Documentation/applying-patches.txt: convert it to ReST markup
- use the correct markup to identify each section; - Add some blank lines for Sphinx to properly interpret the markups; - Remove a blank space on some paragraphs; - Fix the verbatim and bold markups; - Cleanup the remaining errors to make Sphinx happy. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
022e04d6f5
commit
9299c3e92c
|
@ -1,9 +1,12 @@
|
|||
|
||||
Applying Patches To The Linux Kernel
|
||||
------------------------------------
|
||||
Applying Patches To The Linux Kernel
|
||||
++++++++++++++++++++++++++++++++++++
|
||||
|
||||
Original by: Jesper Juhl, August 2005
|
||||
Last update: 2006-01-05
|
||||
Original by:
|
||||
Jesper Juhl, August 2005
|
||||
|
||||
Last update:
|
||||
2006-01-05
|
||||
|
||||
|
||||
A frequently asked question on the Linux Kernel Mailing List is how to apply
|
||||
|
@ -17,10 +20,12 @@ their specific patches) is also provided.
|
|||
|
||||
|
||||
What is a patch?
|
||||
---
|
||||
A patch is a small text document containing a delta of changes between two
|
||||
different versions of a source tree. Patches are created with the `diff'
|
||||
================
|
||||
|
||||
A patch is a small text document containing a delta of changes between two
|
||||
different versions of a source tree. Patches are created with the ``diff``
|
||||
program.
|
||||
|
||||
To correctly apply a patch you need to know what base it was generated from
|
||||
and what new version the patch will change the source tree into. These
|
||||
should both be present in the patch file metadata or be possible to deduce
|
||||
|
@ -28,8 +33,9 @@ from the filename.
|
|||
|
||||
|
||||
How do I apply or revert a patch?
|
||||
---
|
||||
You apply a patch with the `patch' program. The patch program reads a diff
|
||||
=================================
|
||||
|
||||
You apply a patch with the ``patch`` program. The patch program reads a diff
|
||||
(or patch) file and makes the changes to the source tree described in it.
|
||||
|
||||
Patches for the Linux kernel are generated relative to the parent directory
|
||||
|
@ -38,26 +44,39 @@ holding the kernel source dir.
|
|||
This means that paths to files inside the patch file contain the name of the
|
||||
kernel source directories it was generated against (or some other directory
|
||||
names like "a/" and "b/").
|
||||
|
||||
Since this is unlikely to match the name of the kernel source dir on your
|
||||
local machine (but is often useful info to see what version an otherwise
|
||||
unlabeled patch was generated against) you should change into your kernel
|
||||
source directory and then strip the first element of the path from filenames
|
||||
in the patch file when applying it (the -p1 argument to `patch' does this).
|
||||
in the patch file when applying it (the ``-p1`` argument to ``patch`` does
|
||||
this).
|
||||
|
||||
To revert a previously applied patch, use the -R argument to patch.
|
||||
So, if you applied a patch like this:
|
||||
|
||||
::
|
||||
|
||||
patch -p1 < ../patch-x.y.z
|
||||
|
||||
You can revert (undo) it like this:
|
||||
|
||||
::
|
||||
|
||||
patch -R -p1 < ../patch-x.y.z
|
||||
|
||||
|
||||
How do I feed a patch/diff file to `patch'?
|
||||
---
|
||||
This (as usual with Linux and other UNIX like operating systems) can be
|
||||
How do I feed a patch/diff file to ``patch``?
|
||||
=============================================
|
||||
|
||||
This (as usual with Linux and other UNIX like operating systems) can be
|
||||
done in several different ways.
|
||||
|
||||
In all the examples below I feed the file (in uncompressed form) to patch
|
||||
via stdin using the following syntax:
|
||||
|
||||
::
|
||||
|
||||
patch -p1 < path/to/patch-x.y.z
|
||||
|
||||
If you just want to be able to follow the examples below and don't want to
|
||||
|
@ -66,34 +85,45 @@ section here.
