sched/deadline: Track the "total rq utilization" too
The total rq utilization is defined as the sum of the utilisations of tasks that are "assigned" to a runqueue, independently from their state (TASK_RUNNING or blocked) Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it> Signed-off-by: Claudio Scordino <claudio@evidence.eu.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it> Link: http://lkml.kernel.org/r/1495138417-6203-8-git-send-email-luca.abeni@santannapisa.it Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
2d4283e9d5
commit
8fd27231c3
|
@ -51,6 +51,7 @@ void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
|||
lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
|
||||
dl_rq->running_bw += dl_bw;
|
||||
SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
|
||||
SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
|
||||
}
|
||||
|
||||
static inline
|
||||
|
@ -65,25 +66,52 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
|||
dl_rq->running_bw = 0;
|
||||
}
|
||||
|
||||
static inline
|
||||
void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
||||
{
|
||||
u64 old = dl_rq->this_bw;
|
||||
|
||||
lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
|
||||
dl_rq->this_bw += dl_bw;
|
||||
SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
|
||||
}
|
||||
|
||||
static inline
|
||||
void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
|
||||
{
|
||||
u64 old = dl_rq->this_bw;
|
||||
|
||||
lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
|
||||
dl_rq->this_bw -= dl_bw;
|
||||
SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
|
||||
if (dl_rq->this_bw > old)
|
||||
dl_rq->this_bw = 0;
|
||||
SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
|
||||
}
|
||||
|
||||
void dl_change_utilization(struct task_struct *p, u64 new_bw)
|
||||
{
|
||||
struct rq *rq;
|
||||
|
||||
if (task_on_rq_queued(p))
|
||||
return;
|
||||
|
||||
if (!p->dl.dl_non_contending)
|
||||
return;
|
||||
|
||||
sub_running_bw(p->dl.dl_bw, &task_rq(p)->dl);
|
||||
p->dl.dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
rq = task_rq(p);
|
||||
if (p->dl.dl_non_contending) {
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
p->dl.dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
}
|
||||
sub_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
add_rq_bw(new_bw, &rq->dl);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -178,6 +206,8 @@ static void task_non_contending(struct task_struct *p)
|
|||
if (!dl_task(p) || p->state == TASK_DEAD) {
|
||||
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
|
||||
|
||||
if (p->state == TASK_DEAD)
|
||||
sub_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
raw_spin_lock(&dl_b->lock);
|
||||
__dl_clear(dl_b, p->dl.dl_bw);
|
||||
__dl_clear_params(p);
|
||||
|
@ -192,7 +222,7 @@ static void task_non_contending(struct task_struct *p)
|
|||
hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
|
||||
}
|
||||
|
||||
static void task_contending(struct sched_dl_entity *dl_se)
|
||||
static void task_contending(struct sched_dl_entity *dl_se, int flags)
|
||||
{
|
||||
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
|
||||
|
||||
|
@ -203,6 +233,9 @@ static void task_contending(struct sched_dl_entity *dl_se)
|
|||
if (dl_se->dl_runtime == 0)
|
||||
return;
|
||||
|
||||
if (flags & ENQUEUE_MIGRATED)
|
||||
add_rq_bw(dl_se->dl_bw, dl_rq);
|
||||
|
||||
if (dl_se->dl_non_contending) {
|
||||
dl_se->dl_non_contending = 0;
|
||||
/*
|
||||
|
@ -268,6 +301,7 @@ void init_dl_rq(struct dl_rq *dl_rq)
|
|||
#endif
|
||||
|
||||
dl_rq->running_bw = 0;
|
||||
dl_rq->this_bw = 0;
|
||||
init_dl_rq_bw_ratio(dl_rq);
|
||||
}
|
||||
|
||||
|
@ -1042,6 +1076,7 @@ static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
|
|||
|
||||
if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
|
||||
sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
|
||||
sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
|
||||
dl_se->dl_non_contending = 0;
|
||||
}
|
||||
|
||||
|
@ -1207,7 +1242,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
|
|||
* we want a replenishment of its runtime.
