Merge branches 'doc.2019.10.29a', 'fixes.2019.10.30a', 'nohz.2019.10.28a', 'replace.2019.10.30a', 'torture.2019.10.05a' and 'lkmm.2019.10.05a' into HEAD
doc.2019.10.29a: RCU documentation updates. fixes.2019.10.30a: RCU miscellaneous fixes. nohz.2019.10.28a: RCU NO_HZ and NO_HZ_FULL updates. replace.2019.10.30a: Replace rcu_swap_protected() with rcu_replace(). torture.2019.10.05a: RCU torture-test updates. lkmm.2019.10.05a: Linux kernel memory model updates.
This commit is contained in:
commit
8dcdfb7096
|
@ -416,8 +416,8 @@ int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
|
|||
*filter = tmp;
|
||||
|
||||
mutex_lock(&kvm->lock);
|
||||
rcu_swap_protected(kvm->arch.pmu_event_filter, filter,
|
||||
mutex_is_locked(&kvm->lock));
|
||||
filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
|
||||
mutex_is_locked(&kvm->lock));
|
||||
mutex_unlock(&kvm->lock);
|
||||
|
||||
synchronize_srcu_expedited(&kvm->srcu);
|
||||
|
|
|
@ -1629,7 +1629,7 @@ replace:
|
|||
i915_gem_context_set_user_engines(ctx);
|
||||
else
|
||||
i915_gem_context_clear_user_engines(ctx);
|
||||
rcu_swap_protected(ctx->engines, set.engines, 1);
|
||||
set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
|
||||
mutex_unlock(&ctx->engines_mutex);
|
||||
|
||||
call_rcu(&set.engines->rcu, free_engines_rcu);
|
||||
|
|
|
@ -434,8 +434,8 @@ static void scsi_update_vpd_page(struct scsi_device *sdev, u8 page,
|
|||
return;
|
||||
|
||||
mutex_lock(&sdev->inquiry_mutex);
|
||||
rcu_swap_protected(*sdev_vpd_buf, vpd_buf,
|
||||
lockdep_is_held(&sdev->inquiry_mutex));
|
||||
vpd_buf = rcu_replace_pointer(*sdev_vpd_buf, vpd_buf,
|
||||
lockdep_is_held(&sdev->inquiry_mutex));
|
||||
mutex_unlock(&sdev->inquiry_mutex);
|
||||
|
||||
if (vpd_buf)
|
||||
|
|
|
@ -466,10 +466,10 @@ static void scsi_device_dev_release_usercontext(struct work_struct *work)
|
|||
sdev->request_queue = NULL;
|
||||
|
||||
mutex_lock(&sdev->inquiry_mutex);
|
||||
rcu_swap_protected(sdev->vpd_pg80, vpd_pg80,
|
||||
lockdep_is_held(&sdev->inquiry_mutex));
|
||||
rcu_swap_protected(sdev->vpd_pg83, vpd_pg83,
|
||||
lockdep_is_held(&sdev->inquiry_mutex));
|
||||
vpd_pg80 = rcu_replace_pointer(sdev->vpd_pg80, vpd_pg80,
|
||||
lockdep_is_held(&sdev->inquiry_mutex));
|
||||
vpd_pg83 = rcu_replace_pointer(sdev->vpd_pg83, vpd_pg83,
|
||||
lockdep_is_held(&sdev->inquiry_mutex));
|
||||
mutex_unlock(&sdev->inquiry_mutex);
|
||||
|
||||
if (vpd_pg83)
|
||||
|
|
|
@ -279,8 +279,8 @@ struct afs_vlserver_list *afs_extract_vlserver_list(struct afs_cell *cell,
|
|||
struct afs_addr_list *old = addrs;
|
||||
|
||||
write_lock(&server->lock);
|
||||
rcu_swap_protected(server->addresses, old,
|
||||
lockdep_is_held(&server->lock));
|
||||
old = rcu_replace_pointer(server->addresses, old,
|
||||
lockdep_is_held(&server->lock));
|
||||
write_unlock(&server->lock);
|
||||
afs_put_addrlist(old);
|
||||
}
|
||||
|
|
|
@ -24,34 +24,6 @@ static inline struct hlist_bl_node *hlist_bl_first_rcu(struct hlist_bl_head *h)
|
|||
((unsigned long)rcu_dereference_check(h->first, hlist_bl_is_locked(h)) & ~LIST_BL_LOCKMASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* hlist_bl_del_init_rcu - deletes entry from hash list with re-initialization
|
||||
* @n: the element to delete from the hash list.
|
||||
*
|
||||
* Note: hlist_bl_unhashed() on the node returns true after this. It is
|
||||
* useful for RCU based read lockfree traversal if the writer side
|
||||
* must know if the list entry is still hashed or already unhashed.
|
||||
*
|
||||
* In particular, it means that we can not poison the forward pointers
|
||||
* that may still be used for walking the hash list and we can only
|
||||
* zero the pprev pointer so list_unhashed() will return true after
|
||||
* this.
|
||||
*
|
||||
* The caller must take whatever precautions are necessary (such as
|
||||
* holding appropriate locks) to avoid racing with another
|
||||
* list-mutation primitive, such as hlist_bl_add_head_rcu() or
|
||||
* hlist_bl_del_rcu(), running on this same list. However, it is
|
||||
* perfectly legal to run concurrently with the _rcu list-traversal
|
||||
* primitives, such as hlist_bl_for_each_entry_rcu().
|
||||
*/
|
||||
static inline void hlist_bl_del_init_rcu(struct hlist_bl_node *n)
|
||||
{
|
||||
if (!hlist_bl_unhashed(n)) {
|
||||
__hlist_bl_del(n);
|
||||
n->pprev = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* hlist_bl_del_rcu - deletes entry from hash list without re-initialization
|
||||
* @n: the element to delete from the hash list.