|
|||
|
||||
Patch can also get the name of the file to use via the -i argument, like
|
||||
this:
|
||||
|
||||
::
|
||||
|
||||
patch -p1 -i path/to/patch-x.y.z
|
||||
|
||||
If your patch file is compressed with gzip or bzip2 and you don't want to
|
||||
uncompress it before applying it, then you can feed it to patch like this
|
||||
instead:
|
||||
|
||||
::
|
||||
|
||||
zcat path/to/patch-x.y.z.gz | patch -p1
|
||||
bzcat path/to/patch-x.y.z.bz2 | patch -p1
|
||||
|
||||
If you wish to uncompress the patch file by hand first before applying it
|
||||
(what I assume you've done in the examples below), then you simply run
|
||||
gunzip or bunzip2 on the file -- like this:
|
||||
|
||||
::
|
||||
|
||||
gunzip patch-x.y.z.gz
|
||||
bunzip2 patch-x.y.z.bz2
|
||||
|
||||
Which will leave you with a plain text patch-x.y.z file that you can feed to
|
||||
patch via stdin or the -i argument, as you prefer.
|
||||
patch via stdin or the ``-i`` argument, as you prefer.
|
||||
|
||||
A few other nice arguments for patch are -s which causes patch to be silent
|
||||
A few other nice arguments for patch are ``-s`` which causes patch to be silent
|
||||
except for errors which is nice to prevent errors from scrolling out of the
|
||||
screen too fast, and --dry-run which causes patch to just print a listing of
|
||||
what would happen, but doesn't actually make any changes. Finally --verbose
|
||||
screen too fast, and ``--dry-run`` which causes patch to just print a listing of
|
||||
what would happen, but doesn't actually make any changes. Finally ``--verbose``
|
||||
tells patch to print more information about the work being done.
|
||||
|
||||
|
||||
Common errors when patching
|
||||
---
|
||||
When patch applies a patch file it attempts to verify the sanity of the
|
||||
===========================
|
||||
|
||||
When patch applies a patch file it attempts to verify the sanity of the
|
||||
file in different ways.
|
||||
|
||||
Checking that the file looks like a valid patch file and checking the code
|
||||
around the bits being modified matches the context provided in the patch are
|
||||
just two of the basic sanity checks patch does.
|
||||
|
@ -111,13 +141,13 @@ everything looks good it has just moved up or down a bit, and patch will
|
|||
usually adjust the line numbers and apply the patch.
|
||||
|
||||
Whenever patch applies a patch that it had to modify a bit to make it fit
|
||||
it'll tell you about it by saying the patch applied with 'fuzz'.
|
||||
it'll tell you about it by saying the patch applied with **fuzz**.
|
||||
You should be wary of such changes since even though patch probably got it
|
||||
right it doesn't /always/ get it right, and the result will sometimes be
|
||||
wrong.
|
||||
|
||||
When patch encounters a change that it can't fix up with fuzz it rejects it
|
||||
outright and leaves a file with a .rej extension (a reject file). You can
|
||||
outright and leaves a file with a ``.rej`` extension (a reject file). You can
|
||||
read this file to see exactly what change couldn't be applied, so you can
|
||||
go fix it up by hand if you wish.
|
||||
|
||||
|
@ -132,43 +162,47 @@ to start with a fresh tree downloaded in full from kernel.org.
|
|||
|
||||
Let's look a bit more at some of the messages patch can produce.
|
||||
|
||||
If patch stops and presents a "File to patch:" prompt, then patch could not
|
||||
If patch stops and presents a ``File to patch:`` prompt, then patch could not
|
||||
find a file to be patched. Most likely you forgot to specify -p1 or you are
|
||||
in the wrong directory. Less often, you'll find patches that need to be
|
||||
applied with -p0 instead of -p1 (reading the patch file should reveal if
|
||||
applied with ``-p0`` instead of ``-p1`` (reading the patch file should reveal if
|
||||
this is the case -- if so, then this is an error by the person who created
|
||||
the patch but is not fatal).
