1_FLAG_FIRST (((u64) 1 ) << SKEIN_T1_POS_FIRST)
#define SKEIN_T1_FLAG_FINAL (((u64) 1 ) << SKEIN_T1_POS_FINAL)
#define SKEIN_T1_FLAG_BIT_PAD (((u64) 1 ) << SKEIN_T1_POS_BIT_PAD)
#define SKEIN_T1_FLAG_FIRST (((u64) 1) << SKEIN_T1_POS_FIRST)
#define SKEIN_T1_FLAG_FINAL (((u64) 1) << SKEIN_T1_POS_FINAL)
#define SKEIN_T1_FLAG_BIT_PAD (((u64) 1) << SKEIN_T1_POS_BIT_PAD)
/* tweak word T[1]: tree level bit field mask */
#define SKEIN_T1_TREE_LVL_MASK (((u64)0x7F) << SKEIN_T1_POS_TREE_LVL)
#define SKEIN_T1_TREE_LEVEL(n) (((u64) (n)) << SKEIN_T1_POS_TREE_LVL)
/* tweak word T[1]: block type field */
#define SKEIN_BLK_TYPE_KEY ( 0) /* key, for MAC and KDF */
#define SKEIN_BLK_TYPE_CFG ( 4) /* configuration block */
#define SKEIN_BLK_TYPE_PERS ( 8) /* personalization string */
#define SKEIN_BLK_TYPE_KEY (0) /* key, for MAC and KDF */
#define SKEIN_BLK_TYPE_CFG (4) /* configuration block */
#define SKEIN_BLK_TYPE_PERS (8) /* personalization string */
#define SKEIN_BLK_TYPE_PK (12) /* public key (for digital signature hashing) */
#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
@ -197,73 +197,73 @@ int Skein1024_Output (struct skein1024_ctx *ctx, u8 *hashVal);
#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
#endif
#define SKEIN_MK_64(hi32,lo32) ((lo32) + (((u64) (hi32)) << 32))
#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)
#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)
#define SKEIN_MK_64(hi32, lo32) ((lo32) + (((u64) (hi32)) << 32))
#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION, SKEIN_ID_STRING_LE)
#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA, 0xA9FC1A22)
#define SKEIN_CFG_STR_LEN (4*8)
/* bit field definitions in config block treeInfo word */
#define SKEIN_CFG_TREE_LEAF_SIZE_POS ( 0)
#define SKEIN_CFG_TREE_NODE_SIZE_POS ( 8)
#define SKEIN_CFG_TREE_LEAF_SIZE_POS (0)
#define SKEIN_CFG_TREE_NODE_SIZE_POS (8)
#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl) \
( (((u64)(leaf )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
(((u64)(node )) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
(((u64)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )
#define SKEIN_CFG_TREE_INFO(leaf, node, maxLvl) \
((((u64)(leaf)) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
(((u64)(node)) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
(((u64)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS))
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0, 0, 0) /* use as treeInfo in InitExt() call for sequential processing */
/*
** Skein macros for getting/setting tweak words, etc.
** These are useful for partial input bytes, hash tree init/update, etc.
**/
#define Skein_Get_Tweak(ctxPtr,TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal);}
#define Skein_Get_Tweak(ctxPtr, TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
#define Skein_Set_Tweak(ctxPtr, TWK_NUM, tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal); }
#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr,0)
#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr,1)
#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)
#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)
#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr, 0)
#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr, 1)
#define Skein_Set_T0(ctxPtr, T0) Skein_Set_Tweak(ctxPtr, 0, T0)
#define Skein_Set_T1(ctxPtr, T1) Skein_Set_Tweak(ctxPtr, 1, T1)
/* set both tweak words at once */
#define Skein_Set_T0_T1(ctxPtr,T0,T1) \
#define Skein_Set_T0_T1(ctxPtr, T0, T1) \
{ \
Skein_Set_T0(ctxPtr,(T0)); \
Skein_Set_T1(ctxPtr,(T1)); \
Skein_Set_T0(ctxPtr, (T0)); \
Skein_Set_T1(ctxPtr, (T1)); \
}
#define Skein_Set_Type(ctxPtr,BLK_TYPE) \
Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)
#define Skein_Set_Type(ctxPtr, BLK_TYPE) \
Skein_Set_T1(ctxPtr, SKEIN_T1_BLK_TYPE_##BLK_TYPE)
/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
#define Skein_Start_New_Type(ctxPtr,BLK_TYPE) \
{ Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }
#define Skein_Start_New_Type(ctxPtr, BLK_TYPE) \
{ Skein_Set_T0_T1(ctxPtr, 0, SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt = 0; }
#define Skein_Clear_First_Flag(hdr) { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; }
#define Skein_Set_Bit_Pad_Flag(hdr) { (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; }
#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}
#define Skein_Set_Tree_Level(hdr, height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height); }
/*****************************************************************
** "Internal" Skein definitions for debugging and error checking
******************************************************************/
#ifdef SKEIN_DEBUG /* examine/display intermediate values? */
#ifdef SKEIN_DEBUG /* examine/display intermediate values? */
#include "skein_debug.h"
#else /* default is no callouts */
#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)
#define Skein_Show_Round(bits,ctx,r,X)
#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)
#define Skein_Show_Final(bits,ctx,cnt,outPtr)
#define Skein_Show_Key(bits,ctx,key,keyBytes)
#define Skein_Show_Block(bits, ctx, X, blkPtr, wPtr, ksEvenPtr, ksOddPtr)
#define Skein_Show_Round(bits, ctx, r, X)
#define Skein_Show_R_Ptr(bits, ctx, r, X_ptr)
#define Skein_Show_Final(bits, ctx, cnt, outPtr)
#define Skein_Show_Key(bits, ctx, key, keyBytes)
#endif
#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */
#define Skein_Assert(x, retCode)/* default: ignore all Asserts, for performance */
#define Skein_assert(x)
/*****************************************************************
@ -272,34 +272,34 @@ int Skein1024_Output (struct skein1024_ctx *ctx, u8 *hashVal);
enum
{
/* Skein_256 round rotation constants */
R_256_0_0=14, R_256_0_1=16,
R_256_1_0=52, R_256_1_1=57,
R_256_2_0=23, R_256_2_1=40,
R_256_3_0= 5, R_256_3_1=37,
R_256_4_0=25, R_256_4_1=33,
R_256_5_0=46, R_256_5_1=12,
R_256_6_0=58, R_256_6_1=22,
R_256_7_0=32, R_256_7_1=32,
R_256_0_0 = 14, R_256_0_1 = 16,
R_256_1_0 = 52, R_256_1_1 = 57,
R_256_2_0 = 23, R_256_2_1 = 40,
R_256_3_0 = 5, R_256_3_1 = 37,
R_256_4_0 = 25, R_256_4_1 = 33,
R_256_5_0 = 46, R_256_5_1 = 12,
R_256_6_0 = 58, R_256_6_1 = 22,
R_256_7_0 = 32, R_256_7_1 = 32,
/* Skein_512 round rotation constants */
R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,
R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,
R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,
R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,
R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,
R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,
R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,
R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,
R_512_0_0 = 46, R_512_0_1 = 36, R_512_0_2 = 19, R_512_0_3 = 37,