|
||||
|
|
|
@ -382,6 +382,24 @@ do { \
|
|||
smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
* rcu_replace_pointer() - replace an RCU pointer, returning its old value
|
||||
* @rcu_ptr: RCU pointer, whose old value is returned
|
||||
* @ptr: regular pointer
|
||||
* @c: the lockdep conditions under which the dereference will take place
|
||||
*
|
||||
* Perform a replacement, where @rcu_ptr is an RCU-annotated
|
||||
* pointer and @c is the lockdep argument that is passed to the
|
||||
* rcu_dereference_protected() call used to read that pointer. The old
|
||||
* value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
|
||||
*/
|
||||
#define rcu_replace_pointer(rcu_ptr, ptr, c) \
|
||||
({ \
|
||||
typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
|
||||
rcu_assign_pointer((rcu_ptr), (ptr)); \
|
||||
__tmp; \
|
||||
})
|
||||
|
||||
/**
|
||||
* rcu_swap_protected() - swap an RCU and a regular pointer
|
||||
* @rcu_ptr: RCU pointer
|
||||
|
|
|
@ -84,6 +84,7 @@ static inline void rcu_scheduler_starting(void) { }
|
|||
#endif /* #else #ifndef CONFIG_SRCU */
|
||||
static inline void rcu_end_inkernel_boot(void) { }
|
||||
static inline bool rcu_is_watching(void) { return true; }
|
||||
static inline void rcu_momentary_dyntick_idle(void) { }
|
||||
|
||||
/* Avoid RCU read-side critical sections leaking across. */
|
||||
static inline void rcu_all_qs(void) { barrier(); }
|
||||
|
|
|
@ -37,6 +37,7 @@ void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func);
|
|||
|
||||
void rcu_barrier(void);
|
||||
bool rcu_eqs_special_set(int cpu);
|
||||
void rcu_momentary_dyntick_idle(void);
|
||||
unsigned long get_state_synchronize_rcu(void);
|
||||
void cond_synchronize_rcu(unsigned long oldstate);
|
||||
|
||||
|
|
|
@ -108,7 +108,8 @@ enum tick_dep_bits {
|
|||
TICK_DEP_BIT_POSIX_TIMER = 0,
|
||||
TICK_DEP_BIT_PERF_EVENTS = 1,
|
||||
TICK_DEP_BIT_SCHED = 2,
|
||||
TICK_DEP_BIT_CLOCK_UNSTABLE = 3
|
||||
TICK_DEP_BIT_CLOCK_UNSTABLE = 3,
|
||||
TICK_DEP_BIT_RCU = 4
|
||||
};
|
||||
|
||||
#define TICK_DEP_MASK_NONE 0
|
||||
|
@ -116,6 +117,7 @@ enum tick_dep_bits {
|
|||
#define TICK_DEP_MASK_PERF_EVENTS (1 << TICK_DEP_BIT_PERF_EVENTS)
|
||||
#define TICK_DEP_MASK_SCHED (1 << TICK_DEP_BIT_SCHED)
|
||||
#define TICK_DEP_MASK_CLOCK_UNSTABLE (1 << TICK_DEP_BIT_CLOCK_UNSTABLE)
|
||||
#define TICK_DEP_MASK_RCU (1 << TICK_DEP_BIT_RCU)
|
||||
|
||||
#ifdef CONFIG_NO_HZ_COMMON
|
||||
extern bool tick_nohz_enabled;
|
||||
|
@ -268,6 +270,9 @@ static inline bool tick_nohz_full_enabled(void) { return false; }
|
|||
static inline bool tick_nohz_full_cpu(int cpu) { return false; }
|
||||
static inline void tick_nohz_full_add_cpus_to(struct cpumask *mask) { }
|
||||
|
||||
static inline void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) { }
|
||||
static inline void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) { }
|
||||
|
||||
static inline void tick_dep_set(enum tick_dep_bits bit) { }
|
||||
static inline void tick_dep_clear(enum tick_dep_bits bit) { }
|
||||
static inline void tick_dep_set_cpu(int cpu, enum tick_dep_bits bit) { }
|
||||
|
|
|
@ -93,16 +93,16 @@ TRACE_EVENT_RCU(rcu_grace_period,
|
|||
* the data from the rcu_node structure, other than rcuname, which comes
|
||||
* from the rcu_state structure, and event, which is one of the following:
|
||||
*
|
||||
* "Startleaf": Request a grace period based on leaf-node data.
|
||||
* "Cleanup": Clean up rcu_node structure after previous GP.
|
||||
* "CleanupMore": Clean up, and another GP is needed.
|
||||
* "EndWait": Complete wait.
|
||||
* "NoGPkthread": The RCU grace-period kthread has not yet started.
|
||||
* "Prestarted": Someone beat us to the request
|
||||
* "Startedleaf": Leaf node marked for future GP.
|
||||
* "Startedleafroot": All nodes from leaf to root marked for future GP.
|
||||
* "Startedroot": Requested a nocb grace period based on root-node data.
|
||||
* "NoGPkthread": The RCU grace-period kthread has not yet started.
|
||||
* "Startleaf": Request a grace period based on leaf-node data.
|
||||
* "StartWait": Start waiting for the requested grace period.
|
||||
* "EndWait": Complete wait.
|
||||
* "Cleanup": Clean up rcu_node structure after previous GP.
|
||||
* "CleanupMore": Clean up, and another GP is needed.
|
||||
*/
|
||||
TRACE_EVENT_RCU(rcu_future_grace_period,
|
||||
|
||||
|
@ -258,20 +258,27 @@ TRACE_EVENT_RCU(rcu_exp_funnel_lock,
|
|||
* the number of the offloaded CPU are extracted. The third and final
|
||||
* argument is a string as follows:
|
||||
*
|
||||
* "WakeEmpty": Wake rcuo kthread, first CB to empty list.
|
||||
* "WakeEmptyIsDeferred": Wake rcuo kthread later, first CB to empty list.
|
||||
* "WakeOvf": Wake rcuo kthread, CB list is huge.
|
||||
* "WakeOvfIsDeferred": Wake rcuo kthread later, CB list is huge.
|
||||
* "WakeNot": Don't wake rcuo kthread.
|
||||
* "WakeNotPoll": Don't wake rcuo kthread because it is polling.
|
||||
* "DeferredWake": Carried out the "IsDeferred" wakeup.
|
||||
* "Poll": Start of new polling cycle for rcu_nocb_poll.
|
||||
* "Sleep": Sleep waiting for GP for !rcu_nocb_poll.
|
||||
* "CBSleep": Sleep waiting for CBs for !rcu_nocb_poll.
|
||||
* "WokeEmpty": rcuo kthread woke to find empty list.
|
||||
* "WokeNonEmpty": rcuo kthread woke to find non-empty list.
|
||||
* "WaitQueue": Enqueue partially done, timed wait for it to complete.
|
||||
* "WokeQueue": Partial enqueue now complete.
|
||||
* "AlreadyAwake": The to-be-awakened rcuo kthread is already awake.
|
||||
* "Bypass": rcuo GP kthread sees non-empty ->nocb_bypass.
|
||||
* "CBSleep": rcuo CB kthread sleeping waiting for CBs.
|
||||
* "Check": rcuo GP kthread checking specified CPU for work.
|
||||
* "DeferredWake": Timer expired or polled check, time to wake.
|
||||
* "DoWake": The to-be-awakened rcuo kthread needs to be awakened.
|
||||
* "EndSleep": Done waiting for GP for !rcu_nocb_poll.
|
||||
* "FirstBQ": New CB to empty ->nocb_bypass (->cblist maybe non-empty).
|
||||
* "FirstBQnoWake": FirstBQ plus rcuo kthread need not be awakened.
|
||||
* "FirstBQwake": FirstBQ plus rcuo kthread must be awakened.
|
||||
* "FirstQ": New CB to empty ->cblist (->nocb_bypass maybe non-empty).
|
||||
* "NeedWaitGP": rcuo GP kthread must wait on a grace period.