|
||||
|
||||
If you get "Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines)." or a
|
||||
If you get ``Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines).`` or a
|
||||
message similar to that, then it means that patch had to adjust the location
|
||||
of the change (in this example it needed to move 7 lines from where it
|
||||
expected to make the change to make it fit).
|
||||
|
||||
The resulting file may or may not be OK, depending on the reason the file
|
||||
was different than expected.
|
||||
|
||||
This often happens if you try to apply a patch that was generated against a
|
||||
different kernel version than the one you are trying to patch.
|
||||
|
||||
If you get a message like "Hunk #3 FAILED at 2387.", then it means that the
|
||||
If you get a message like ``Hunk #3 FAILED at 2387.``, then it means that the
|
||||
patch could not be applied correctly and the patch program was unable to
|
||||
fuzz its way through. This will generate a .rej file with the change that
|
||||
caused the patch to fail and also a .orig file showing you the original
|
||||
fuzz its way through. This will generate a ``.rej`` file with the change that
|
||||
caused the patch to fail and also a ``.orig`` file showing you the original
|
||||
content that couldn't be changed.
|
||||
|
||||
If you get "Reversed (or previously applied) patch detected! Assume -R? [n]"
|
||||
If you get ``Reversed (or previously applied) patch detected! Assume -R? [n]``
|
||||
then patch detected that the change contained in the patch seems to have
|
||||
already been made.
|
||||
|
||||
If you actually did apply this patch previously and you just re-applied it
|
||||
in error, then just say [n]o and abort this patch. If you applied this patch
|
||||
previously and actually intended to revert it, but forgot to specify -R,
|
||||
then you can say [y]es here to make patch revert it for you.
|
||||
then you can say [**y**]es here to make patch revert it for you.
|
||||
|
||||
This can also happen if the creator of the patch reversed the source and
|
||||
destination directories when creating the patch, and in that case reverting
|
||||
the patch will in fact apply it.
|
||||
|
||||
A message similar to "patch: **** unexpected end of file in patch" or "patch
|
||||
unexpectedly ends in middle of line" means that patch could make no sense of
|
||||
the file you fed to it. Either your download is broken, you tried to feed
|
||||
patch a compressed patch file without uncompressing it first, or the patch
|
||||
A message similar to ``patch: **** unexpected end of file in patch`` or
|
||||
``patch unexpectedly ends in middle of line`` means that patch could make no
|
||||
sense of the file you fed to it. Either your download is broken, you tried to
|
||||
feed patch a compressed patch file without uncompressing it first, or the patch
|
||||
file that you are using has been mangled by a mail client or mail transfer
|
||||
agent along the way somewhere, e.g., by splitting a long line into two lines.
|
||||
Often these warnings can easily be fixed by joining (concatenating) the
|
||||
|
@ -182,28 +216,34 @@ to start over with a fresh download of a full kernel tree and the patch you
|
|||
wish to apply.
|
||||
|
||||
|
||||
Are there any alternatives to `patch'?
|
||||
---
|
||||
Yes there are alternatives.
|
||||
Are there any alternatives to ``patch``?
|
||||
========================================
|
||||
|
||||
You can use the `interdiff' program (http://cyberelk.net/tim/patchutils/) to
|
||||
|
||||
Yes there are alternatives.
|
||||
|
||||
You can use the ``interdiff`` program (http://cyberelk.net/tim/patchutils/) to
|
||||
generate a patch representing the differences between two patches and then
|
||||
apply the result.
|
||||
|
||||
This will let you move from something like 2.6.12.2 to 2.6.12.3 in a single
|
||||
step. The -z flag to interdiff will even let you feed it patches in gzip or
|
||||
bzip2 compressed form directly without the use of zcat or bzcat or manual
|
||||
decompression.
|
||||
|
||||
Here's how you'd go from 2.6.12.2 to 2.6.12.3 in a single step:
|
||||
|
||||
::
|
||||
|
||||
interdiff -z ../patch-2.6.12.2.bz2 ../patch-2.6.12.3.gz | patch -p1
|
||||
|
||||
Although interdiff may save you a step or two you are generally advised to
|
||||
do the additional steps since interdiff can get things wrong in some cases.
