sched: make double-lock-balance fair

double_lock balance() currently favors logically lower cpus since they
often do not have to release their own lock to acquire a second lock.
The result is that logically higher cpus can get starved when there is
a lot of pressure on the RQs.  This can result in higher latencies on
higher cpu-ids.

This patch makes the algorithm more fair by forcing all paths to have
to release both locks before acquiring them again.  Since callsites to
double_lock_balance already consider it a potential preemption/reschedule
point, they have the proper logic to recheck for atomicity violations.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
This commit is contained in:
Gregory Haskins 2008-12-29 09:39:51 -05:00
parent 7e96fa5875
commit 8f45e2b516
1 changed files with 44 additions and 7 deletions

View File

@ -1608,21 +1608,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
#endif
#ifdef CONFIG_PREEMPT
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
* fair double_lock_balance: Safely acquires both rq->locks in a fair
* way at the expense of forcing extra atomic operations in all
* invocations. This assures that the double_lock is acquired using the
* same underlying policy as the spinlock_t on this architecture, which
* reduces latency compared to the unfair variant below. However, it
* also adds more overhead and therefore may reduce throughput.
*/
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
spin_unlock(&this_rq->lock);
double_rq_lock(this_rq, busiest);
return 1;
}
#else
/*
* Unfair double_lock_balance: Optimizes throughput at the expense of
* latency by eliminating extra atomic operations when the locks are
* already in proper order on entry. This favors lower cpu-ids and will
* grant the double lock to lower cpus over higher ids under contention,
* regardless of entry order into the function.
*/
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
spin_unlock(&this_rq->lock);
BUG_ON(1);
}
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
@ -1635,6 +1656,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
return ret;
}
#endif /* CONFIG_PREEMPT */
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
spin_unlock(&this_rq->lock);
BUG_ON(1);
}
return _double_lock_balance(this_rq, busiest);
}
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{