|
||||
* "Poll": Start of new polling cycle for rcu_nocb_poll.
|
||||
* "Sleep": Sleep waiting for GP for !rcu_nocb_poll.
|
||||
* "Timer": Deferred-wake timer expired.
|
||||
* "WakeEmptyIsDeferred": Wake rcuo kthread later, first CB to empty list.
|
||||
* "WakeEmpty": Wake rcuo kthread, first CB to empty list.
|
||||
* "WakeNot": Don't wake rcuo kthread.
|
||||
* "WakeNotPoll": Don't wake rcuo kthread because it is polling.
|
||||
* "WakeOvfIsDeferred": Wake rcuo kthread later, CB list is huge.
|
||||
* "WokeEmpty": rcuo CB kthread woke to find empty list.
|
||||
*/
|
||||
TRACE_EVENT_RCU(rcu_nocb_wake,
|
||||
|
||||
|
@ -713,8 +720,6 @@ TRACE_EVENT_RCU(rcu_torture_read,
|
|||
* "Begin": rcu_barrier() started.
|
||||
* "EarlyExit": rcu_barrier() piggybacked, thus early exit.
|
||||
* "Inc1": rcu_barrier() piggyback check counter incremented.
|
||||
* "OfflineNoCB": rcu_barrier() found callback on never-online CPU
|
||||
* "OnlineNoCB": rcu_barrier() found online no-CBs CPU.
|
||||
* "OnlineQ": rcu_barrier() found online CPU with callbacks.
|
||||
* "OnlineNQ": rcu_barrier() found online CPU, no callbacks.
|
||||
* "IRQ": An rcu_barrier_callback() callback posted on remote CPU.
|
||||
|
|
|
@ -367,7 +367,8 @@ TRACE_EVENT(itimer_expire,
|
|||
tick_dep_name(POSIX_TIMER) \
|
||||
tick_dep_name(PERF_EVENTS) \
|
||||
tick_dep_name(SCHED) \
|
||||
tick_dep_name_end(CLOCK_UNSTABLE)
|
||||
tick_dep_name(CLOCK_UNSTABLE) \
|
||||
tick_dep_name_end(RCU)
|
||||
|
||||
#undef tick_dep_name
|
||||
#undef tick_dep_mask_name
|
||||
|
|
|
@ -180,8 +180,8 @@ static void activate_effective_progs(struct cgroup *cgrp,
|
|||
enum bpf_attach_type type,
|
||||
struct bpf_prog_array *old_array)
|
||||
{
|
||||
rcu_swap_protected(cgrp->bpf.effective[type], old_array,
|
||||
lockdep_is_held(&cgroup_mutex));
|
||||
old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
|
||||
lockdep_is_held(&cgroup_mutex));
|
||||
/* free prog array after grace period, since __cgroup_bpf_run_*()
|
||||
* might be still walking the array
|
||||
*/
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
#include <linux/kthread.h>
|
||||
#include <linux/sched/rt.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/rwlock.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/smp.h>
|
||||
|
@ -889,16 +888,16 @@ static int __init lock_torture_init(void)
|
|||
cxt.nrealwriters_stress = 2 * num_online_cpus();
|
||||
|
||||
#ifdef CONFIG_DEBUG_MUTEXES
|
||||
if (strncmp(torture_type, "mutex", 5) == 0)
|
||||
if (str_has_prefix(torture_type, "mutex"))
|
||||
cxt.debug_lock = true;
|
||||
#endif
|
||||
#ifdef CONFIG_DEBUG_RT_MUTEXES
|
||||
if (strncmp(torture_type, "rtmutex", 7) == 0)
|
||||
if (str_has_prefix(torture_type, "rtmutex"))
|
||||
cxt.debug_lock = true;
|
||||
#endif
|
||||
#ifdef CONFIG_DEBUG_SPINLOCK
|
||||
if ((strncmp(torture_type, "spin", 4) == 0) ||
|
||||
(strncmp(torture_type, "rw_lock", 7) == 0))
|
||||
if ((str_has_prefix(torture_type, "spin")) ||
|
||||
(str_has_prefix(torture_type, "rw_lock")))
|
||||
cxt.debug_lock = true;
|
||||
#endif
|
||||
|
||||
|
|
|
@ -299,6 +299,8 @@ static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
|
|||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < RCU_NUM_LVLS; i++)
|
||||
levelspread[i] = INT_MIN;
|
||||
if (rcu_fanout_exact) {
|
||||
levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
|
||||
for (i = rcu_num_lvls - 2; i >= 0; i--)
|
||||
|
@ -455,7 +457,6 @@ enum rcutorture_type {
|
|||
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
|
||||
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
|
||||
unsigned long *gp_seq);
|
||||
void rcutorture_record_progress(unsigned long vernum);
|
||||
void do_trace_rcu_torture_read(const char *rcutorturename,
|
||||
struct rcu_head *rhp,
|
||||
unsigned long secs,
|
||||
|
@ -468,7 +469,6 @@ static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
|
|||
*flags = 0;
|
||||
*gp_seq = 0;
|
||||
}
|
||||
static inline void rcutorture_record_progress(unsigned long vernum) { }
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
void do_trace_rcu_torture_read(const char *rcutorturename,
|
||||
struct rcu_head *rhp,
|
||||
|
|
|
@ -88,7 +88,7 @@ struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
|
|||
}
|
||||
|
||||
/* Set the length of an rcu_segcblist structure. */
|
||||
void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
|
||||
static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
|
||||
{
|
||||
#ifdef CONFIG_RCU_NOCB_CPU
|
||||
atomic_long_set(&rsclp->len, v);
|
||||
|
@ -104,7 +104,7 @@ void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
|
|||
* This increase is fully ordered with respect to the callers accesses
|
||||
* both before and after.
|
||||
*/
|
||||
void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
|
||||
static void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
|
||||
{
|
||||
#ifdef CONFIG_RCU_NOCB_CPU
|
||||
smp_mb__before_atomic(); /* Up to the caller! */
|
||||
|
@ -134,7 +134,7 @@ void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp)
|
|||
* with the actual number of callbacks on the structure. This exchange is
|
||||
* fully ordered with respect to the callers accesses both before and after.