|
||||
|
||||
Another alternative is `ketchup', which is a python script for automatic
|
||||
Another alternative is ``ketchup``, which is a python script for automatic
|
||||
downloading and applying of patches (http://www.selenic.com/ketchup/).
|
||||
|
||||
Other nice tools are diffstat, which shows a summary of changes made by a
|
||||
Other nice tools are diffstat, which shows a summary of changes made by a
|
||||
patch; lsdiff, which displays a short listing of affected files in a patch
|
||||
file, along with (optionally) the line numbers of the start of each patch;
|
||||
and grepdiff, which displays a list of the files modified by a patch where
|
||||
|
@ -211,24 +251,29 @@ the patch contains a given regular expression.
|
|||
|
||||
|
||||
Where can I download the patches?
|
||||
---
|
||||
The patches are available at http://kernel.org/
|
||||
=================================
|
||||
|
||||
The patches are available at http://kernel.org/
|
||||
Most recent patches are linked from the front page, but they also have
|
||||
specific homes.
|
||||
|
||||
The 2.6.x.y (-stable) and 2.6.x patches live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/
|
||||
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/
|
||||
|
||||
The -rc patches live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/testing/
|
||||
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/testing/
|
||||
|
||||
The -git patches live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/snapshots/
|
||||
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/snapshots/
|
||||
|
||||
The -mm kernels live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/
|
||||
|
||||
In place of ftp.kernel.org you can use ftp.cc.kernel.org, where cc is a
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/
|
||||
|
||||
In place of ``ftp.kernel.org`` you can use ``ftp.cc.kernel.org``, where cc is a
|
||||
country code. This way you'll be downloading from a mirror site that's most
|
||||
likely geographically closer to you, resulting in faster downloads for you,
|
||||
less bandwidth used globally and less load on the main kernel.org servers --
|
||||
|
@ -236,8 +281,9 @@ these are good things, so do use mirrors when possible.
|
|||
|
||||
|
||||
The 2.6.x kernels
|
||||
---
|
||||
These are the base stable releases released by Linus. The highest numbered
|
||||
=================
|
||||
|
||||
These are the base stable releases released by Linus. The highest numbered
|
||||
release is the most recent.
|
||||
|
||||
If regressions or other serious flaws are found, then a -stable fix patch
|
||||
|
@ -246,30 +292,33 @@ kernel is released, a patch is made available that is a delta between the
|
|||
previous 2.6.x kernel and the new one.
|
||||
|
||||
To apply a patch moving from 2.6.11 to 2.6.12, you'd do the following (note
|
||||
that such patches do *NOT* apply on top of 2.6.x.y kernels but on top of the
|
||||
that such patches do **NOT** apply on top of 2.6.x.y kernels but on top of the
|
||||
base 2.6.x kernel -- if you need to move from 2.6.x.y to 2.6.x+1 you need to
|
||||
first revert the 2.6.x.y patch).
|
||||
|
||||
Here are some examples:
|
||||
|
||||
# moving from 2.6.11 to 2.6.12
|
||||
$ cd ~/linux-2.6.11 # change to kernel source dir
|
||||
$ patch -p1 < ../patch-2.6.12 # apply the 2.6.12 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.11 linux-2.6.12 # rename source dir
|
||||
::
|
||||
|
||||
# moving from 2.6.11.1 to 2.6.12
|
||||
$ cd ~/linux-2.6.11.1 # change to kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.11.1 # revert the 2.6.11.1 patch
|
||||
# source dir is now 2.6.11
|
||||
$ patch -p1 < ../patch-2.6.12 # apply new 2.6.12 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.11.1 linux-2.6.12 # rename source dir
|
||||
# moving from 2.6.11 to 2.6.12
|
||||
$ cd ~/linux-2.6.11 # change to kernel source dir
|
||||
$ patch -p1 < ../patch-2.6.12 # apply the 2.6.12 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.11 linux-2.6.12 # rename source dir
|
||||
|
||||
# moving from 2.6.11.1 to 2.6.12
|
||||
$ cd ~/linux-2.6.11.1 # change to kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.11.1 # revert the 2.6.11.1 patch
|
||||
# source dir is now 2.6.11
|
||||
$ patch -p1 < ../patch-2.6.12 # apply new 2.6.12 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.11.1 linux-2.6.12 # rename source dir
|
||||
|
||||
|
||||
The 2.6.x.y kernels
|
||||
---
|
||||
Kernels with 4-digit versions are -stable kernels. They contain small(ish)
|
||||
===================
|
||||
|
||||
Kernels with 4-digit versions are -stable kernels. They contain small(ish)
|
||||
critical fixes for security problems or significant regressions discovered
|
||||
in a given 2.6.x kernel.