R_512_1_0 = 33, R_512_1_1 = 27, R_512_1_2 = 14, R_512_1_3 = 42,
R_512_2_0 = 17, R_512_2_1 = 49, R_512_2_2 = 36, R_512_2_3 = 39,
R_512_3_0 = 44, R_512_3_1 = 9, R_512_3_2 = 54, R_512_3_3 = 56,
R_512_4_0 = 39, R_512_4_1 = 30, R_512_4_2 = 34, R_512_4_3 = 24,
R_512_5_0 = 13, R_512_5_1 = 50, R_512_5_2 = 10, R_512_5_3 = 17,
R_512_6_0 = 25, R_512_6_1 = 29, R_512_6_2 = 39, R_512_6_3 = 43,
R_512_7_0 = 8, R_512_7_1 = 35, R_512_7_2 = 56, R_512_7_3 = 22,
/* Skein1024 round rotation constants */
R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,
R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,
R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,
R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,
R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,
R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,
R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,
R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20
R1024_0_0 = 24, R1024_0_1 = 13, R1024_0_2 = 8, R1024_0_3 = 47, R1024_0_4 = 8, R1024_0_5 = 17, R1024_0_6 = 22, R1024_0_7 = 37,
R1024_1_0 = 38, R1024_1_1 = 19, R1024_1_2 = 10, R1024_1_3 = 55, R1024_1_4 = 49, R1024_1_5 = 18, R1024_1_6 = 23, R1024_1_7 = 52,
R1024_2_0 = 33, R1024_2_1 = 4, R1024_2_2 = 51, R1024_2_3 = 13, R1024_2_4 = 34, R1024_2_5 = 41, R1024_2_6 = 59, R1024_2_7 = 17,
R1024_3_0 = 5, R1024_3_1 = 20, R1024_3_2 = 48, R1024_3_3 = 41, R1024_3_4 = 47, R1024_3_5 = 28, R1024_3_6 = 16, R1024_3_7 = 25,
R1024_4_0 = 41, R1024_4_1 = 9, R1024_4_2 = 37, R1024_4_3 = 31, R1024_4_4 = 12, R1024_4_5 = 47, R1024_4_6 = 44, R1024_4_7 = 30,
R1024_5_0 = 16, R1024_5_1 = 34, R1024_5_2 = 56, R1024_5_3 = 51, R1024_5_4 = 4, R1024_5_5 = 53, R1024_5_6 = 42, R1024_5_7 = 41,
R1024_6_0 = 31, R1024_6_1 = 44, R1024_6_2 = 47, R1024_6_3 = 46, R1024_6_4 = 19, R1024_6_5 = 42, R1024_6_6 = 44, R1024_6_7 = 25,
R1024_7_0 = 9, R1024_7_1 = 48, R1024_7_2 = 35, R1024_7_3 = 52, R1024_7_4 = 23, R1024_7_5 = 31, R1024_7_6 = 37, R1024_7_7 = 20
};
#ifndef SKEIN_ROUNDS
@ -308,8 +308,8 @@ enum
#define SKEIN1024_ROUNDS_TOTAL (80)
#else /* allow command-line define in range 8*(5..14) */
#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))
#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))
#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS ) + 5) % 10) + 5))
#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/10) + 5) % 10) + 5))
#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS) + 5) % 10) + 5))
#endif
#endif /* ifndef _SKEIN_H_ */

View File

@ -22,178 +22,178 @@
/* blkSize = 256 bits. hashSize = 128 bits */
const u64 SKEIN_256_IV_128[] =
{
MK_64(0xE1111906,0x964D7260),
MK_64(0x883DAAA7,0x7C8D811C),
MK_64(0x10080DF4,0x91960F7A),
MK_64(0xCCF7DDE5,0xB45BC1C2)
MK_64(0xE1111906, 0x964D7260),
MK_64(0x883DAAA7, 0x7C8D811C),
MK_64(0x10080DF4, 0x91960F7A),
MK_64(0xCCF7DDE5, 0xB45BC1C2)
};
/* blkSize = 256 bits. hashSize = 160 bits */
const u64 SKEIN_256_IV_160[] =
{
MK_64(0x14202314,0x72825E98),
MK_64(0x2AC4E9A2,0x5A77E590),
MK_64(0xD47A5856,0x8838D63E),
MK_64(0x2DD2E496,0x8586AB7D)
MK_64(0x14202314, 0x72825E98),
MK_64(0x2AC4E9A2, 0x5A77E590),
MK_64(0xD47A5856, 0x8838D63E),
MK_64(0x2DD2E496, 0x8586AB7D)
};
/* blkSize = 256 bits. hashSize = 224 bits */
const u64 SKEIN_256_IV_224[] =
{
MK_64(0xC6098A8C,0x9AE5EA0B),
MK_64(0x876D5686,0x08C5191C),
MK_64(0x99CB88D7,0xD7F53884),
MK_64(0x384BDDB1,0xAEDDB5DE)
MK_64(0xC6098A8C, 0x9AE5EA0B),
MK_64(0x876D5686, 0x08C5191C),
MK_64(0x99CB88D7, 0xD7F53884),
MK_64(0x384BDDB1, 0xAEDDB5DE)
};
/* blkSize = 256 bits. hashSize = 256 bits */
const u64 SKEIN_256_IV_256[] =
{
MK_64(0xFC9DA860,0xD048B449),
MK_64(0x2FCA6647,0x9FA7D833),
MK_64(0xB33BC389,0x6656840F),
MK_64(0x6A54E920,0xFDE8DA69)
MK_64(0xFC9DA860, 0xD048B449),
MK_64(0x2FCA6647, 0x9FA7D833),
MK_64(0xB33BC389, 0x6656840F),
MK_64(0x6A54E920, 0xFDE8DA69)
};
/* blkSize = 512 bits. hashSize = 128 bits */
const u64 SKEIN_512_IV_128[] =
{
MK_64(0xA8BC7BF3,0x6FBF9F52),
MK_64(0x1E9872CE,0xBD1AF0AA),
MK_64(0x309B1790,0xB32190D3),
MK_64(0xBCFBB854,0x3F94805C),
MK_64(0x0DA61BCD,0x6E31B11B),
MK_64(0x1A18EBEA,0xD46A32E3),
MK_64(0xA2CC5B18,0xCE84AA82),
MK_64(0x6982AB28,0x9D46982D)
MK_64(0xA8BC7BF3, 0x6FBF9F52),
MK_64(0x1E9872CE, 0xBD1AF0AA),
MK_64(0x309B1790, 0xB32190D3),
MK_64(0xBCFBB854, 0x3F94805C),
MK_64(0x0DA61BCD, 0x6E31B11B),
MK_64(0x1A18EBEA, 0xD46A32E3),
MK_64(0xA2CC5B18, 0xCE84AA82),
MK_64(0x6982AB28, 0x9D46982D)
};
/* blkSize = 512 bits. hashSize = 160 bits */
const u64 SKEIN_512_IV_160[] =
{
MK_64(0x28B81A2A,0xE013BD91),
MK_64(0xC2F11668,0xB5BDF78F),
MK_64(0x1760D8F3,0xF6A56F12),
MK_64(0x4FB74758,0x8239904F),
MK_64(0x21EDE07F,0x7EAF5056),
MK_64(0xD908922E,0x63ED70B8),
MK_64(0xB8EC76FF,0xECCB52FA),
MK_64(0x01A47BB8,0xA3F27A6E)
MK_64(0x28B81A2A, 0xE013BD91),
MK_64(0xC2F11668, 0xB5BDF78F),
MK_64(0x1760D8F3, 0xF6A56F12),
MK_64(0x4FB74758, 0x8239904F),
MK_64(0x21EDE07F, 0x7EAF5056),
MK_64(0xD908922E, 0x63ED70B8),
MK_64(0xB8EC76FF, 0xECCB52FA),
MK_64(0x01A47BB8, 0xA3F27A6E)
};
/* blkSize = 512 bits. hashSize = 224 bits */
const u64 SKEIN_512_IV_224[] =
{
MK_64(0xCCD06162,0x48677224),
MK_64(0xCBA65CF3,0xA92339EF),
MK_64(0x8CCD69D6,0x52FF4B64),
MK_64(0x398AED7B,0x3AB890B4),
MK_64(0x0F59D1B1,0x457D2BD0),
MK_64(0x6776FE65,0x75D4EB3D),
MK_64(0x99FBC70E,0x997413E9),
MK_64(0x9E2CFCCF,0xE1C41EF7)
MK_64(0xCCD06162, 0x48677224),
MK_64(0xCBA65CF3, 0xA92339EF),
MK_64(0x8CCD69D6, 0x52FF4B64),
MK_64(0x398AED7B, 0x3AB890B4),
MK_64(0x0F59D1B1, 0x457D2BD0),
MK_64(0x6776FE65, 0x75D4EB3D),
MK_64(0x99FBC70E, 0x997413E9),
MK_64(0x9E2CFCCF, 0xE1C41EF7)
};
/* blkSize = 512 bits. hashSize = 256 bits */
const u64 SKEIN_512_IV_256[] =
{
MK_64(0xCCD044A1,0x2FDB3E13),
MK_64(0xE8359030,0x1A79A9EB),
MK_64(0x55AEA061,0x4F816E6F),
MK_64(0x2A2767A4,0xAE9B94DB),
MK_64(0xEC06025E,0x74DD7683),
MK_64(0xE7A436CD,0xC4746251),
MK_64(0xC36FBAF9,0x393AD185),
MK_64(0x3EEDBA18,0x33EDFC13)
MK_64(0xCCD044A1, 0x2FDB3E13),
MK_64(0xE8359030, 0x1A79A9EB),
MK_64(0x55AEA061, 0x4F816E6F),
MK_64(0x2A2767A4, 0xAE9B94DB),
MK_64(0xEC06025E, 0x74DD7683),
MK_64(0xE7A436CD, 0xC4746251),
MK_64(0xC36FBAF9, 0x393AD185),
MK_64(0x3EEDBA18, 0x33EDFC13)
};
/* blkSize = 512 bits. hashSize = 384 bits */
const u64 SKEIN_512_IV_384[] =
{
MK_64(0xA3F6C6BF,0x3A75EF5F),
MK_64(0xB0FEF9CC,0xFD84FAA4),
MK_64(0x9D77DD66,0x3D770CFE),
MK_64(0xD798CBF3,0xB468FDDA),
MK_64(0x1BC4A666,0x8A0E4465),
MK_64(0x7ED7D434,0xE5807407),
MK_64(0x548FC1AC,0xD4EC44D6),
MK_64(0x266E1754,0x6AA18FF8)
MK_64(0xA3F6C6BF, 0x3A75EF5F),
MK_64(0xB0FEF9CC, 0xFD84FAA4),
MK_64(0x9D77DD66, 0x3D770CFE),
MK_64(0xD798CBF3, 0xB468FDDA),
MK_64(0x1BC4A666, 0x8A0E4465),
MK_64(0x7ED7D434, 0xE5807407),
MK_64(0x548FC1AC, 0xD4EC44D6),
MK_64(0x266E1754, 0x6AA18FF8)
};
/* blkSize = 512 bits. hashSize = 512 bits */
const u64 SKEIN_512_IV_512[] =
{
MK_64(0x4903ADFF,0x749C51CE),
MK_64(0x0D95DE39,0x9746DF03),
MK_64(0x8FD19341,0x27C79BCE),
MK_64(0x9A255629,0xFF352CB1),