|
||||
*/
|
||||
long rcu_segcblist_xchg_len(struct rcu_segcblist *rsclp, long v)
|
||||
static long rcu_segcblist_xchg_len(struct rcu_segcblist *rsclp, long v)
|
||||
{
|
||||
#ifdef CONFIG_RCU_NOCB_CPU
|
||||
return atomic_long_xchg(&rsclp->len, v);
|
||||
|
|
|
@ -109,15 +109,6 @@ static unsigned long b_rcu_perf_writer_started;
|
|||
static unsigned long b_rcu_perf_writer_finished;
|
||||
static DEFINE_PER_CPU(atomic_t, n_async_inflight);
|
||||
|
||||
static int rcu_perf_writer_state;
|
||||
#define RTWS_INIT 0
|
||||
#define RTWS_ASYNC 1
|
||||
#define RTWS_BARRIER 2
|
||||
#define RTWS_EXP_SYNC 3
|
||||
#define RTWS_SYNC 4
|
||||
#define RTWS_IDLE 5
|
||||
#define RTWS_STOPPING 6
|
||||
|
||||
#define MAX_MEAS 10000
|
||||
#define MIN_MEAS 100
|
||||
|
||||
|
@ -404,25 +395,20 @@ retry:
|
|||
if (!rhp)
|
||||
rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
|
||||
if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
|
||||
rcu_perf_writer_state = RTWS_ASYNC;
|
||||
atomic_inc(this_cpu_ptr(&n_async_inflight));
|
||||
cur_ops->async(rhp, rcu_perf_async_cb);
|
||||
rhp = NULL;
|
||||
} else if (!kthread_should_stop()) {
|
||||
rcu_perf_writer_state = RTWS_BARRIER;
|
||||
cur_ops->gp_barrier();
|
||||
goto retry;
|
||||
} else {
|
||||
kfree(rhp); /* Because we are stopping. */
|
||||
}
|
||||
} else if (gp_exp) {
|
||||
rcu_perf_writer_state = RTWS_EXP_SYNC;
|
||||
cur_ops->exp_sync();
|
||||
} else {
|
||||
rcu_perf_writer_state = RTWS_SYNC;
|
||||
cur_ops->sync();
|
||||
}
|
||||
rcu_perf_writer_state = RTWS_IDLE;
|
||||
t = ktime_get_mono_fast_ns();
|
||||
*wdp = t - *wdp;
|
||||
i_max = i;
|
||||
|
@ -463,10 +449,8 @@ retry:
|
|||
rcu_perf_wait_shutdown();
|
||||
} while (!torture_must_stop());
|
||||
if (gp_async) {
|
||||
rcu_perf_writer_state = RTWS_BARRIER;
|
||||
cur_ops->gp_barrier();
|
||||
}
|
||||
rcu_perf_writer_state = RTWS_STOPPING;
|
||||
writer_n_durations[me] = i_max;
|
||||
torture_kthread_stopping("rcu_perf_writer");
|
||||
return 0;
|
||||
|
|
|
@ -44,6 +44,7 @@
|
|||
#include <linux/sched/debug.h>
|
||||
#include <linux/sched/sysctl.h>
|
||||
#include <linux/oom.h>
|
||||
#include <linux/tick.h>
|
||||
|
||||
#include "rcu.h"
|
||||
|
||||
|
@ -1363,15 +1364,15 @@ rcu_torture_reader(void *arg)
|
|||
set_user_nice(current, MAX_NICE);
|
||||
if (irqreader && cur_ops->irq_capable)
|
||||
timer_setup_on_stack(&t, rcu_torture_timer, 0);
|
||||
|
||||
tick_dep_set_task(current, TICK_DEP_BIT_RCU);
|
||||
do {
|
||||
if (irqreader && cur_ops->irq_capable) {
|
||||
if (!timer_pending(&t))
|
||||
mod_timer(&t, jiffies + 1);
|
||||
}
|
||||
if (!rcu_torture_one_read(&rand))
|
||||
if (!rcu_torture_one_read(&rand) && !torture_must_stop())
|
||||
schedule_timeout_interruptible(HZ);
|
||||
if (time_after(jiffies, lastsleep)) {
|
||||
if (time_after(jiffies, lastsleep) && !torture_must_stop()) {
|
||||
schedule_timeout_interruptible(1);
|
||||
lastsleep = jiffies + 10;
|
||||
}
|
||||
|
@ -1383,6 +1384,7 @@ rcu_torture_reader(void *arg)
|
|||
del_timer_sync(&t);
|
||||
destroy_timer_on_stack(&t);
|
||||
}
|
||||
tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
|
||||
torture_kthread_stopping("rcu_torture_reader");
|
||||
return 0;
|
||||
}
|
||||
|
@ -1442,15 +1444,18 @@ rcu_torture_stats_print(void)
|
|||
n_rcu_torture_barrier_error);
|
||||
|
||||
pr_alert("%s%s ", torture_type, TORTURE_FLAG);
|
||||
if (atomic_read(&n_rcu_torture_mberror) != 0 ||
|
||||
n_rcu_torture_barrier_error != 0 ||
|
||||
n_rcu_torture_boost_ktrerror != 0 ||
|
||||
n_rcu_torture_boost_rterror != 0 ||
|
||||
n_rcu_torture_boost_failure != 0 ||
|
||||
if (atomic_read(&n_rcu_torture_mberror) ||
|
||||
n_rcu_torture_barrier_error || n_rcu_torture_boost_ktrerror ||
|
||||
n_rcu_torture_boost_rterror || n_rcu_torture_boost_failure ||
|
||||
i > 1) {
|
||||
pr_cont("%s", "!!! ");
|
||||
atomic_inc(&n_rcu_torture_error);
|
||||
WARN_ON_ONCE(1);
|
||||
WARN_ON_ONCE(atomic_read(&n_rcu_torture_mberror));
|
||||
WARN_ON_ONCE(n_rcu_torture_barrier_error); // rcu_barrier()
|
||||
WARN_ON_ONCE(n_rcu_torture_boost_ktrerror); // no boost kthread
|
||||
WARN_ON_ONCE(n_rcu_torture_boost_rterror); // can't set RT prio
|
||||
WARN_ON_ONCE(n_rcu_torture_boost_failure); // RCU boost failed
|
||||
WARN_ON_ONCE(i > 1); // Too-short grace period
|
||||
}
|
||||
pr_cont("Reader Pipe: ");
|
||||
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
|
||||
|
@ -1729,10 +1734,10 @@ static void rcu_torture_fwd_prog_cond_resched(unsigned long iter)
|
|||
// Real call_rcu() floods hit userspace, so emulate that.