|
||||
|
||||
|
@ -280,30 +329,35 @@ versions.
|
|||
If no 2.6.x.y kernel is available, then the highest numbered 2.6.x kernel is
|
||||
the current stable kernel.
|
||||
|
||||
note: the -stable team usually do make incremental patches available as well
|
||||
.. note::
|
||||
|
||||
The -stable team usually do make incremental patches available as well
|
||||
as patches against the latest mainline release, but I only cover the
|
||||
non-incremental ones below. The incremental ones can be found at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/incr/
|
||||
|
||||
These patches are not incremental, meaning that for example the 2.6.12.3
|
||||
patch does not apply on top of the 2.6.12.2 kernel source, but rather on top
|
||||
of the base 2.6.12 kernel source .
|
||||
of the base 2.6.12 kernel source.
|
||||
|
||||
So, in order to apply the 2.6.12.3 patch to your existing 2.6.12.2 kernel
|
||||
source you have to first back out the 2.6.12.2 patch (so you are left with a
|
||||
base 2.6.12 kernel source) and then apply the new 2.6.12.3 patch.
|
||||
|
||||
Here's a small example:
|
||||
|
||||
$ cd ~/linux-2.6.12.2 # change into the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12.2 # revert the 2.6.12.2 patch
|
||||
$ patch -p1 < ../patch-2.6.12.3 # apply the new 2.6.12.3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12.2 linux-2.6.12.3 # rename the kernel source dir
|
||||
::
|
||||
|
||||
$ cd ~/linux-2.6.12.2 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12.2 # revert the 2.6.12.2 patch
|
||||
$ patch -p1 < ../patch-2.6.12.3 # apply the new 2.6.12.3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12.2 linux-2.6.12.3 # rename the kernel source dir
|
||||
|
||||
The -rc kernels
|
||||
---
|
||||
These are release-candidate kernels. These are development kernels released
|
||||
===============
|
||||
|
||||
These are release-candidate kernels. These are development kernels released
|
||||
by Linus whenever he deems the current git (the kernel's source management
|
||||
tool) tree to be in a reasonably sane state adequate for testing.
|
||||
|
||||
|
@ -321,35 +375,39 @@ The -rc patches are not incremental, they apply to a base 2.6.x kernel, just
|
|||
like the 2.6.x.y patches described above. The kernel version before the -rcN
|
||||
suffix denotes the version of the kernel that this -rc kernel will eventually
|
||||
turn into.
|
||||
|
||||
So, 2.6.13-rc5 means that this is the fifth release candidate for the 2.6.13
|
||||
kernel and the patch should be applied on top of the 2.6.12 kernel source.