|
||||
*/
|
||||
if (flags & ENQUEUE_WAKEUP) {
|
||||
task_contending(dl_se);
|
||||
task_contending(dl_se, flags);
|
||||
update_dl_entity(dl_se, pi_se);
|
||||
} else if (flags & ENQUEUE_REPLENISH) {
|
||||
replenish_dl_entity(dl_se, pi_se);
|
||||
|
@ -1260,8 +1295,10 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
|||
if (!p->dl.dl_throttled && dl_is_constrained(&p->dl))
|
||||
dl_check_constrained_dl(&p->dl);
|
||||
|
||||
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE)
|
||||
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
|
||||
add_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
add_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
}
|
||||
|
||||
/*
|
||||
* If p is throttled, we do not enqueue it. In fact, if it exhausted
|
||||
|
@ -1277,7 +1314,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
|||
*/
|
||||
if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
|
||||
if (flags & ENQUEUE_WAKEUP)
|
||||
task_contending(&p->dl);
|
||||
task_contending(&p->dl, flags);
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -1299,8 +1336,10 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
|
|||
update_curr_dl(rq);
|
||||
__dequeue_task_dl(rq, p, flags);
|
||||
|
||||
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE)
|
||||
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
sub_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
}
|
||||
|
||||
/*
|
||||
* This check allows to start the inactive timer (or to immediately
|
||||
|
@ -1394,7 +1433,7 @@ static void migrate_task_rq_dl(struct task_struct *p)
|
|||
{
|
||||
struct rq *rq;
|
||||
|
||||
if (!(p->state == TASK_WAKING) || !(p->dl.dl_non_contending))
|
||||
if (p->state != TASK_WAKING)
|
||||
return;
|
||||
|
||||
rq = task_rq(p);
|
||||
|
@ -1404,18 +1443,20 @@ static void migrate_task_rq_dl(struct task_struct *p)
|
|||
* rq->lock is not... So, lock it
|
||||
*/
|
||||
raw_spin_lock(&rq->lock);
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
p->dl.dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
|
||||
if (p->dl.dl_non_contending) {
|
||||
sub_running_bw(p->dl.dl_bw, &rq->dl);
|
||||
p->dl.dl_non_contending = 0;
|
||||
/*
|
||||
* If the timer handler is currently running and the
|
||||
* timer cannot be cancelled, inactive_task_timer()
|
||||
* will see that dl_not_contending is not set, and
|
||||
* will not touch the rq's active utilization,
|
||||
* so we are still safe.
|
||||
*/
|
||||
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
|
||||
put_task_struct(p);
|
||||
}
|
||||
sub_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
|
@ -1858,7 +1899,9 @@ retry:
|
|||
|
||||
deactivate_task(rq, next_task, 0);
|
||||
sub_running_bw(next_task->dl.dl_bw, &rq->dl);
|
||||
sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
|
||||
set_task_cpu(next_task, later_rq->cpu);
|
||||
add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
|
||||
add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
|
||||
activate_task(later_rq, next_task, 0);
|
||||
ret = 1;
|
||||
|
@ -1948,7 +1991,9 @@ static void pull_dl_task(struct rq *this_rq)
|
|||
|
||||
deactivate_task(src_rq, p, 0);
|
||||
sub_running_bw(p->dl.dl_bw, &src_rq->dl);
|
||||
sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
|
||||
set_task_cpu(p, this_cpu);
|
||||
add_rq_bw(p->dl.dl_bw, &this_rq->dl);
|
||||
add_running_bw(p->dl.dl_bw, &this_rq->dl);
|
||||
activate_task(this_rq, p, 0);
|
||||
dmin = p->dl.deadline;
|
||||
|
@ -2057,6 +2102,9 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
|
|||
if (task_on_rq_queued(p) && p->dl.dl_runtime)
|
||||
task_non_contending(p);
|
||||
|
||||
if (!task_on_rq_queued(p))
|
||||
sub_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
|
||||
/*
|
||||
* We cannot use inactive_task_timer() to invoke sub_running_bw()
|
||||
* at the 0-lag time, because the task could have been migrated
|
||||
|
@ -2086,9 +2134,11 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
|
|||
put_task_struct(p);
|
||||
|
||||
/* If p is not queued we will update its parameters at next wakeup. */
|
||||
if (!task_on_rq_queued(p))
|
||||
return;
|
||||
if (!task_on_rq_queued(p)) {
|
||||
add_rq_bw(p->dl.dl_bw, &rq->dl);
|
||||
|
||||
return;
|
||||
}
|
||||
/*
|
||||
* If p is boosted we already updated its params in
|
||||
* rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
|
||||
|
|
|
@ -566,6 +566,17 @@ struct dl_rq {
|
|||
*/
|
||||
u64 running_bw;
|
||||
|
||||
/*
|
||||
* Utilization of the tasks "assigned" to this runqueue (including
|
||||
* the tasks that are in runqueue and the tasks that executed on this
|
||||
* CPU and blocked). Increased when a task moves to this runqueue, and
|
||||
* decreased when the task moves away (migrates, changes scheduling
|
||||
* policy, or terminates).
|
||||
* This is needed to compute the "inactive utilization" for the
|
||||
* runqueue (inactive utilization = this_bw - running_bw).
|
||||
*/
|
||||
u64 this_bw;
|
||||
|
||||
/*
|
||||
* Inverse of the fraction of CPU utilization that can be reclaimed
|
||||
* by the GRUB algorithm.
|
||||
|
|
Loading…
Reference in New Issue