MK_64(0x5DB62599,0xDF6CA7B0),
MK_64(0xEABE394C,0xA9D5C3F4),
MK_64(0x991112C7,0x1A75B523),
MK_64(0xAE18A40B,0x660FCC33)
MK_64(0x4903ADFF, 0x749C51CE),
MK_64(0x0D95DE39, 0x9746DF03),
MK_64(0x8FD19341, 0x27C79BCE),
MK_64(0x9A255629, 0xFF352CB1),
MK_64(0x5DB62599, 0xDF6CA7B0),
MK_64(0xEABE394C, 0xA9D5C3F4),
MK_64(0x991112C7, 0x1A75B523),
MK_64(0xAE18A40B, 0x660FCC33)
};
/* blkSize = 1024 bits. hashSize = 384 bits */
const u64 SKEIN1024_IV_384[] =
{
MK_64(0x5102B6B8,0xC1894A35),
MK_64(0xFEEBC9E3,0xFE8AF11A),
MK_64(0x0C807F06,0xE32BED71),
MK_64(0x60C13A52,0xB41A91F6),
MK_64(0x9716D35D,0xD4917C38),
MK_64(0xE780DF12,0x6FD31D3A),
MK_64(0x797846B6,0xC898303A),
MK_64(0xB172C2A8,0xB3572A3B),
MK_64(0xC9BC8203,0xA6104A6C),
MK_64(0x65909338,0xD75624F4),
MK_64(0x94BCC568,0x4B3F81A0),
MK_64(0x3EBBF51E,0x10ECFD46),
MK_64(0x2DF50F0B,0xEEB08542),
MK_64(0x3B5A6530,0x0DBC6516),
MK_64(0x484B9CD2,0x167BBCE1),
MK_64(0x2D136947,0xD4CBAFEA)
MK_64(0x5102B6B8, 0xC1894A35),
MK_64(0xFEEBC9E3, 0xFE8AF11A),
MK_64(0x0C807F06, 0xE32BED71),
MK_64(0x60C13A52, 0xB41A91F6),
MK_64(0x9716D35D, 0xD4917C38),
MK_64(0xE780DF12, 0x6FD31D3A),
MK_64(0x797846B6, 0xC898303A),
MK_64(0xB172C2A8, 0xB3572A3B),
MK_64(0xC9BC8203, 0xA6104A6C),
MK_64(0x65909338, 0xD75624F4),
MK_64(0x94BCC568, 0x4B3F81A0),
MK_64(0x3EBBF51E, 0x10ECFD46),
MK_64(0x2DF50F0B, 0xEEB08542),
MK_64(0x3B5A6530, 0x0DBC6516),
MK_64(0x484B9CD2, 0x167BBCE1),
MK_64(0x2D136947, 0xD4CBAFEA)
};
/* blkSize = 1024 bits. hashSize = 512 bits */
const u64 SKEIN1024_IV_512[] =
{
MK_64(0xCAEC0E5D,0x7C1B1B18),
MK_64(0xA01B0E04,0x5F03E802),
MK_64(0x33840451,0xED912885),
MK_64(0x374AFB04,0xEAEC2E1C),
MK_64(0xDF25A0E2,0x813581F7),
MK_64(0xE4004093,0x8B12F9D2),
MK_64(0xA662D539,0xC2ED39B6),
MK_64(0xFA8B85CF,0x45D8C75A),
MK_64(0x8316ED8E,0x29EDE796),
MK_64(0x053289C0,0x2E9F91B8),
MK_64(0xC3F8EF1D,0x6D518B73),
MK_64(0xBDCEC3C4,0xD5EF332E),
MK_64(0x549A7E52,0x22974487),
MK_64(0x67070872,0x5B749816),
MK_64(0xB9CD28FB,0xF0581BD1),
MK_64(0x0E2940B8,0x15804974)
MK_64(0xCAEC0E5D, 0x7C1B1B18),
MK_64(0xA01B0E04, 0x5F03E802),
MK_64(0x33840451, 0xED912885),
MK_64(0x374AFB04, 0xEAEC2E1C),
MK_64(0xDF25A0E2, 0x813581F7),
MK_64(0xE4004093, 0x8B12F9D2),
MK_64(0xA662D539, 0xC2ED39B6),
MK_64(0xFA8B85CF, 0x45D8C75A),
MK_64(0x8316ED8E, 0x29EDE796),
MK_64(0x053289C0, 0x2E9F91B8),
MK_64(0xC3F8EF1D, 0x6D518B73),
MK_64(0xBDCEC3C4, 0xD5EF332E),
MK_64(0x549A7E52, 0x22974487),
MK_64(0x67070872, 0x5B749816),
MK_64(0xB9CD28FB, 0xF0581BD1),
MK_64(0x0E2940B8, 0x15804974)
};
/* blkSize = 1024 bits. hashSize = 1024 bits */
const u64 SKEIN1024_IV_1024[] =
{
MK_64(0xD593DA07,0x41E72355),
MK_64(0x15B5E511,0xAC73E00C),
MK_64(0x5180E5AE,0xBAF2C4F0),
MK_64(0x03BD41D3,0xFCBCAFAF),
MK_64(0x1CAEC6FD,0x1983A898),
MK_64(0x6E510B8B,0xCDD0589F),
MK_64(0x77E2BDFD,0xC6394ADA),
MK_64(0xC11E1DB5,0x24DCB0A3),
MK_64(0xD6D14AF9,0xC6329AB5),
MK_64(0x6A9B0BFC,0x6EB67E0D),
MK_64(0x9243C60D,0xCCFF1332),
MK_64(0x1A1F1DDE,0x743F02D4),
MK_64(0x0996753C,0x10ED0BB8),
MK_64(0x6572DD22,0xF2B4969A),
MK_64(0x61FD3062,0xD00A579A),
MK_64(0x1DE0536E,0x8682E539)
MK_64(0xD593DA07, 0x41E72355),
MK_64(0x15B5E511, 0xAC73E00C),
MK_64(0x5180E5AE, 0xBAF2C4F0),
MK_64(0x03BD41D3, 0xFCBCAFAF),
MK_64(0x1CAEC6FD, 0x1983A898),
MK_64(0x6E510B8B, 0xCDD0589F),
MK_64(0x77E2BDFD, 0xC6394ADA),
MK_64(0xC11E1DB5, 0x24DCB0A3),
MK_64(0xD6D14AF9, 0xC6329AB5),
MK_64(0x6A9B0BFC, 0x6EB67E0D),
MK_64(0x9243C60D, 0xCCFF1332),
MK_64(0x1A1F1DDE, 0x743F02D4),
MK_64(0x0996753C, 0x10ED0BB8),
MK_64(0x6572DD22, 0xF2B4969A),
MK_64(0x61FD3062, 0xD00A579A),
MK_64(0x1DE0536E, 0x8682E539)
};
#endif /* _SKEIN_IV_H_ */

View File

@ -16,9 +16,9 @@
/*****************************************************************/
/* External function to process blkCnt (nonzero) full block(s) of data. */
void Skein_256_Process_Block(struct skein_256_ctx *ctx,const u8 *blkPtr,size_t blkCnt,size_t byteCntAdd);
void Skein_512_Process_Block(struct skein_512_ctx *ctx,const u8 *blkPtr,size_t blkCnt,size_t byteCntAdd);
void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t blkCnt,size_t byteCntAdd);
void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd);
void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd);
void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd);
/*****************************************************************/
/* 256-bit Skein */
@ -34,41 +34,41 @@ int Skein_256_Init(struct skein_256_ctx *ctx, size_t hashBitLen)
u64 w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
case 256:
memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_256_IV_256, sizeof(ctx->X));
break;
case 224:
memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_256_IV_224, sizeof(ctx->X));
break;
case 160:
memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_256_IV_160, sizeof(ctx->X));
break;
case 128:
memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_256_IV_128, sizeof(ctx->X));
break;
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
Skein_Start_New_Type(ctx, CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the chaining variables */
Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
@ -76,7 +76,7 @@ int Skein_256_Init(struct skein_256_ctx *ctx, size_t hashBitLen)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein_256_InitExt(struct skein_256_ctx *ctx,size_t hashBitLen,u64 treeInfo, const u8 *key, size_t keyBytes)
int Skein_256_InitExt(struct skein_256_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes)
{
union
{
@ -84,42 +84,42 @@ int Skein_256_InitExt(struct skein_256_ctx *ctx,size_t hashBitLen,u64 treeInfo,
u64 w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
}
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_256_Update(ctx,key,keyBytes); /* hash the key */
Skein_256_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
ctx->h.hashBitLen = 8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx, KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_256_Update(ctx, key, keyBytes); /* hash the key */
Skein_256_Final_Pad(ctx, cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b)); /* copy over into ctx->X[] */
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx,CFG_FINAL);
Skein_Start_New_Type(ctx, CFG_FINAL);
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
Skein_Show_Key(256,&ctx->h,key,keyBytes);
Skein_Show_Key(256, &ctx->h, key, keyBytes);
/* compute the initial chaining values from config block */
Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
/* The chaining vars ctx->X are now initialized */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG);
Skein_Start_New_Type(ctx, MSG);
return SKEIN_SUCCESS;
}
@ -130,7 +130,7 @@ int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)
@ -141,20 +141,20 @@ int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
memcpy(&ctx->b[ctx->h.bCnt], msg, n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);