|
||||
|
||||
Here are 3 examples of how to apply these patches:
|
||||
|
||||
# first an example of moving from 2.6.12 to 2.6.13-rc3
|
||||
$ cd ~/linux-2.6.12 # change into the 2.6.12 source dir
|
||||
$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.13-rc3 # rename the source dir
|
||||
::
|
||||
|
||||
# now let's move from 2.6.13-rc3 to 2.6.13-rc5
|
||||
$ cd ~/linux-2.6.13-rc3 # change into the 2.6.13-rc3 dir
|
||||
$ patch -p1 -R < ../patch-2.6.13-rc3 # revert the 2.6.13-rc3 patch
|
||||
$ patch -p1 < ../patch-2.6.13-rc5 # apply the new 2.6.13-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.13-rc3 linux-2.6.13-rc5 # rename the source dir
|
||||
# first an example of moving from 2.6.12 to 2.6.13-rc3
|
||||
$ cd ~/linux-2.6.12 # change to the 2.6.12 source dir
|
||||
$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.13-rc3 # rename the source dir
|
||||
|
||||
# finally let's try and move from 2.6.12.3 to 2.6.13-rc5
|
||||
$ cd ~/linux-2.6.12.3 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12.3 # revert the 2.6.12.3 patch
|
||||
$ patch -p1 < ../patch-2.6.13-rc5 # apply new 2.6.13-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12.3 linux-2.6.13-rc5 # rename the kernel source dir
|
||||
# now let's move from 2.6.13-rc3 to 2.6.13-rc5
|
||||
$ cd ~/linux-2.6.13-rc3 # change to the 2.6.13-rc3 dir
|
||||
$ patch -p1 -R < ../patch-2.6.13-rc3 # revert the 2.6.13-rc3 patch
|
||||
$ patch -p1 < ../patch-2.6.13-rc5 # apply the new 2.6.13-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.13-rc3 linux-2.6.13-rc5 # rename the source dir
|
||||
|
||||
# finally let's try and move from 2.6.12.3 to 2.6.13-rc5
|
||||
$ cd ~/linux-2.6.12.3 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12.3 # revert the 2.6.12.3 patch
|
||||
$ patch -p1 < ../patch-2.6.13-rc5 # apply new 2.6.13-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12.3 linux-2.6.13-rc5 # rename the kernel source dir
|
||||
|
||||
|
||||
The -git kernels
|
||||
---
|
||||
These are daily snapshots of Linus' kernel tree (managed in a git
|
||||
================
|
||||
|
||||
These are daily snapshots of Linus' kernel tree (managed in a git
|
||||
repository, hence the name).
|
||||
|
||||
These patches are usually released daily and represent the current state of
|
||||
|
@ -364,35 +422,40 @@ named 2.6.13-rc3-git2 applies to the source of the 2.6.13-rc3 kernel.
|
|||
|
||||
Here are some examples of how to apply these patches:
|
||||
|
||||
# moving from 2.6.12 to 2.6.12-git1
|
||||
$ cd ~/linux-2.6.12 # change to the kernel source dir
|
||||
$ patch -p1 < ../patch-2.6.12-git1 # apply the 2.6.12-git1 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.12-git1 # rename the kernel source dir
|
||||
::
|
||||
|
||||
# moving from 2.6.12-git1 to 2.6.13-rc2-git3
|
||||
$ cd ~/linux-2.6.12-git1 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12-git1 # revert the 2.6.12-git1 patch
|
||||
# we now have a 2.6.12 kernel
|
||||
$ patch -p1 < ../patch-2.6.13-rc2 # apply the 2.6.13-rc2 patch
|
||||
# the kernel is now 2.6.13-rc2
|
||||
$ patch -p1 < ../patch-2.6.13-rc2-git3 # apply the 2.6.13-rc2-git3 patch
|
||||
# the kernel is now 2.6.13-rc2-git3
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12-git1 linux-2.6.13-rc2-git3 # rename source dir
|
||||
# moving from 2.6.12 to 2.6.12-git1
|
||||
$ cd ~/linux-2.6.12 # change to the kernel source dir
|
||||
$ patch -p1 < ../patch-2.6.12-git1 # apply the 2.6.12-git1 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.12-git1 # rename the kernel source dir
|
||||
|
||||
# moving from 2.6.12-git1 to 2.6.13-rc2-git3
|
||||
$ cd ~/linux-2.6.12-git1 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12-git1 # revert the 2.6.12-git1 patch
|
||||
# we now have a 2.6.12 kernel
|
||||
$ patch -p1 < ../patch-2.6.13-rc2 # apply the 2.6.13-rc2 patch
|
||||
# the kernel is now 2.6.13-rc2
|
||||
$ patch -p1 < ../patch-2.6.13-rc2-git3 # apply the 2.6.13-rc2-git3 patch
|
||||
# the kernel is now 2.6.13-rc2-git3
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12-git1 linux-2.6.13-rc2-git3 # rename source dir
|
||||
|
||||
|
||||
The -mm kernels
|
||||
---
|
||||
These are experimental kernels released by Andrew Morton.
