diff --git a/Documentation/hid/intel-ish-hid.rst b/Documentation/hid/intel-ish-hid.rst index d4785cf6eefd..f6ce44ff611d 100644 --- a/Documentation/hid/intel-ish-hid.rst +++ b/Documentation/hid/intel-ish-hid.rst @@ -4,19 +4,19 @@ Intel Integrated Sensor Hub (ISH) A sensor hub enables the ability to offload sensor polling and algorithm processing to a dedicated low power co-processor. This allows the core -processor to go into low power modes more often, resulting in the increased +processor to go into low power modes more often, resulting in increased battery life. -There are many vendors providing external sensor hubs confirming to HID -Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops -and embedded products. Linux had this support since Linux 3.9. +There are many vendors providing external sensor hubs conforming to HID +Sensor usage tables. These may be found in tablets, 2-in-1 convertible laptops +and embedded products. Linux has had this support since Linux 3.9. IntelĀ® introduced integrated sensor hubs as a part of the SoC starting from Cherry Trail and now supported on multiple generations of CPU packages. There are many commercial devices already shipped with Integrated Sensor Hubs (ISH). -These ISH also comply to HID sensor specification, but the difference is the +These ISH also comply to HID sensor specification, but the difference is the transport protocol used for communication. The current external sensor hubs -mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB. +mainly use HID over I2C or USB. But ISH doesn't use either I2C or USB. 1. Overview =========== @@ -35,7 +35,7 @@ for a very high speed communication:: ----------------- ---------------------- PCI PCI ----------------- ---------------------- - |Host controller| --> | ISH processor | + |Host controller| --> | ISH processor | ----------------- ---------------------- USB Link ----------------- ---------------------- @@ -50,13 +50,13 @@ applications implemented in the firmware. The ISH allows multiple sensor management applications executing in the firmware. Like USB endpoints the messaging can be to/from a client. As part of enumeration process, these clients are identified. These clients can be simple -HID sensor applications, sensor calibration application or senor firmware -update application. +HID sensor applications, sensor calibration applications or sensor firmware +update applications. The implementation model is similar, like USB bus, ISH transport is also implemented as a bus. Each client application executing in the ISH processor is registered as a device on this bus. The driver, which binds each device -(ISH HID driver) identifies the device type and registers with the hid core. +(ISH HID driver) identifies the device type and registers with the HID core. 2. ISH Implementation: Block Diagram ==================================== @@ -104,7 +104,7 @@ is registered as a device on this bus. The driver, which binds each device The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI product and vendor IDs are changed from different generations of processors. So -the source code which enumerate drivers needs to update from generation to +the source code which enumerates drivers needs to update from generation to generation. 3.2 Inter Processor Communication (IPC) driver @@ -112,41 +112,42 @@ generation. Location: drivers/hid/intel-ish-hid/ipc -The IPC message used memory mapped I/O. The registers are defined in +The IPC message uses memory mapped I/O. The registers are defined in hw-ish-regs.h. 3.2.1 IPC/FW message types ^^^^^^^^^^^^^^^^^^^^^^^^^^ -There are two types of messages, one for management of link and other messages -are to and from transport layers. +There are two types of messages, one for management of link and another for +messages to and from transport layers. TX and RX of Transport messages ............................... -A set of memory mapped register offers support of multi byte messages TX and -RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains -internal queues to sequence messages and send them in order to the FW. +A set of memory mapped register offers support of multi-byte messages TX and +RX (e.g. IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains +internal queues to sequence messages and send them in order to the firmware. Optionally the caller can register handler to get notification of completion. -A door bell mechanism is used in messaging to trigger processing in host and +A doorbell mechanism is used in messaging to trigger processing in host and client firmware side. When ISH interrupt handler is called, the ISH2HOST doorbell register is used by host drivers to determine that the interrupt is for ISH. Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell -register has the following format: -Bits 0..6: fragment length (7 bits are used) -Bits 10..13: encapsulated protocol -Bits 16..19: management command (for IPC management protocol) -Bit 31: doorbell trigger (signal H/W interrupt to the other side) -Other bits are reserved, should be 0. +register has the following format:: + + Bits 0..6: fragment length (7 bits are used) + Bits 10..13: encapsulated protocol + Bits 16..19: management command (for IPC management protocol) + Bit 31: doorbell trigger (signal H/W interrupt to the other side) + Other bits are reserved, should be 0. 