Skein_256_Process_Block(ctx, ctx->b, 1, SKEIN_256_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN_256_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES; /* number of full blocks to process */
Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);
Skein_256_Process_Block(ctx, msg, n, SKEIN_256_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
msg += n * SKEIN_256_BLOCK_BYTES;
}
@ -165,7 +165,7 @@ int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
memcpy(&ctx->b[ctx->h.bCnt], msg, msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
@ -176,33 +176,33 @@ int Skein_256_Update(struct skein_256_ctx *ctx, const u8 *msg, size_t msgByteCnt
/* finalize the hash computation and output the result */
int Skein_256_Final(struct skein_256_ctx *ctx, u8 *hashVal)
{
size_t i,n,byteCnt;
size_t i, n, byteCnt;
u64 X[SKEIN_256_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
for (i = 0; i*SKEIN_256_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0]= Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64)); /* run "counter mode" */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
@ -221,42 +221,42 @@ int Skein_512_Init(struct skein_512_ctx *ctx, size_t hashBitLen)
u64 w[SKEIN_512_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
case 512:
memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_512_IV_512, sizeof(ctx->X));
break;
case 384:
memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_512_IV_384, sizeof(ctx->X));
break;
case 256:
memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_512_IV_256, sizeof(ctx->X));
break;
case 224:
memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X));
memcpy(ctx->X, SKEIN_512_IV_224, sizeof(ctx->X));
break;
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
Skein_Start_New_Type(ctx, CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the chaining variables */
Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
@ -264,7 +264,7 @@ int Skein_512_Init(struct skein_512_ctx *ctx, size_t hashBitLen)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein_512_InitExt(struct skein_512_ctx *ctx,size_t hashBitLen,u64 treeInfo, const u8 *key, size_t keyBytes)
int Skein_512_InitExt(struct skein_512_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes)
{
union
{
@ -272,42 +272,42 @@ int Skein_512_InitExt(struct skein_512_ctx *ctx,size_t hashBitLen,u64 treeInfo,
u64 w[SKEIN_512_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
}
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_512_Update(ctx,key,keyBytes); /* hash the key */
Skein_512_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
ctx->h.hashBitLen = 8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx, KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_512_Update(ctx, key, keyBytes); /* hash the key */
Skein_512_Final_Pad(ctx, cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b)); /* copy over into ctx->X[] */
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx,CFG_FINAL);
Skein_Start_New_Type(ctx, CFG_FINAL);
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
Skein_Show_Key(512,&ctx->h,key,keyBytes);
Skein_Show_Key(512, &ctx->h, key, keyBytes);
/* compute the initial chaining values from config block */
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
/* The chaining vars ctx->X are now initialized */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG);
Skein_Start_New_Type(ctx, MSG);
return SKEIN_SUCCESS;
}
@ -318,7 +318,7 @@ int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
@ -329,20 +329,20 @@ int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
memcpy(&ctx->b[ctx->h.bCnt], msg, n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx, ctx->b, 1, SKEIN_512_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES; /* number of full blocks to process */
Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx, msg, n, SKEIN_512_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
msg += n * SKEIN_512_BLOCK_BYTES;
}
@ -353,7 +353,7 @@ int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
memcpy(&ctx->b[ctx->h.bCnt], msg, msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
@ -364,33 +364,33 @@ int Skein_512_Update(struct skein_512_ctx *ctx, const u8 *msg, size_t msgByteCnt
/* finalize the hash computation and output the result */
int Skein_512_Final(struct skein_512_ctx *ctx, u8 *hashVal)
{
size_t i,n,byteCnt;
size_t i, n, byteCnt;
u64 X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
for (i = 0; i*SKEIN_512_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0]= Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64)); /* run "counter mode" */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(512, &ctx->h, n, hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
@ -409,39 +409,39 @@ int Skein1024_Init(struct skein1024_ctx *ctx, size_t hashBitLen)
u64 w[SKEIN1024_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
case 512:
memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X));
memcpy(ctx->X, SKEIN1024_IV_512, sizeof(ctx->X));
break;
case 384:
memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X));
memcpy(ctx->X, SKEIN1024_IV_384, sizeof(ctx->X));
break;
case 1024:
memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X));
memcpy(ctx->X, SKEIN1024_IV_1024, sizeof(ctx->X));
break;
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
Skein_Start_New_Type(ctx, CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the chaining variables */
Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
@ -449,7 +449,7 @@ int Skein1024_Init(struct skein1024_ctx *ctx, size_t hashBitLen)
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
int Skein1024_InitExt(struct skein1024_ctx *ctx,size_t hashBitLen,u64 treeInfo, const u8 *key, size_t keyBytes)
int Skein1024_InitExt(struct skein1024_ctx *ctx, size_t hashBitLen, u64 treeInfo, const u8 *key, size_t keyBytes)
{
union
{
@ -457,42 +457,42 @@ int Skein1024_InitExt(struct skein1024_ctx *ctx,size_t hashBitLen,u64 treeInfo,
u64 w[SKEIN1024_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
}
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
Skein1024_Update(ctx,key,keyBytes); /* hash the key */
Skein1024_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
ctx->h.hashBitLen = 8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx, KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X, 0, sizeof(ctx->X)); /* zero the initial chaining variables */
Skein1024_Update(ctx, key, keyBytes); /* hash the key */
Skein1024_Final_Pad(ctx, cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X, cfg.b, sizeof(cfg.b)); /* copy over into ctx->X[] */
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx,CFG_FINAL);
Skein_Start_New_Type(ctx, CFG_FINAL);
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
Skein_Show_Key(1024,&ctx->h,key,keyBytes);
