mtd: cleanup nand.h

- *var instead of * var
- proper multiline comment
- func(args) instead of func (args)
- 80 lines

So from
|total: 2 errors, 37 warnings, 654 lines checked
we got to one warning.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This commit is contained in:
Sebastian Andrzej Siewior 2010-10-05 12:41:01 +02:00 committed by David Woodhouse
parent 766f271a63
commit a0491fc4d4
1 changed files with 99 additions and 56 deletions

View File

@ -28,8 +28,10 @@ struct mtd_info;
struct nand_flash_dev;
/* Scan and identify a NAND device */
extern int nand_scan(struct mtd_info *mtd, int max_chips);
/* Separate phases of nand_scan(), allowing board driver to intervene
* and override command or ECC setup according to flash type */
/*
* Separate phases of nand_scan(), allowing board driver to intervene
* and override command or ECC setup according to flash type.
*/
extern int nand_scan_ident(struct mtd_info *mtd, int max_chips,
struct nand_flash_dev *table);
extern int nand_scan_tail(struct mtd_info *mtd);
@ -49,7 +51,8 @@ extern int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
/* The maximum number of NAND chips in an array */
#define NAND_MAX_CHIPS 8
/* This constant declares the max. oobsize / page, which
/*
* This constant declares the max. oobsize / page, which
* is supported now. If you add a chip with bigger oobsize/page
* adjust this accordingly.
*/
@ -153,8 +156,9 @@ typedef enum {
#define NAND_GET_DEVICE 0x80
/* Option constants for bizarre disfunctionality and real
* features
/*
* Option constants for bizarre disfunctionality and real
* features.
*/
/* Chip can not auto increment pages */
#define NAND_NO_AUTOINCR 0x00000001
@ -166,19 +170,27 @@ typedef enum {
#define NAND_CACHEPRG 0x00000008
/* Chip has copy back function */
#define NAND_COPYBACK 0x00000010
/* AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information */
/*
* AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information.
*/
#define NAND_IS_AND 0x00000020
/* Chip has a array of 4 pages which can be read without
* additional ready /busy waits */
/*
* Chip has a array of 4 pages which can be read without
* additional ready /busy waits.
*/
#define NAND_4PAGE_ARRAY 0x00000040
/* Chip requires that BBT is periodically rewritten to prevent
/*
* Chip requires that BBT is periodically rewritten to prevent
* bits from adjacent blocks from 'leaking' in altering data.
* This happens with the Renesas AG-AND chips, possibly others. */
* This happens with the Renesas AG-AND chips, possibly others.
*/
#define BBT_AUTO_REFRESH 0x00000080
/* Chip does not require ready check on read. True
/*
* Chip does not require ready check on read. True
* for all large page devices, as they do not support
* autoincrement.*/
* autoincrement.
*/
#define NAND_NO_READRDY 0x00000100
/* Chip does not allow subpage writes */
#define NAND_NO_SUBPAGE_WRITE 0x00000200
@ -213,8 +225,10 @@ typedef enum {
#define NAND_USE_FLASH_BBT 0x00010000
/* This option skips the bbt scan during initialization. */
#define NAND_SKIP_BBTSCAN 0x00020000
/* This option is defined if the board driver allocates its own buffers
(e.g. because it needs them DMA-coherent */
/*
* This option is defined if the board driver allocates its own buffers
* (e.g. because it needs them DMA-coherent).
*/
#define NAND_OWN_BUFFERS 0x00040000
/* Chip may not exist, so silence any errors in scan */
#define NAND_SCAN_SILENT_NODEV 0x00080000
@ -304,8 +318,9 @@ struct nand_onfi_params {
* struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independent devices
* @lock: protection lock
* @active: the mtd device which holds the controller currently
* @wq: wait queue to sleep on if a NAND operation is in progress
* used instead of the per chip wait queue when a hw controller is available
* @wq: wait queue to sleep on if a NAND operation is in
* progress used instead of the per chip wait queue
* when a hw controller is available.
*/
struct nand_hw_control {
spinlock_t lock;
@ -329,9 +344,11 @@ struct nand_hw_control {
* @correct: function for ecc correction, matching to ecc generator (sw/hw)
* @read_page_raw: function to read a raw page without ECC
* @write_page_raw: function to write a raw page without ECC
* @read_page: function to read a page according to the ecc generator requirements
* @read_page: function to read a page according to the ecc generator
* requirements.
* @read_subpage: function to read parts of the page covered by ECC.
* @write_page: function to write a page according to the ecc generator requirements
* @write_page: function to write a page according to the ecc generator
* requirements.
* @read_oob: function to read chip OOB data
* @write_oob: function to write chip OOB data
*/
@ -393,13 +410,16 @@ struct nand_buffers {
/**
* struct nand_chip - NAND Private Flash Chip Data
* @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device
* @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device
* @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the
* flash device
* @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the
* flash device.
* @read_byte: [REPLACEABLE] read one byte from the chip
* @read_word: [REPLACEABLE] read one word from the chip
* @write_buf: [REPLACEABLE] write data from the buffer to the chip
* @read_buf: [REPLACEABLE] read data from the chip into the buffer
* @verify_buf: [REPLACEABLE] verify buffer contents against the chip data
* @verify_buf: [REPLACEABLE] verify buffer contents against the chip
* data.
* @select_chip: [REPLACEABLE] select chip nr
* @block_bad: [REPLACEABLE] check, if the block is bad
* @block_markbad: [REPLACEABLE] mark the block bad
@ -409,45 +429,60 @@ struct nand_buffers {
* mtd->oobsize, mtd->writesize and so on.
