Documentation: amd-pstate: add amd pstate driver mode introduction
The amd-pstate driver has two operation modes supported: * CPPC Autonomous (active) mode * CPPC non-autonomous (passive) mode. active mode and passive mode can be chosen by different kernel parameters. Acked-by: Huang Rui <ray.huang@amd.com> Reviewed-by: Mario Limonciello <mario.limonciello@amd.com> Reviewed-by: Wyes Karny <wyes.karny@amd.com> Tested-by: Wyes Karny <wyes.karny@amd.com> Signed-off-by: Perry Yuan <Perry.Yuan@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This commit is contained in:
parent
abd61c08ef
commit
92e6088427
|
@ -299,8 +299,30 @@ module which supports the new AMD P-States mechanism on most of the future AMD
|
|||
platforms. The AMD P-States mechanism is the more performance and energy
|
||||
efficiency frequency management method on AMD processors.
|
||||
|
||||
Kernel Module Options for ``amd-pstate``
|
||||
=========================================
|
||||
|
||||
AMD Pstate Driver Operation Modes
|
||||
=================================
|
||||
|
||||
``amd_pstate`` CPPC has two operation modes: CPPC Autonomous(active) mode and
|
||||
CPPC non-autonomous(passive) mode.
|
||||
active mode and passive mode can be chosen by different kernel parameters.
|
||||
When in Autonomous mode, CPPC ignores requests done in the Desired Performance
|
||||
Target register and takes into account only the values set to the Minimum requested
|
||||
performance, Maximum requested performance, and Energy Performance Preference
|
||||
registers. When Autonomous is disabled, it only considers the Desired Performance Target.
|
||||
|
||||
Active Mode
|
||||
------------
|
||||
|
||||
``amd_pstate=active``
|
||||
|
||||
This is the low-level firmware control mode which is implemented by ``amd_pstate_epp``
|
||||
driver with ``amd_pstate=active`` passed to the kernel in the command line.
|
||||
In this mode, ``amd_pstate_epp`` driver provides a hint to the hardware if software
|
||||
wants to bias toward performance (0x0) or energy efficiency (0xff) to the CPPC firmware.
|
||||
then CPPC power algorithm will calculate the runtime workload and adjust the realtime
|
||||
cores frequency according to the power supply and thermal, core voltage and some other
|
||||
hardware conditions.
|
||||
|
||||
Passive Mode
|
||||
------------
|
||||
|
|
Loading…
Reference in New Issue