Skein_Show_Key(1024, &ctx->h, key, keyBytes);
/* compute the initial chaining values from config block */
Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
/* The chaining vars ctx->X are now initialized */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG);
Skein_Start_New_Type(ctx, MSG);
return SKEIN_SUCCESS;
}
@ -503,7 +503,7 @@ int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)
@ -514,20 +514,20 @@ int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
memcpy(&ctx->b[ctx->h.bCnt], msg, n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);
Skein1024_Process_Block(ctx, ctx->b, 1, SKEIN1024_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN1024_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES; /* number of full blocks to process */
Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);
Skein1024_Process_Block(ctx, msg, n, SKEIN1024_BLOCK_BYTES);
msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
msg += n * SKEIN1024_BLOCK_BYTES;
}
@ -538,7 +538,7 @@ int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
memcpy(&ctx->b[ctx->h.bCnt], msg, msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
@ -549,33 +549,33 @@ int Skein1024_Update(struct skein1024_ctx *ctx, const u8 *msg, size_t msgByteCnt
/* finalize the hash computation and output the result */
int Skein1024_Final(struct skein1024_ctx *ctx, u8 *hashVal)
{
size_t i,n,byteCnt;
size_t i, n, byteCnt;
u64 X[SKEIN1024_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
for (i = 0; i*SKEIN1024_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0]= Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64)); /* run "counter mode" */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(1024, &ctx->h, n, hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
@ -587,14 +587,14 @@ int Skein1024_Final(struct skein1024_ctx *ctx, u8 *hashVal)
/* finalize the hash computation and output the block, no OUTPUT stage */
int Skein_256_Final_Pad(struct skein_256_ctx *ctx, u8 *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES); /* "output" the state bytes */
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_256_BLOCK_BYTES); /* "output" the state bytes */
return SKEIN_SUCCESS;
}
@ -603,14 +603,14 @@ int Skein_256_Final_Pad(struct skein_256_ctx *ctx, u8 *hashVal)
/* finalize the hash computation and output the block, no OUTPUT stage */
int Skein_512_Final_Pad(struct skein_512_ctx *ctx, u8 *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES); /* "output" the state bytes */
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_512_BLOCK_BYTES); /* "output" the state bytes */
return SKEIN_SUCCESS;
}
@ -619,14 +619,14 @@ int Skein_512_Final_Pad(struct skein_512_ctx *ctx, u8 *hashVal)
/* finalize the hash computation and output the block, no OUTPUT stage */
int Skein1024_Final_Pad(struct skein1024_ctx *ctx, u8 *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
memset(&ctx->b[ctx->h.bCnt], 0, SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt); /* process the final block */
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES); /* "output" the state bytes */
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN1024_BLOCK_BYTES); /* "output" the state bytes */
return SKEIN_SUCCESS;
}
@ -636,27 +636,27 @@ int Skein1024_Final_Pad(struct skein1024_ctx *ctx, u8 *hashVal)
/* just do the OUTPUT stage */
int Skein_256_Output(struct skein_256_ctx *ctx, u8 *hashVal)
{
size_t i,n,byteCnt;
size_t i, n, byteCnt;
u64 X[SKEIN_256_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
for (i = 0; i*SKEIN_256_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0]= Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64)); /* run "counter mode" */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
@ -665,27 +665,27 @@ int Skein_256_Output(struct skein_256_ctx *ctx, u8 *hashVal)
/* just do the OUTPUT stage */
int Skein_512_Output(struct skein_512_ctx *ctx, u8 *hashVal)
{
size_t i,n,byteCnt;
size_t i, n, byteCnt;
u64 X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
for (i = 0; i*SKEIN_512_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0]= Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64)); /* run "counter mode" */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
@ -694,27 +694,27 @@ int Skein_512_Output(struct skein_512_ctx *ctx, u8 *hashVal)
/* just do the OUTPUT stage */
int Skein1024_Output(struct skein1024_ctx *ctx, u8 *hashVal)
{
size_t i,n,byteCnt;
size_t i, n, byteCnt;
u64 X[SKEIN1024_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); /* catch uninitialized context */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
memset(ctx->b, 0, sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X, ctx->X, sizeof(X)); /* keep a local copy of counter mode "key" */
for (i = 0; i*SKEIN1024_BLOCK_BYTES < byteCnt; i++)
{
((u64 *)ctx->b)[0]= Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64)); /* run "counter mode" */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); /* build the counter block */
Skein_Start_New_Type(ctx, OUT_FINAL);
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof(u64)); /* run "counter mode" */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X, n); /* "output" the ctr mode bytes */
Skein_Show_Final(256, &ctx->h, n, hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X, X, sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}

View File

@ -31,7 +31,7 @@ int skeinCtxPrepare(struct skein_ctx *ctx, enum skein_size size)
{
Skein_Assert(ctx && size, SKEIN_FAIL);
memset(ctx ,0, sizeof(struct skein_ctx));
memset(ctx , 0, sizeof(struct skein_ctx));
ctx->skeinSize = size;
return SKEIN_SUCCESS;
@ -97,18 +97,18 @@ int skeinMacInit(struct skein_ctx *ctx, const u8 *key, size_t keyLen,
case Skein256:
ret = Skein_256_InitExt(&ctx->m.s256, hashBitLen,
treeInfo,
(const u8*)key, keyLen);
(const u8 *)key, keyLen);
break;
case Skein512:
ret = Skein_512_InitExt(&ctx->m.s512, hashBitLen,
treeInfo,
(const u8*)key, keyLen);
(const u8 *)key, keyLen);
break;
case Skein1024:
ret = Skein1024_InitExt(&ctx->m.s1024, hashBitLen,
treeInfo,
(const u8*)key, keyLen);
(const u8 *)key, keyLen);
break;
}
@ -146,13 +146,13 @@ int skeinUpdate(struct skein_ctx *ctx, const u8 *msg,
switch (ctx->skeinSize) {
case Skein256:
ret = Skein_256_Update(&ctx->m.s256, (const u8*)msg, msgByteCnt);
ret = Skein_256_Update(&ctx->m.s256, (const u8 *)msg, msgByteCnt);
break;
case Skein512:
ret = Skein_512_Update(&ctx->m.s512, (const u8*)msg, msgByteCnt);
ret = Skein_512_Update(&ctx->m.s512, (const u8 *)msg, msgByteCnt);
break;
case Skein1024:
ret = Skein1024_Update(&ctx->m.s1024, (const u8*)msg, msgByteCnt);
ret = Skein1024_Update(&ctx->m.s1024, (const u8 *)msg, msgByteCnt);
break;
}
return ret;
@ -186,7 +186,7 @@ int skeinUpdateBits(struct skein_ctx *ctx, const u8 *msg,
* Skein's real partial block buffer.