|
||||
if (need_resched() || (iter & 0xfff))
|
||||
schedule();
|
||||
} else {
|
||||
// No userspace emulation: CB invocation throttles call_rcu()
|
||||
cond_resched();
|
||||
return;
|
||||
}
|
||||
// No userspace emulation: CB invocation throttles call_rcu()
|
||||
cond_resched();
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1759,6 +1764,11 @@ static unsigned long rcu_torture_fwd_prog_cbfree(void)
|
|||
kfree(rfcp);
|
||||
freed++;
|
||||
rcu_torture_fwd_prog_cond_resched(freed);
|
||||
if (tick_nohz_full_enabled()) {
|
||||
local_irq_save(flags);
|
||||
rcu_momentary_dyntick_idle();
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
return freed;
|
||||
}
|
||||
|
@ -1803,7 +1813,7 @@ static void rcu_torture_fwd_prog_nr(int *tested, int *tested_tries)
|
|||
udelay(10);
|
||||
cur_ops->readunlock(idx);
|
||||
if (!fwd_progress_need_resched || need_resched())
|
||||
rcu_torture_fwd_prog_cond_resched(1);
|
||||
cond_resched();
|
||||
}
|
||||
(*tested_tries)++;
|
||||
if (!time_before(jiffies, stopat) &&
|
||||
|
@ -1833,6 +1843,7 @@ static void rcu_torture_fwd_prog_nr(int *tested, int *tested_tries)
|
|||
static void rcu_torture_fwd_prog_cr(void)
|
||||
{
|
||||
unsigned long cver;
|
||||
unsigned long flags;
|
||||
unsigned long gps;
|
||||
int i;
|
||||
long n_launders;
|
||||
|
@ -1865,6 +1876,7 @@ static void rcu_torture_fwd_prog_cr(void)
|
|||
cver = READ_ONCE(rcu_torture_current_version);
|
||||
gps = cur_ops->get_gp_seq();
|
||||
rcu_launder_gp_seq_start = gps;
|
||||
tick_dep_set_task(current, TICK_DEP_BIT_RCU);
|
||||
while (time_before(jiffies, stopat) &&
|
||||
!shutdown_time_arrived() &&
|
||||
!READ_ONCE(rcu_fwd_emergency_stop) && !torture_must_stop()) {
|
||||
|
@ -1891,6 +1903,11 @@ static void rcu_torture_fwd_prog_cr(void)
|
|||
}
|
||||
cur_ops->call(&rfcp->rh, rcu_torture_fwd_cb_cr);
|
||||
rcu_torture_fwd_prog_cond_resched(n_launders + n_max_cbs);
|
||||
if (tick_nohz_full_enabled()) {
|
||||
local_irq_save(flags);
|
||||
rcu_momentary_dyntick_idle();
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
stoppedat = jiffies;
|
||||
n_launders_cb_snap = READ_ONCE(n_launders_cb);
|
||||
|
@ -1911,6 +1928,7 @@ static void rcu_torture_fwd_prog_cr(void)
|
|||
rcu_torture_fwd_cb_hist();
|
||||
}
|
||||
schedule_timeout_uninterruptible(HZ); /* Let CBs drain. */
|
||||
tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
|
||||
WRITE_ONCE(rcu_fwd_cb_nodelay, false);
|
||||
}
|
||||
|
||||
|
|
|
@ -364,7 +364,7 @@ bool rcu_eqs_special_set(int cpu)
|
|||
*
|
||||
* The caller must have disabled interrupts and must not be idle.
|
||||
*/
|
||||
static void __maybe_unused rcu_momentary_dyntick_idle(void)
|
||||
void rcu_momentary_dyntick_idle(void)
|
||||
{
|
||||
int special;
|
||||
|
||||
|
@ -375,6 +375,7 @@ static void __maybe_unused rcu_momentary_dyntick_idle(void)
|
|||
WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
|
||||
rcu_preempt_deferred_qs(current);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
|
||||
|
||||
/**
|
||||
* rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
|
||||
|
@ -496,7 +497,7 @@ module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next
|
|||
module_param(rcu_kick_kthreads, bool, 0644);
|
||||
|
||||
static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
|
||||
static int rcu_pending(void);
|
||||
static int rcu_pending(int user);
|
||||
|
||||
/*
|
||||
* Return the number of RCU GPs completed thus far for debug & stats.
|
||||
|
@ -824,6 +825,11 @@ static __always_inline void rcu_nmi_enter_common(bool irq)
|
|||
rcu_cleanup_after_idle();
|
||||
|
||||
incby = 1;
|
||||
} else if (tick_nohz_full_cpu(rdp->cpu) &&
|
||||
rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
|
||||
READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
|
||||
rdp->rcu_forced_tick = true;
|
||||
tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
|
||||
}
|
||||
trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
|
||||
rdp->dynticks_nmi_nesting,
|
||||
|
@ -885,6 +891,21 @@ void rcu_irq_enter_irqson(void)
|
|||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* If any sort of urgency was applied to the current CPU (for example,
|
||||
* the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
|
||||
* to get to a quiescent state, disable it.
|
||||
*/
|
||||
static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
|
||||
{
|
||||
WRITE_ONCE(rdp->rcu_urgent_qs, false);
|
||||
WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
|
||||
if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
|
||||
tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
|
||||
rdp->rcu_forced_tick = false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* rcu_is_watching - see if RCU thinks that the current CPU is not idle
|
||||
*
|
||||
|
@ -1073,6 +1094,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
|
|||
if (tick_nohz_full_cpu(rdp->cpu) &&
|
||||
time_after(jiffies,
|
||||
READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
|
||||
WRITE_ONCE(*ruqp, true);
|
||||
resched_cpu(rdp->cpu);
|
||||
WRITE_ONCE(rdp->last_fqs_resched, jiffies);
|
||||
}
|
||||
|
@ -1968,7 +1990,6 @@ rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
|
|||
return;
|
||||
}
|
||||
mask = rdp->grpmask;
|
||||
rdp->core_needs_qs = false;
|
||||
if ((rnp->qsmask & mask) == 0) {
|
||||
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
||||
} else {
|
||||
|
@ -1979,6 +2000,7 @@ rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
|
|||
if (!offloaded)
|
||||
needwake = rcu_accelerate_cbs(rnp, rdp);
|
||||
|
||||
rcu_disable_urgency_upon_qs(rdp);
|
||||
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
||||
/* ^^^ Released rnp->lock */
|
||||
if (needwake)
|
||||
|
@ -2101,6 +2123,9 @@ int rcutree_dead_cpu(unsigned int cpu)
|
|||
rcu_boost_kthread_setaffinity(rnp, -1);
|
||||
/* Do any needed no-CB deferred wakeups from this CPU. */
|
||||
do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
|
||||
|
||||
// Stop-machine done, so allow nohz_full to disable tick.
