btrfs: stop allocation a btrfs_io_context for simple I/O

The I/O context structure is only used to pass the btrfs_device to
the end I/O handler for I/Os that go to a single device.

Stop allocating the I/O context for these cases by passing the optional
btrfs_io_stripe argument to __btrfs_map_block to query the mapping
information and then using a fast path submission and I/O completion
handler.  As the old btrfs_io_context based I/O submission path is
only used for mirrored writes, rename the functions to make that
clear and stop setting the btrfs_bio device and mirror_num field
that is only used for reads.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
Christoph Hellwig 2022-08-06 10:03:30 +02:00 committed by David Sterba
parent 03793cbbc8
commit 928ff3beb8
1 changed files with 57 additions and 37 deletions

View File

@ -6706,11 +6706,12 @@ static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
}
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_io_context *bioc)
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
struct bio *bio)
{
if (bioc->orig_bio->bi_opf & REQ_META)
return bioc->fs_info->endio_meta_workers;
return bioc->fs_info->endio_workers;
if (bio->bi_opf & REQ_META)
return fs_info->endio_meta_workers;
return fs_info->endio_workers;
}
static void btrfs_end_bio_work(struct work_struct *work)
@ -6721,6 +6722,24 @@ static void btrfs_end_bio_work(struct work_struct *work)
bbio->end_io(bbio);
}
static void btrfs_simple_end_io(struct bio *bio)
{
struct btrfs_fs_info *fs_info = bio->bi_private;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(fs_info);
if (bio->bi_status)
btrfs_log_dev_io_error(bio, bbio->device);
if (bio_op(bio) == REQ_OP_READ) {
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
} else {
bbio->end_io(bbio);
}
}
static void btrfs_raid56_end_io(struct bio *bio)
{
struct btrfs_io_context *bioc = bio->bi_private;
@ -6733,7 +6752,7 @@ static void btrfs_raid56_end_io(struct bio *bio)
btrfs_put_bioc(bioc);
}
static void btrfs_end_bio(struct bio *bio)
static void btrfs_orig_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
struct btrfs_io_context *bioc = stripe->bioc;
@ -6746,8 +6765,6 @@ static void btrfs_end_bio(struct bio *bio)
btrfs_log_dev_io_error(bio, stripe->dev);
}
bbio->mirror_num = bioc->mirror_num;
/*
* Only send an error to the higher layers if it is beyond the tolerance
* threshold.
@ -6757,13 +6774,7 @@ static void btrfs_end_bio(struct bio *bio)
else
bio->bi_status = BLK_STS_OK;
if (btrfs_op(bio) == BTRFS_MAP_READ) {
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
queue_work(btrfs_end_io_wq(bioc), &bbio->end_io_work);
} else {
bbio->end_io(bbio);
}
bbio->end_io(bbio);
btrfs_put_bioc(bioc);
}
@ -6820,15 +6831,16 @@ static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
submit_bio(bio);
}
static void submit_stripe_bio(struct btrfs_io_context *bioc, int dev_nr)
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
{
struct bio *orig_bio = bioc->orig_bio, *bio;
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
if (dev_nr == bioc->num_stripes - 1) {
bio = orig_bio;
btrfs_bio(bio)->device = bioc->stripes[dev_nr].dev;
bio->bi_end_io = btrfs_end_bio;
bio->bi_end_io = btrfs_orig_write_end_io;
} else {
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
bio_inc_remaining(orig_bio);
@ -6846,34 +6858,19 @@ void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror
u64 logical = bio->bi_iter.bi_sector << 9;
u64 length = bio->bi_iter.bi_size;
u64 map_length = length;
int ret;
int dev_nr;
int total_devs;
struct btrfs_io_context *bioc = NULL;
struct btrfs_io_stripe smap;
int ret;
btrfs_bio_counter_inc_blocked(fs_info);
ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
&bioc, NULL, &mirror_num, 1);
&bioc, &smap, &mirror_num, 1);
if (ret) {
btrfs_bio_counter_dec(fs_info);
btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
return;
}
total_devs = bioc->num_stripes;
bioc->orig_bio = bio;
if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
bio->bi_private = bioc;
bio->bi_end_io = btrfs_raid56_end_io;
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
raid56_parity_write(bio, bioc);
else
raid56_parity_recover(bio, bioc, mirror_num);
return;
}
if (map_length < length) {
btrfs_crit(fs_info,
"mapping failed logical %llu bio len %llu len %llu",
@ -6881,8 +6878,31 @@ void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror
BUG();
}
for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
submit_stripe_bio(bioc, dev_nr);
if (!bioc) {
/* Single mirror read/write fast path */
btrfs_bio(bio)->mirror_num = mirror_num;
btrfs_bio(bio)->device = smap.dev;
bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
bio->bi_private = fs_info;
bio->bi_end_io = btrfs_simple_end_io;
btrfs_submit_dev_bio(smap.dev, bio);
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
/* Parity RAID write or read recovery */
bio->bi_private = bioc;
bio->bi_end_io = btrfs_raid56_end_io;
if (bio_op(bio) == REQ_OP_READ)
raid56_parity_recover(bio, bioc, mirror_num);
else
raid56_parity_write(bio, bioc);
} else {
/* Write to multiple mirrors */
int total_devs = bioc->num_stripes;
int dev_nr;
bioc->orig_bio = bio;
for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
btrfs_submit_mirrored_bio(bioc, dev_nr);
}
}
static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,