3.2.2 Transport layer interface ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -To abstract HW level IPC communication, a set of callbacks are registered. +To abstract HW level IPC communication, a set of callbacks is registered. The transport layer uses them to send and receive messages. -Refer to struct ishtp_hw_ops for callbacks. +Refer to struct ishtp_hw_ops for callbacks. 3.3 ISH Transport layer ----------------------- @@ -158,7 +159,7 @@ Location: drivers/hid/intel-ish-hid/ishtp/ The transport layer is a bi-directional protocol, which defines: - Set of commands to start, stop, connect, disconnect and flow control -(ishtp/hbm.h) for details +(see ishtp/hbm.h for details) - A flow control mechanism to avoid buffer overflows This protocol resembles bus messages described in the following document: @@ -168,14 +169,14 @@ specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer" 3.3.2 Connection and Flow Control Mechanism ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Each FW client and a protocol is identified by an UUID. In order to communicate +Each FW client and a protocol is identified by a UUID. In order to communicate to a FW client, a connection must be established using connect request and response bus messages. If successful, a pair (host_client_id and fw_client_id) will identify the connection. Once connection is established, peers send each other flow control bus messages independently. Every peer may send a message only if it has received a -flow-control credit before. Once it sent a message, it may not send another one +flow-control credit before. Once it has sent a message, it may not send another one before receiving the next flow control credit. Either side can send disconnect request bus message to end communication. Also the link will be dropped if major FW reset occurs. @@ -209,7 +210,7 @@ and DMA_XFER_ACK act as ownership indicators. At initial state all outgoing memory belongs to the sender (TX to host, RX to FW), DMA_XFER transfers ownership on the region that contains ISHTP message to the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender -needs not wait for previous DMA_XFER to be ack'ed, and may send another message +need not wait for previous DMA_XFER to be ack'ed, and may send another message as long as remaining continuous memory in its ownership is enough. In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once (up to IPC MTU), thus allowing for interrupt throttling. @@ -219,8 +220,8 @@ fragments and via IPC otherwise. 3.3.4 Ring Buffers ^^^^^^^^^^^^^^^^^^ -When a client initiate a connection, a ring or RX and TX buffers are allocated. -The size of ring can be specified by the client. HID client set 16 and 32 for +When a client initiates a connection, a ring of RX and TX buffers is allocated. +The size of ring can be specified by the client. HID client sets 16 and 32 for TX and RX buffers respectively. On send request from client, the data to be sent is copied to one of the send ring buffer and scheduled to be sent using bus message protocol. These buffers are required because the FW may have not @@ -230,10 +231,10 @@ to send. Same thing holds true on receive side and flow control is required. 3.3.5 Host Enumeration ^^^^^^^^^^^^^^^^^^^^^^ -The host enumeration bus command allow discovery of clients present in the FW. +The host enumeration bus command allows discovery of clients present in the FW. There can be multiple sensor clients and clients for calibration function. -To ease in implantation and allow independent driver handle each client +To ease implementation and allow independent drivers to handle each client, this transport layer takes advantage of Linux Bus driver model. Each client is registered as device on the transport bus (ishtp bus). @@ -270,7 +271,7 @@ The ISHTP client driver is responsible for: The functionality in these drivers is the same as an external sensor hub. Refer to Documentation/hid/hid-sensor.rst for HID sensor -Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space +Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space. 3.6 End to End HID transport Sequence Diagram --------------------------------------------- @@ -341,9 +342,10 @@ Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space 3.7 ISH Debugging ----------------- -To debug ISH, event tracing mechanism is used. To enable debug logs -echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable -cat sys/kernel/debug/tracing/trace +To debug ISH, event tracing mechanism is used. To enable debug logs:: + + echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable + cat sys/kernel/debug/tracing/trace 3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260 -----------------------------------------------------