|
||||
tick_dep_clear(TICK_DEP_BIT_RCU);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -2151,6 +2176,7 @@ static void rcu_do_batch(struct rcu_data *rdp)
|
|||
rcu_nocb_unlock_irqrestore(rdp, flags);
|
||||
|
||||
/* Invoke callbacks. */
|
||||
tick_dep_set_task(current, TICK_DEP_BIT_RCU);
|
||||
rhp = rcu_cblist_dequeue(&rcl);
|
||||
for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
|
||||
debug_rcu_head_unqueue(rhp);
|
||||
|
@ -2217,6 +2243,7 @@ static void rcu_do_batch(struct rcu_data *rdp)
|
|||
/* Re-invoke RCU core processing if there are callbacks remaining. */
|
||||
if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
|
||||
invoke_rcu_core();
|
||||
tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2241,7 +2268,7 @@ void rcu_sched_clock_irq(int user)
|
|||
__this_cpu_write(rcu_data.rcu_urgent_qs, false);
|
||||
}
|
||||
rcu_flavor_sched_clock_irq(user);
|
||||
if (rcu_pending())
|
||||
if (rcu_pending(user))
|
||||
invoke_rcu_core();
|
||||
|
||||
trace_rcu_utilization(TPS("End scheduler-tick"));
|
||||
|
@ -2259,6 +2286,7 @@ static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
|
|||
int cpu;
|
||||
unsigned long flags;
|
||||
unsigned long mask;
|
||||
struct rcu_data *rdp;
|
||||
struct rcu_node *rnp;
|
||||
|
||||
rcu_for_each_leaf_node(rnp) {
|
||||
|
@ -2283,8 +2311,11 @@ static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
|
|||
for_each_leaf_node_possible_cpu(rnp, cpu) {
|
||||
unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
|
||||
if ((rnp->qsmask & bit) != 0) {
|
||||
if (f(per_cpu_ptr(&rcu_data, cpu)))
|
||||
rdp = per_cpu_ptr(&rcu_data, cpu);
|
||||
if (f(rdp)) {
|
||||
mask |= bit;
|
||||
rcu_disable_urgency_upon_qs(rdp);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (mask != 0) {
|
||||
|
@ -2312,7 +2343,7 @@ void rcu_force_quiescent_state(void)
|
|||
rnp = __this_cpu_read(rcu_data.mynode);
|
||||
for (; rnp != NULL; rnp = rnp->parent) {
|
||||
ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
|
||||
!raw_spin_trylock(&rnp->fqslock);
|
||||
!raw_spin_trylock(&rnp->fqslock);
|
||||
if (rnp_old != NULL)
|
||||
raw_spin_unlock(&rnp_old->fqslock);
|
||||
if (ret)
|
||||
|
@ -2786,8 +2817,9 @@ EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
|
|||
* CPU-local state are performed first. However, we must check for CPU
|
||||
* stalls first, else we might not get a chance.
|
||||
*/
|
||||
static int rcu_pending(void)
|
||||
static int rcu_pending(int user)
|
||||
{
|
||||
bool gp_in_progress;
|
||||
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
||||
struct rcu_node *rnp = rdp->mynode;
|
||||
|
||||
|
@ -2798,12 +2830,13 @@ static int rcu_pending(void)
|
|||
if (rcu_nocb_need_deferred_wakeup(rdp))
|
||||
return 1;
|
||||
|
||||
/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
|
||||
if (rcu_nohz_full_cpu())
|
||||
/* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
|
||||
if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
|
||||
return 0;
|
||||
|
||||
/* Is the RCU core waiting for a quiescent state from this CPU? */
|
||||
if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
|
||||
gp_in_progress = rcu_gp_in_progress();
|
||||
if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
|
||||
return 1;
|
||||
|
||||
/* Does this CPU have callbacks ready to invoke? */
|
||||
|
@ -2811,8 +2844,7 @@ static int rcu_pending(void)
|
|||
return 1;
|
||||
|
||||
/* Has RCU gone idle with this CPU needing another grace period? */
|
||||
if (!rcu_gp_in_progress() &&
|
||||
rcu_segcblist_is_enabled(&rdp->cblist) &&
|
||||
if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
|
||||
(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
|
||||
!rcu_segcblist_is_offloaded(&rdp->cblist)) &&
|
||||
!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
|
||||
|
@ -2845,7 +2877,7 @@ static void rcu_barrier_callback(struct rcu_head *rhp)
|
|||
{
|
||||
if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
|
||||
rcu_barrier_trace(TPS("LastCB"), -1,
|
||||
rcu_state.barrier_sequence);
|
||||
rcu_state.barrier_sequence);
|
||||
complete(&rcu_state.barrier_completion);
|
||||
} else {
|
||||
rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
|
||||
|
@ -2869,7 +2901,7 @@ static void rcu_barrier_func(void *unused)
|
|||
} else {
|
||||
debug_rcu_head_unqueue(&rdp->barrier_head);
|
||||
rcu_barrier_trace(TPS("IRQNQ"), -1,
|
||||
rcu_state.barrier_sequence);
|
||||
rcu_state.barrier_sequence);
|
||||
}
|
||||
rcu_nocb_unlock(rdp);
|
||||
}
|
||||
|
@ -2896,7 +2928,7 @@ void rcu_barrier(void)
|
|||
/* Did someone else do our work for us? */
|
||||
if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
|
||||
rcu_barrier_trace(TPS("EarlyExit"), -1,
|
||||
rcu_state.barrier_sequence);
|
||||
rcu_state.barrier_sequence);
|
||||
smp_mb(); /* caller's subsequent code after above check. */
|
||||
mutex_unlock(&rcu_state.barrier_mutex);
|
||||
return;
|
||||
|
@ -2928,11 +2960,11 @@ void rcu_barrier(void)
|
|||
continue;
|
||||
if (rcu_segcblist_n_cbs(&rdp->cblist)) {
|
||||
rcu_barrier_trace(TPS("OnlineQ"), cpu,
|
||||
rcu_state.barrier_sequence);
|
||||
rcu_state.barrier_sequence);
|
||||
smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
|
||||
} else {
|
||||
rcu_barrier_trace(TPS("OnlineNQ"), cpu,
|
||||
rcu_state.barrier_sequence);
|
||||
rcu_state.barrier_sequence);
|
||||
}
|
||||
}
|
||||
put_online_cpus();
|
||||
|
@ -3083,6 +3115,9 @@ int rcutree_online_cpu(unsigned int cpu)
|
|||
return 0; /* Too early in boot for scheduler work. */
|
||||
sync_sched_exp_online_cleanup(cpu);
|
||||
rcutree_affinity_setting(cpu, -1);
|
||||
|
||||
// Stop-machine done, so allow nohz_full to disable tick.
|
||||
tick_dep_clear(TICK_DEP_BIT_RCU);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -3103,6 +3138,9 @@ int rcutree_offline_cpu(unsigned int cpu)
|
|||
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
||||
|
||||
rcutree_affinity_setting(cpu, cpu);
|
||||
|
||||
// nohz_full CPUs need the tick for stop-machine to work quickly
|
||||
tick_dep_set(TICK_DEP_BIT_RCU);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -3148,6 +3186,7 @@ void rcu_cpu_starting(unsigned int cpu)
|
|||
rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
|
||||
rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
|
||||
if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
|
||||
rcu_disable_urgency_upon_qs(rdp);
|
||||
/* Report QS -after- changing ->qsmaskinitnext! */
|
||||
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
||||
} else {
|
||||
|
|
|
@ -181,6 +181,7 @@ struct rcu_data {
|
|||
atomic_t dynticks; /* Even value for idle, else odd. */
|
||||
bool rcu_need_heavy_qs; /* GP old, so heavy quiescent state! */
|
||||
bool rcu_urgent_qs; /* GP old need light quiescent state. */
|
||||
bool rcu_forced_tick; /* Forced tick to provide QS. */
|
||||
#ifdef CONFIG_RCU_FAST_NO_HZ
|
||||
bool all_lazy; /* All CPU's CBs lazy at idle start? */
|
||||
unsigned long last_accelerate; /* Last jiffy CBs were accelerated. */
|
||||
|
|
|
@ -1946,7 +1946,7 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
|
|||
int __maybe_unused cpu = my_rdp->cpu;
|
||||
unsigned long cur_gp_seq;
|
||||
unsigned long flags;
|
||||
bool gotcbs;
|
||||
bool gotcbs = false;
|
||||
unsigned long j = jiffies;
|
||||
bool needwait_gp = false; // This prevents actual uninitialized use.