* If this layout ever changes we have to adapt this as well.
*/
up = (u8*)ctx->m.s256.X + ctx->skeinSize / 8;
up = (u8 *)ctx->m.s256.X + ctx->skeinSize / 8;
Skein_Set_Bit_Pad_Flag(ctx->m.h); /* set tweak flag for the skeinFinal call */
@ -206,13 +206,13 @@ int skeinFinal(struct skein_ctx *ctx, u8 *hash)
switch (ctx->skeinSize) {
case Skein256:
ret = Skein_256_Final(&ctx->m.s256, (u8*)hash);
ret = Skein_256_Final(&ctx->m.s256, (u8 *)hash);
break;
case Skein512:
ret = Skein_512_Final(&ctx->m.s512, (u8*)hash);
ret = Skein_512_Final(&ctx->m.s512, (u8 *)hash);
break;
case Skein1024:
ret = Skein1024_Final(&ctx->m.s1024, (u8*)hash);
ret = Skein1024_Final(&ctx->m.s1024, (u8 *)hash);
break;
}
return ret;

View File

@ -147,16 +147,16 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr,
blkPtr += SKEIN1024_BLOCK_BYTES;
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[ 0] = ctx->X[ 0] ^ w[ 0];
ctx->X[ 1] = ctx->X[ 1] ^ w[ 1];
ctx->X[ 2] = ctx->X[ 2] ^ w[ 2];
ctx->X[ 3] = ctx->X[ 3] ^ w[ 3];
ctx->X[ 4] = ctx->X[ 4] ^ w[ 4];
ctx->X[ 5] = ctx->X[ 5] ^ w[ 5];
ctx->X[ 6] = ctx->X[ 6] ^ w[ 6];
ctx->X[ 7] = ctx->X[ 7] ^ w[ 7];
ctx->X[ 8] = ctx->X[ 8] ^ w[ 8];
ctx->X[ 9] = ctx->X[ 9] ^ w[ 9];
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[1] = ctx->X[1] ^ w[1];
ctx->X[2] = ctx->X[2] ^ w[2];
ctx->X[3] = ctx->X[3] ^ w[3];
ctx->X[4] = ctx->X[4] ^ w[4];
ctx->X[5] = ctx->X[5] ^ w[5];
ctx->X[6] = ctx->X[6] ^ w[6];
ctx->X[7] = ctx->X[7] ^ w[7];
ctx->X[8] = ctx->X[8] ^ w[8];
ctx->X[9] = ctx->X[9] ^ w[9];
ctx->X[10] = ctx->X[10] ^ w[10];
ctx->X[11] = ctx->X[11] ^ w[11];
ctx->X[12] = ctx->X[12] ^ w[12];

View File

@ -39,16 +39,15 @@
/***************************** Skein_256 ******************************/
#if !(SKEIN_USE_ASM & 256)
void Skein_256_Process_Block(struct skein_256_ctx *ctx,const u8 *blkPtr,size_t blkCnt,size_t byteCntAdd)
void Skein_256_Process_Block(struct skein_256_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd)
{ /* do it in C */
enum
{
enum {
WCNT = SKEIN_256_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_256_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
#else
#define SKEIN_UNROLL_256 (0)
@ -63,8 +62,8 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx,const u8 *blkPtr,size_t b
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X0,X1,X2,X3; /* local copy of context vars, for speed */
u64 w [WCNT]; /* local copy of input block */
u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *Xptr[4]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
@ -85,95 +84,95 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx,const u8 *blkPtr,size_t b
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1] + ts[0];
X2 = w[2] + ks[2] + ts[1];
X3 = w[3] + ks[3];
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr); /* show starting state values */
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, Xptr); /* show starting state values */
blkPtr += SKEIN_256_BLOCK_BYTES;
/* run the rounds */
#define Round256(p0,p1,p2,p3,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
#define Round256(p0, p1, p2, p3, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
#if SKEIN_UNROLL_256 == 0
#define R256(p0,p1,p2,p3,ROT,rNum) /* fully unrolled */ \
Round256(p0,p1,p2,p3,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
Round256(p0, p1, p2, p3, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define I256(R) \
X0 += ks[((R)+1) % 5]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
X3 += ks[((R)+4) % 5] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R256(p0,p1,p2,p3,ROT,rNum) \
Round256(p0,p1,p2,p3,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define R256(p0, p1, p2, p3, ROT, rNum) \
Round256(p0, p1, p2, p3, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I256(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
X3 += ks[r+(R)+3] + r+(R) ; \
ks[r + (R)+4 ] = ks[r+(R)-1]; /* rotate key schedule */\
ts[r + (R)+2 ] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
X3 += ks[r+(R)+3] + r+(R); \
ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */\
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256) /* loop thru it */
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256) /* loop thru it */
#endif
{
#define R256_8_rounds(R) \
R256(0,1,2,3,R_256_0,8*(R) + 1); \
R256(0,3,2,1,R_256_1,8*(R) + 2); \
R256(0,1,2,3,R_256_2,8*(R) + 3); \
R256(0,3,2,1,R_256_3,8*(R) + 4); \
I256(2*(R)); \
R256(0,1,2,3,R_256_4,8*(R) + 5); \
R256(0,3,2,1,R_256_5,8*(R) + 6); \
R256(0,1,2,3,R_256_6,8*(R) + 7); \
R256(0,3,2,1,R_256_7,8*(R) + 8); \
I256(2*(R)+1);
R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
I256(2 * (R)); \
R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
I256(2 * (R) + 1);
R256_8_rounds( 0);
R256_8_rounds(0);
#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
#if R256_Unroll_R( 1)
R256_8_rounds( 1);
#if R256_Unroll_R(1)
R256_8_rounds(1);
#endif
#if R256_Unroll_R( 2)
R256_8_rounds( 2);
#if R256_Unroll_R(2)
R256_8_rounds(2);
#endif
#if R256_Unroll_R( 3)
R256_8_rounds( 3);
#if R256_Unroll_R(3)
R256_8_rounds(3);
#endif
#if R256_Unroll_R( 4)
R256_8_rounds( 4);
#if R256_Unroll_R(4)
R256_8_rounds(4);
#endif
#if R256_Unroll_R( 5)
R256_8_rounds( 5);
#if R256_Unroll_R(5)
R256_8_rounds(5);
#endif
#if R256_Unroll_R( 6)
R256_8_rounds( 6);
#if R256_Unroll_R(6)
R256_8_rounds(6);
#endif
#if R256_Unroll_R( 7)
R256_8_rounds( 7);
#if R256_Unroll_R(7)
R256_8_rounds(7);
#endif
#if R256_Unroll_R( 8)
R256_8_rounds( 8);
#if R256_Unroll_R(8)
R256_8_rounds(8);
#endif
#if R256_Unroll_R( 9)
R256_8_rounds( 9);
#if R256_Unroll_R(9)
R256_8_rounds(9);
#endif
#if R256_Unroll_R(10)
R256_8_rounds(10);
@ -200,7 +199,7 @@ void Skein_256_Process_Block(struct skein_256_ctx *ctx,const u8 *blkPtr,size_t b
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
@ -224,16 +223,15 @@ unsigned int Skein_256_Unroll_Cnt(void)
/***************************** Skein_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
void Skein_512_Process_Block(struct skein_512_ctx *ctx,const u8 *blkPtr,size_t blkCnt,size_t byteCntAdd)
void Skein_512_Process_Block(struct skein_512_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd)
{ /* do it in C */
enum
{
enum {
WCNT = SKEIN_512_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
#else
#define SKEIN_UNROLL_512 (0)
@ -248,8 +246,8 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx,const u8 *blkPtr,size_t b
#else
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X0,X1,X2,X3,X4,X5,X6,X7; /* local copy of vars, for speed */