* @id_data contains the 8 bytes values of NAND_CMD_READID.
* Return with the bus width.
* @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
* If set to NULL no access to ready/busy is available and the ready/busy information
* is read from the chip status register
* @cmdfunc: [REPLACEABLE] hardwarespecific function for writing commands to the chip
* @waitfunc: [REPLACEABLE] hardwarespecific function for wait on ready
* @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accesing
* device ready/busy line. If set to NULL no access to
* ready/busy is available and the ready/busy information
* is read from the chip status register.
* @cmdfunc: [REPLACEABLE] hardwarespecific function for writing
* commands to the chip.
* @waitfunc: [REPLACEABLE] hardwarespecific function for wait on
* ready.
* @ecc: [BOARDSPECIFIC] ecc control ctructure
* @buffers: buffer structure for read/write
* @hwcontrol: platform-specific hardware control structure
* @ops: oob operation operands
* @erase_cmd: [INTERN] erase command write function, selectable due to AND support
* @erase_cmd: [INTERN] erase command write function, selectable due
* to AND support.
* @scan_bbt: [REPLACEABLE] function to scan bad block table
* @chip_delay: [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
* @chip_delay: [BOARDSPECIFIC] chip dependent delay for transfering
* data from array to read regs (tR).
* @state: [INTERN] the current state of the NAND device
* @oob_poi: poison value buffer
* @page_shift: [INTERN] number of address bits in a page (column address bits)
* @page_shift: [INTERN] number of address bits in a page (column
* address bits).
* @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
* @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
* @chip_shift: [INTERN] number of address bits in one chip
* @options: [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
* special functionality. See the defines for further explanation
* @badblockpos: [INTERN] position of the bad block marker in the oob area
* @options: [BOARDSPECIFIC] various chip options. They can partly
* be set to inform nand_scan about special functionality.
* See the defines for further explanation.
* @badblockpos: [INTERN] position of the bad block marker in the oob
* area.
* @cellinfo: [INTERN] MLC/multichip data from chip ident
* @numchips: [INTERN] number of physical chips
* @chipsize: [INTERN] the size of one chip for multichip arrays
* @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
* @pagebuf: [INTERN] holds the pagenumber which is currently in data_buf
* @pagebuf: [INTERN] holds the pagenumber which is currently in
* data_buf.
* @subpagesize: [INTERN] holds the subpagesize
* @onfi_version: [INTERN] holds the chip ONFI version (BCD encoded), non 0 if ONFI supported
* @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is supported, 0 otherwise
* @onfi_version: [INTERN] holds the chip ONFI version (BCD encoded),
* non 0 if ONFI supported.
* @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is
* supported, 0 otherwise.
* @ecclayout: [REPLACEABLE] the default ecc placement scheme
* @bbt: [INTERN] bad block table pointer
* @bbt_td: [REPLACEABLE] bad block table descriptor for flash lookup
* @bbt_td: [REPLACEABLE] bad block table descriptor for flash
* lookup.
* @bbt_md: [REPLACEABLE] bad block table mirror descriptor
* @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial bad block scan
* @controller: [REPLACEABLE] a pointer to a hardware controller structure
* which is shared among multiple independend devices
* @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial
* bad block scan.
* @controller: [REPLACEABLE] a pointer to a hardware controller
* structure which is shared among multiple independend
* devices.
* @priv: [OPTIONAL] pointer to private chip date
* @errstat: [OPTIONAL] hardware specific function to perform additional error status checks
* (determine if errors are correctable)
* @errstat: [OPTIONAL] hardware specific function to perform
* additional error status checks (determine if errors are
* correctable).
* @write_page: [REPLACEABLE] High-level page write function
*/
@ -457,24 +492,32 @@ struct nand_chip {
uint8_t (*read_byte)(struct mtd_info *mtd);
u16 (*read_word)(struct mtd_info *mtd);
void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
int (*verify_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf,
int len);
void (*read_buf)(struct mtd_info *mtd, uint8_t *buf,
int len);
int (*verify_buf)(struct mtd_info *mtd, const uint8_t *buf,
int len);
void (*select_chip)(struct mtd_info *mtd, int chip);
int (*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
int (*block_bad)(struct mtd_info *mtd, loff_t ofs,
int getchip);
int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
void (*cmd_ctrl)(struct mtd_info *mtd, int dat,
unsigned int ctrl);
int (*init_size)(struct mtd_info *mtd,
struct nand_chip *this, u8 *id_data);
int (*dev_ready)(struct mtd_info *mtd);
void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
int (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
void (*cmdfunc)(struct mtd_info *mtd, unsigned command,
int column, int page_addr);
int (*waitfunc)(struct mtd_info *mtd,
struct nand_chip *this);
void (*erase_cmd)(struct mtd_info *mtd, int page);
int (*scan_bbt)(struct mtd_info *mtd);
int (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page);
int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int page, int cached, int raw);
int (*errstat)(struct mtd_info *mtd, struct nand_chip *this,
int state, int status, int page);
int (*write_page)(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int page,
int cached, int raw);
int chip_delay;
unsigned int options;