|
||||
bool needwake;
|
||||
|
|
|
@ -233,6 +233,7 @@ static int multi_cpu_stop(void *data)
|
|||
*/
|
||||
touch_nmi_watchdog();
|
||||
}
|
||||
rcu_momentary_dyntick_idle();
|
||||
} while (curstate != MULTI_STOP_EXIT);
|
||||
|
||||
local_irq_restore(flags);
|
||||
|
|
|
@ -172,6 +172,7 @@ static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
|
|||
#ifdef CONFIG_NO_HZ_FULL
|
||||
cpumask_var_t tick_nohz_full_mask;
|
||||
bool tick_nohz_full_running;
|
||||
EXPORT_SYMBOL_GPL(tick_nohz_full_running);
|
||||
static atomic_t tick_dep_mask;
|
||||
|
||||
static bool check_tick_dependency(atomic_t *dep)
|
||||
|
@ -198,6 +199,11 @@ static bool check_tick_dependency(atomic_t *dep)
|
|||
return true;
|
||||
}
|
||||
|
||||
if (val & TICK_DEP_MASK_RCU) {
|
||||
trace_tick_stop(0, TICK_DEP_MASK_RCU);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -324,6 +330,7 @@ void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
|
|||
preempt_enable();
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
|
||||
|
||||
void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
|
||||
{
|
||||
|
@ -331,6 +338,7 @@ void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
|
|||
|
||||
atomic_andnot(BIT(bit), &ts->tick_dep_mask);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
|
||||
|
||||
/*
|
||||
* Set a per-task tick dependency. Posix CPU timers need this in order to elapse
|
||||
|
@ -344,11 +352,13 @@ void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
|
|||
*/
|
||||
tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
|
||||
|
||||
void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
|
||||
{
|
||||
atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
|
||||
|
||||
/*
|
||||
* Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
|
||||
|
@ -397,6 +407,7 @@ void __init tick_nohz_full_setup(cpumask_var_t cpumask)
|
|||
cpumask_copy(tick_nohz_full_mask, cpumask);
|
||||
tick_nohz_full_running = true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
|
||||
|
||||
static int tick_nohz_cpu_down(unsigned int cpu)
|
||||
{
|
||||
|
|
|
@ -364,11 +364,6 @@ static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
|
|||
!lockdep_is_held(&wq_pool_mutex), \
|
||||
"RCU or wq_pool_mutex should be held")
|
||||
|
||||
#define assert_rcu_or_wq_mutex(wq) \
|
||||
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
|
||||
!lockdep_is_held(&wq->mutex), \
|
||||
"RCU or wq->mutex should be held")
|
||||
|
||||
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
|
||||
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
|
||||
!lockdep_is_held(&wq->mutex) && \
|
||||
|
@ -425,9 +420,8 @@ static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
|
|||
* ignored.
|
||||
*/
|
||||
#define for_each_pwq(pwq, wq) \
|
||||
list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
|
||||
if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
|
||||
else
|
||||
list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
|
||||
lockdep_is_held(&(wq->mutex)))
|
||||
|
||||
#ifdef CONFIG_DEBUG_OBJECTS_WORK
|
||||
|
||||
|
|
|
@ -1288,8 +1288,8 @@ int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
|
|||
}
|
||||
|
||||
mutex_lock(&ifalias_mutex);
|
||||
rcu_swap_protected(dev->ifalias, new_alias,
|
||||
mutex_is_locked(&ifalias_mutex));
|
||||
new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
|
||||
mutex_is_locked(&ifalias_mutex));
|
||||
mutex_unlock(&ifalias_mutex);
|
||||
|
||||
if (new_alias)
|
||||
|
|
|
@ -356,8 +356,8 @@ int reuseport_detach_prog(struct sock *sk)
|
|||
spin_lock_bh(&reuseport_lock);
|
||||
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
||||
lockdep_is_held(&reuseport_lock));
|
||||
rcu_swap_protected(reuse->prog, old_prog,
|
||||
lockdep_is_held(&reuseport_lock));
|
||||
old_prog = rcu_replace_pointer(reuse->prog, old_prog,
|
||||
lockdep_is_held(&reuseport_lock));
|
||||
spin_unlock_bh(&reuseport_lock);
|
||||
|
||||
if (!old_prog)
|
||||
|
|
|
@ -1461,8 +1461,9 @@ static void nft_chain_stats_replace(struct nft_trans *trans)
|
|||
if (!nft_trans_chain_stats(trans))
|
||||
return;
|
||||
|
||||
rcu_swap_protected(chain->stats, nft_trans_chain_stats(trans),
|
||||
lockdep_commit_lock_is_held(trans->ctx.net));
|
||||
nft_trans_chain_stats(trans) =
|
||||
rcu_replace_pointer(chain->stats, nft_trans_chain_stats(trans),
|
||||
lockdep_commit_lock_is_held(trans->ctx.net));
|
||||
|
||||
if (!nft_trans_chain_stats(trans))
|
||||
static_branch_inc(&nft_counters_enabled);
|
||||
|
|
|
@ -88,7 +88,7 @@ struct tcf_chain *tcf_action_set_ctrlact(struct tc_action *a, int action,
|
|||
struct tcf_chain *goto_chain)
|
||||
{
|
||||
a->tcfa_action = action;
|
||||
rcu_swap_protected(a->goto_chain, goto_chain, 1);
|
||||
goto_chain = rcu_replace_pointer(a->goto_chain, goto_chain, 1);
|
||||
return goto_chain;
|
||||
}
|
||||
EXPORT_SYMBOL(tcf_action_set_ctrlact);
|
||||
|
|
|
@ -101,8 +101,8 @@ static int tcf_csum_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&p->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(p->params, params_new,
|
||||
lockdep_is_held(&p->tcf_lock));
|
||||
params_new = rcu_replace_pointer(p->params, params_new,
|
||||
lockdep_is_held(&p->tcf_lock));
|
||||
spin_unlock_bh(&p->tcf_lock);
|
||||
|
||||
if (goto_ch)
|
||||
|
|
|
@ -722,7 +722,8 @@ static int tcf_ct_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&c->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(c->params, params, lockdep_is_held(&c->tcf_lock));
|
||||
params = rcu_replace_pointer(c->params, params,
|
||||
lockdep_is_held(&c->tcf_lock));
|
||||
spin_unlock_bh(&c->tcf_lock);
|
||||
|
||||
if (goto_ch)
|
||||