|
||||
===============
|
||||
|
||||
These are experimental kernels released by Andrew Morton.
|
||||
|
||||
The -mm tree serves as a sort of proving ground for new features and other
|
||||
experimental patches.
|
||||
|
||||
Once a patch has proved its worth in -mm for a while Andrew pushes it on to
|
||||
Linus for inclusion in mainline.
|
||||
|
||||
Although it's encouraged that patches flow to Linus via the -mm tree, this
|
||||
is not always enforced.
|
||||
|
||||
Subsystem maintainers (or individuals) sometimes push their patches directly
|
||||
to Linus, even though (or after) they have been merged and tested in -mm (or
|
||||
sometimes even without prior testing in -mm).
|
||||
|
@ -417,31 +480,35 @@ Testing of -mm kernels is greatly appreciated since the whole point of the
|
|||
tree is to weed out regressions, crashes, data corruption bugs, build
|
||||
breakage (and any other bug in general) before changes are merged into the
|
||||
more stable mainline Linus tree.
|
||||
|
||||
But testers of -mm should be aware that breakage in this tree is more common
|
||||
than in any other tree.
|
||||
|
||||
The -mm kernels are not released on a fixed schedule, but usually a few -mm
|
||||
kernels are released in between each -rc kernel (1 to 3 is common).
|
||||
|
||||
The -mm kernels apply to either a base 2.6.x kernel (when no -rc kernels
|
||||
have been released yet) or to a Linus -rc kernel.
|
||||
|
||||
Here are some examples of applying the -mm patches:
|
||||
|
||||
# moving from 2.6.12 to 2.6.12-mm1
|
||||
$ cd ~/linux-2.6.12 # change to the 2.6.12 source dir
|
||||
$ patch -p1 < ../2.6.12-mm1 # apply the 2.6.12-mm1 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.12-mm1 # rename the source appropriately
|
||||
::
|
||||
|
||||
# moving from 2.6.12-mm1 to 2.6.13-rc3-mm3
|
||||
$ cd ~/linux-2.6.12-mm1
|
||||
$ patch -p1 -R < ../2.6.12-mm1 # revert the 2.6.12-mm1 patch
|
||||
# we now have a 2.6.12 source
|
||||
$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
|
||||
# we now have a 2.6.13-rc3 source
|
||||
$ patch -p1 < ../2.6.13-rc3-mm3 # apply the 2.6.13-rc3-mm3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12-mm1 linux-2.6.13-rc3-mm3 # rename the source dir
|
||||
# moving from 2.6.12 to 2.6.12-mm1
|
||||
$ cd ~/linux-2.6.12 # change to the 2.6.12 source dir
|
||||
$ patch -p1 < ../2.6.12-mm1 # apply the 2.6.12-mm1 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.12-mm1 # rename the source appropriately
|
||||
|
||||
# moving from 2.6.12-mm1 to 2.6.13-rc3-mm3
|
||||
$ cd ~/linux-2.6.12-mm1
|
||||
$ patch -p1 -R < ../2.6.12-mm1 # revert the 2.6.12-mm1 patch
|
||||
# we now have a 2.6.12 source
|
||||
$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
|
||||
# we now have a 2.6.13-rc3 source
|
||||
$ patch -p1 < ../2.6.13-rc3-mm3 # apply the 2.6.13-rc3-mm3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12-mm1 linux-2.6.13-rc3-mm3 # rename the source dir
|
||||
|
||||
|
||||
This concludes this list of explanations of the various kernel trees.
|
||||
|
|
Loading…
Reference in New Issue