u64 w [WCNT]; /* local copy of input block */
u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copy of vars, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
@ -277,9 +275,9 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx,const u8 *blkPtr,size_t b
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
@ -292,92 +290,92 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx,const u8 *blkPtr,size_t b
blkPtr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, Xptr);
/* run the rounds */
#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \
#if SKEIN_UNROLL_512 == 0
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) /* unrolled */ \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
#define I512(R) \
X0 += ks[((R)+1) % 9]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 9]; \
X2 += ks[((R)+3) % 9]; \
X3 += ks[((R)+4) % 9]; \
X4 += ks[((R)+5) % 9]; \
X5 += ks[((R)+6) % 9] + ts[((R)+1) % 3]; \
X6 += ks[((R)+7) % 9] + ts[((R)+2) % 3]; \
X7 += ks[((R)+8) % 9] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */ \
X1 += ks[((R) + 2) % 9]; \
X2 += ks[((R) + 3) % 9]; \
X3 += ks[((R) + 4) % 9]; \
X4 += ks[((R) + 5) % 9]; \
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
X7 += ks[((R) + 8) % 9] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
#define I512(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1]; \
X2 += ks[r+(R)+2]; \
X3 += ks[r+(R)+3]; \
X4 += ks[r+(R)+4]; \
X5 += ks[r+(R)+5] + ts[r+(R)+0]; \
X6 += ks[r+(R)+6] + ts[r+(R)+1]; \
X7 += ks[r+(R)+7] + r+(R) ; \
ks[r + (R)+8] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X1 += ks[r + (R) + 1]; \
X2 += ks[r + (R) + 2]; \
X3 += ks[r + (R) + 3]; \
X4 += ks[r + (R) + 4]; \
X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
X7 += ks[r + (R) + 7] + r + (R); \
ks[r + (R) + 8] = ks[r + (R) - 1]; /* rotate key schedule */ \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512) /* loop thru it */
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512) /* loop thru it */
#endif /* end of looped code definitions */
{
#define R512_8_rounds(R) /* do 8 full rounds */ \
R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1); \
R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2); \
R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3); \
R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4); \
I512(2*(R)); \
R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5); \
R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6); \
R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7); \
R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8); \
I512(2*(R)+1); /* and key injection */
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
I512(2 * (R)); \
R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
I512(2 * (R) + 1); /* and key injection */
R512_8_rounds( 0);
R512_8_rounds(0);
#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
#if R512_Unroll_R( 1)
R512_8_rounds( 1);
#if R512_Unroll_R(1)
R512_8_rounds(1);
#endif
#if R512_Unroll_R( 2)
R512_8_rounds( 2);
#if R512_Unroll_R(2)
R512_8_rounds(2);
#endif
#if R512_Unroll_R( 3)
R512_8_rounds( 3);
#if R512_Unroll_R(3)
R512_8_rounds(3);
#endif
#if R512_Unroll_R( 4)
R512_8_rounds( 4);
#if R512_Unroll_R(4)
R512_8_rounds(4);
#endif
#if R512_Unroll_R( 5)
R512_8_rounds( 5);
#if R512_Unroll_R(5)
R512_8_rounds(5);
#endif
#if R512_Unroll_R( 6)
R512_8_rounds( 6);
#if R512_Unroll_R(6)
R512_8_rounds(6);
#endif
#if R512_Unroll_R( 7)
R512_8_rounds( 7);
#if R512_Unroll_R(7)
R512_8_rounds(7);
#endif
#if R512_Unroll_R( 8)
R512_8_rounds( 8);
#if R512_Unroll_R(8)
R512_8_rounds(8);
#endif
#if R512_Unroll_R( 9)
R512_8_rounds( 9);
#if R512_Unroll_R(9)
R512_8_rounds(9);
#endif
#if R512_Unroll_R(10)
R512_8_rounds(10);
@ -408,7 +406,7 @@ void Skein_512_Process_Block(struct skein_512_ctx *ctx,const u8 *blkPtr,size_t b
ctx->X[5] = X5 ^ w[5];
ctx->X[6] = X6 ^ w[6];
ctx->X[7] = X7 ^ w[7];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
@ -432,16 +430,15 @@ unsigned int Skein_512_Unroll_Cnt(void)
/***************************** Skein1024 ******************************/
#if !(SKEIN_USE_ASM & 1024)
void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t blkCnt,size_t byteCntAdd)
void Skein1024_Process_Block(struct skein1024_ctx *ctx, const u8 *blkPtr, size_t blkCnt, size_t byteCntAdd)
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
enum
{
enum {
WCNT = SKEIN1024_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define SKEIN_UNROLL_1024 (0)
@ -457,14 +454,14 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t b
u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64 X00,X01,X02,X03,X04,X05,X06,X07, /* local copy of vars, for speed */
X08,X09,X10,X11,X12,X13,X14,X15;
u64 w [WCNT]; /* local copy of input block */
u64 X00, X01, X02, X03, X04, X05, X06, X07, /* local copy of vars, for speed */
X08, X09, X10, X11, X12, X13, X14, X15;
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64 *Xptr[16]; /* use for debugging (help compiler put Xn in registers) */
Xptr[ 0] = &X00; Xptr[ 1] = &X01; Xptr[ 2] = &X02; Xptr[ 3] = &X03;
Xptr[ 4] = &X04; Xptr[ 5] = &X05; Xptr[ 6] = &X06; Xptr[ 7] = &X07;
Xptr[ 8] = &X08; Xptr[ 9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
Xptr[0] = &X00; Xptr[1] = &X01; Xptr[2] = &X02; Xptr[3] = &X03;
Xptr[4] = &X04; Xptr[5] = &X05; Xptr[6] = &X06; Xptr[7] = &X07;
Xptr[8] = &X08; Xptr[9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
#endif
@ -476,43 +473,43 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t b
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[ 0] = ctx->X[ 0];
ks[ 1] = ctx->X[ 1];
ks[ 2] = ctx->X[ 2];
ks[ 3] = ctx->X[ 3];
ks[ 4] = ctx->X[ 4];
ks[ 5] = ctx->X[ 5];
ks[ 6] = ctx->X[ 6];
ks[ 7] = ctx->X[ 7];
ks[ 8] = ctx->X[ 8];
ks[ 9] = ctx->X[ 9];
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ctx->X[4];
ks[5] = ctx->X[5];
ks[6] = ctx->X[6];
ks[7] = ctx->X[7];
ks[8] = ctx->X[8];
ks[9] = ctx->X[9];
ks[10] = ctx->X[10];
ks[11] = ctx->X[11];
ks[12] = ctx->X[12];
ks[13] = ctx->X[13];
ks[14] = ctx->X[14];
ks[15] = ctx->X[15];
ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^
ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^
ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^
ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
Skein_Get64_LSB_First(w, blkPtr, WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
X00 = w[ 0] + ks[ 0]; /* do the first full key injection */
X01 = w[ 1] + ks[ 1];
X02 = w[ 2] + ks[ 2];
X03 = w[ 3] + ks[ 3];
X04 = w[ 4] + ks[ 4];
X05 = w[ 5] + ks[ 5];
X06 = w[ 6] + ks[ 6];
X07 = w[ 7] + ks[ 7];
X08 = w[ 8] + ks[ 8];
X09 = w[ 9] + ks[ 9];
X00 = w[0] + ks[0]; /* do the first full key injection */
X01 = w[1] + ks[1];
X02 = w[2] + ks[2];
X03 = w[3] + ks[3];
X04 = w[4] + ks[4];
X05 = w[5] + ks[5];
X06 = w[6] + ks[6];
X07 = w[7] + ks[7];
X08 = w[8] + ks[8];
X09 = w[9] + ks[9];
X10 = w[10] + ks[10];
X11 = w[11] + ks[11];
X12 = w[12] + ks[12];
@ -520,112 +517,112 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t b
X14 = w[14] + ks[14] + ts[1];
X15 = w[15] + ks[15];
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, Xptr);
#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8; \
X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA; \
X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC; \
X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE; \
#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \
X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8; \
X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA; \
X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC; \
X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE; \
#if SKEIN_UNROLL_1024 == 0
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
#define I1024(R) \
X00 += ks[((R)+ 1) % 17]; /* inject the key schedule value */ \
X01 += ks[((R)+ 2) % 17]; \
X02 += ks[((R)+ 3) % 17]; \
X03 += ks[((R)+ 4) % 17]; \
X04 += ks[((R)+ 5) % 17]; \
X05 += ks[((R)+ 6) % 17]; \
X06 += ks[((R)+ 7) % 17]; \
X07 += ks[((R)+ 8) % 17]; \
X08 += ks[((R)+ 9) % 17]; \
X09 += ks[((R)+10) % 17]; \
X10 += ks[((R)+11) % 17]; \
X11 += ks[((R)+12) % 17]; \
X12 += ks[((R)+13) % 17]; \
X13 += ks[((R)+14) % 17] + ts[((R)+1) % 3]; \
X14 += ks[((R)+15) % 17] + ts[((R)+2) % 3]; \
X15 += ks[((R)+16) % 17] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#define I1024(R) \
X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */ \
X01 += ks[((R) + 2) % 17]; \
X02 += ks[((R) + 3) % 17]; \
X03 += ks[((R) + 4) % 17]; \
X04 += ks[((R) + 5) % 17]; \
X05 += ks[((R) + 6) % 17]; \
X06 += ks[((R) + 7) % 17]; \
X07 += ks[((R) + 8) % 17]; \
X08 += ks[((R) + 9) % 17]; \
X09 += ks[((R) + 10) % 17]; \
X10 += ks[((R) + 11) % 17]; \
X11 += ks[((R) + 12) % 17]; \
X12 += ks[((R) + 13) % 17]; \
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
X15 += ks[((R) + 16) % 17] + (R) + 1; \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else /* looping version */
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, ROT, rn) \
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
#define I1024(R) \
X00 += ks[r+(R)+ 0]; /* inject the key schedule value */ \
X01 += ks[r+(R)+ 1]; \
X02 += ks[r+(R)+ 2]; \
X03 += ks[r+(R)+ 3]; \
X04 += ks[r+(R)+ 4]; \
X05 += ks[r+(R)+ 5]; \
X06 += ks[r+(R)+ 6]; \
X07 += ks[r+(R)+ 7]; \
X08 += ks[r+(R)+ 8]; \
X09 += ks[r+(R)+ 9]; \
X10 += ks[r+(R)+10]; \
X11 += ks[r+(R)+11]; \
X12 += ks[r+(R)+12]; \
X13 += ks[r+(R)+13] + ts[r+(R)+0]; \
X14 += ks[r+(R)+14] + ts[r+(R)+1]; \
X15 += ks[r+(R)+15] + r+(R) ; \
ks[r + (R)+16] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+ 2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
X01 += ks[r + (R) + 1]; \
X02 += ks[r + (R) + 2]; \
X03 += ks[r + (R) + 3]; \
X04 += ks[r + (R) + 4]; \
X05 += ks[r + (R) + 5]; \
X06 += ks[r + (R) + 6]; \
X07 += ks[r + (R) + 7]; \
X08 += ks[r + (R) + 8]; \
X09 += ks[r + (R) + 9]; \
X10 += ks[r + (R) + 10]; \
X11 += ks[r + (R) + 11]; \
X12 += ks[r + (R) + 12]; \
X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
X15 += ks[r + (R) + 15] + r + (R); \
ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
ts[r + (R) + 2] = ts[r + (R) - 1]; \
Skein_Show_R_Ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024) /* loop thru it */
for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024) /* loop thru it */
#endif
{
#define R1024_8_rounds(R) /* do 8 full rounds */ \
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, R1024_0, 8*(R) + 1); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, R1024_1, 8*(R) + 2); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, R1024_2, 8*(R) + 3); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, R1024_3, 8*(R) + 4); \
I1024(2*(R)); \
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \
R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, R1024_4, 8*(R) + 5); \
R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, R1024_5, 8*(R) + 6); \
R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, R1024_6, 8*(R) + 7); \
R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, R1024_7, 8*(R) + 8); \
I1024(2*(R)+1);
R1024_8_rounds( 0);
R1024_8_rounds(0);
#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))
#if R1024_Unroll_R( 1)
R1024_8_rounds( 1);
#if R1024_Unroll_R(1)
R1024_8_rounds(1);
#endif
#if R1024_Unroll_R( 2)
R1024_8_rounds( 2);
#if R1024_Unroll_R(2)
R1024_8_rounds(2);
#endif
#if R1024_Unroll_R( 3)
R1024_8_rounds( 3);
#if R1024_Unroll_R(3)
R1024_8_rounds(3);
#endif
#if R1024_Unroll_R( 4)
R1024_8_rounds( 4);
#if R1024_Unroll_R(4)
R1024_8_rounds(4);
#endif
#if R1024_Unroll_R( 5)
R1024_8_rounds( 5);
#if R1024_Unroll_R(5)
R1024_8_rounds(5);
#endif
#if R1024_Unroll_R( 6)
R1024_8_rounds( 6);
#if R1024_Unroll_R(6)
R1024_8_rounds(6);
#endif
#if R1024_Unroll_R( 7)
R1024_8_rounds( 7);
#if R1024_Unroll_R(7)
R1024_8_rounds(7);
#endif
#if R1024_Unroll_R( 8)
R1024_8_rounds( 8);
#if R1024_Unroll_R(8)
R1024_8_rounds(8);
#endif
#if R1024_Unroll_R( 9)
R1024_8_rounds( 9);
#if R1024_Unroll_R(9)
R1024_8_rounds(9);
#endif
#if R1024_Unroll_R(10)
R1024_8_rounds(10);
@ -648,16 +645,16 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t b
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[ 0] = X00 ^ w[ 0];
ctx->X[ 1] = X01 ^ w[ 1];
ctx->X[ 2] = X02 ^ w[ 2];
ctx->X[ 3] = X03 ^ w[ 3];
ctx->X[ 4] = X04 ^ w[ 4];
ctx->X[ 5] = X05 ^ w[ 5];
ctx->X[ 6] = X06 ^ w[ 6];
ctx->X[ 7] = X07 ^ w[ 7];
ctx->X[ 8] = X08 ^ w[ 8];
ctx->X[ 9] = X09 ^ w[ 9];
ctx->X[0] = X00 ^ w[0];
ctx->X[1] = X01 ^ w[1];
ctx->X[2] = X02 ^ w[2];
ctx->X[3] = X03 ^ w[3];
ctx->X[4] = X04 ^ w[4];
ctx->X[5] = X05 ^ w[5];
ctx->X[6] = X06 ^ w[6];
ctx->X[7] = X07 ^ w[7];
ctx->X[8] = X08 ^ w[8];
ctx->X[9] = X09 ^ w[9];
ctx->X[10] = X10 ^ w[10];
ctx->X[11] = X11 ^ w[11];
ctx->X[12] = X12 ^ w[12];
@ -665,7 +662,7 @@ void Skein1024_Process_Block(struct skein1024_ctx *ctx,const u8 *blkPtr,size_t b
ctx->X[14] = X14 ^ w[14];
ctx->X[15] = X15 ^ w[15];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
blkPtr += SKEIN1024_BLOCK_BYTES;