|
|
|
@ -257,8 +257,8 @@ static int tcf_ctinfo_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&ci->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, actparm->action, goto_ch);
|
||||
rcu_swap_protected(ci->params, cp_new,
|
||||
lockdep_is_held(&ci->tcf_lock));
|
||||
cp_new = rcu_replace_pointer(ci->params, cp_new,
|
||||
lockdep_is_held(&ci->tcf_lock));
|
||||
spin_unlock_bh(&ci->tcf_lock);
|
||||
|
||||
if (goto_ch)
|
||||
|
|
|
@ -594,7 +594,7 @@ static int tcf_ife_init(struct net *net, struct nlattr *nla,
|
|||
spin_lock_bh(&ife->tcf_lock);
|
||||
/* protected by tcf_lock when modifying existing action */
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(ife->params, p, 1);
|
||||
p = rcu_replace_pointer(ife->params, p, 1);
|
||||
|
||||
if (exists)
|
||||
spin_unlock_bh(&ife->tcf_lock);
|
||||
|
|
|
@ -178,8 +178,8 @@ static int tcf_mirred_init(struct net *net, struct nlattr *nla,
|
|||
goto put_chain;
|
||||
}
|
||||
mac_header_xmit = dev_is_mac_header_xmit(dev);
|
||||
rcu_swap_protected(m->tcfm_dev, dev,
|
||||
lockdep_is_held(&m->tcf_lock));
|
||||
dev = rcu_replace_pointer(m->tcfm_dev, dev,
|
||||
lockdep_is_held(&m->tcf_lock));
|
||||
if (dev)
|
||||
dev_put(dev);
|
||||
m->tcfm_mac_header_xmit = mac_header_xmit;
|
||||
|
|
|
@ -258,7 +258,7 @@ static int tcf_mpls_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&m->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(m->mpls_p, p, lockdep_is_held(&m->tcf_lock));
|
||||
p = rcu_replace_pointer(m->mpls_p, p, lockdep_is_held(&m->tcf_lock));
|
||||
spin_unlock_bh(&m->tcf_lock);
|
||||
|
||||
if (goto_ch)
|
||||
|
|
|
@ -191,9 +191,9 @@ static int tcf_police_init(struct net *net, struct nlattr *nla,
|
|||
police->tcfp_ptoks = new->tcfp_mtu_ptoks;
|
||||
spin_unlock_bh(&police->tcfp_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(police->params,
|
||||
new,
|
||||
lockdep_is_held(&police->tcf_lock));
|
||||
new = rcu_replace_pointer(police->params,
|
||||
new,
|
||||
lockdep_is_held(&police->tcf_lock));
|
||||
spin_unlock_bh(&police->tcf_lock);
|
||||
|
||||
if (goto_ch)
|
||||
|
|
|
@ -102,8 +102,8 @@ static int tcf_sample_init(struct net *net, struct nlattr *nla,
|
|||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
s->rate = rate;
|
||||
s->psample_group_num = psample_group_num;
|
||||
rcu_swap_protected(s->psample_group, psample_group,
|
||||
lockdep_is_held(&s->tcf_lock));
|
||||
psample_group = rcu_replace_pointer(s->psample_group, psample_group,
|
||||
lockdep_is_held(&s->tcf_lock));
|
||||
|
||||
if (tb[TCA_SAMPLE_TRUNC_SIZE]) {
|
||||
s->truncate = true;
|
||||
|
|
|
@ -206,8 +206,8 @@ static int tcf_skbedit_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&d->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(d->params, params_new,
|
||||
lockdep_is_held(&d->tcf_lock));
|
||||
params_new = rcu_replace_pointer(d->params, params_new,
|
||||
lockdep_is_held(&d->tcf_lock));
|
||||
spin_unlock_bh(&d->tcf_lock);
|
||||
if (params_new)
|
||||
kfree_rcu(params_new, rcu);
|
||||
|
|
|
@ -381,8 +381,8 @@ static int tunnel_key_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&t->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(t->params, params_new,
|
||||
lockdep_is_held(&t->tcf_lock));
|
||||
params_new = rcu_replace_pointer(t->params, params_new,
|
||||
lockdep_is_held(&t->tcf_lock));
|
||||
spin_unlock_bh(&t->tcf_lock);
|
||||
tunnel_key_release_params(params_new);
|
||||
if (goto_ch)
|
||||
|
|
|
@ -220,7 +220,7 @@ static int tcf_vlan_init(struct net *net, struct nlattr *nla,
|
|||
|
||||
spin_lock_bh(&v->tcf_lock);
|
||||
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
|
||||
rcu_swap_protected(v->vlan_p, p, lockdep_is_held(&v->tcf_lock));
|
||||
p = rcu_replace_pointer(v->vlan_p, p, lockdep_is_held(&v->tcf_lock));
|
||||
spin_unlock_bh(&v->tcf_lock);
|
||||
|
||||
if (goto_ch)
|
||||
|
|
|
@ -179,8 +179,8 @@ out_free_rule:
|
|||
* doesn't currently exist, just use a spinlock for now.
|
||||
*/
|
||||
mutex_lock(&policy_update_lock);
|
||||
rcu_swap_protected(safesetid_setuid_rules, pol,
|
||||
lockdep_is_held(&policy_update_lock));
|
||||
pol = rcu_replace_pointer(safesetid_setuid_rules, pol,
|
||||
lockdep_is_held(&policy_update_lock));
|
||||
mutex_unlock(&policy_update_lock);
|
||||
err = len;
|
||||
|
||||
|
|
|
@ -27,9 +27,10 @@ Explanation of the Linux-Kernel Memory Consistency Model
|
|||
19. AND THEN THERE WAS ALPHA
|
||||
20. THE HAPPENS-BEFORE RELATION: hb
|
||||
21. THE PROPAGATES-BEFORE RELATION: pb
|
||||
22. RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-fence, and rb
|
||||
22. RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-order, rcu-fence, and rb
|
||||
23. LOCKING
|
||||
24. ODDS AND ENDS
|
||||
24. PLAIN ACCESSES AND DATA RACES
|
||||
25. ODDS AND ENDS
|
||||
|
||||
|
||||
|
||||
|
@ -42,8 +43,7 @@ linux-kernel.bell and linux-kernel.cat files that make up the formal
|
|||
version of the model; they are extremely terse and their meanings are
|
||||
far from clear.
|
||||
|
||||
This document describes the ideas underlying the LKMM, but excluding
|
||||
the modeling of bare C (or plain) shared memory accesses. It is meant
|
||||
This document describes the ideas underlying the LKMM. It is meant
|
||||
for people who want to understand how the model was designed. It does
|
||||
not go into the details of the code in the .bell and .cat files;
|
||||
rather, it explains in English what the code expresses symbolically.
|
||||
|
@ -206,7 +206,7 @@ goes like this:
|
|||
P0 stores 1 to buf before storing 1 to flag, since it executes
|
||||
its instructions in order.
|
||||
|
||||
Since an instruction (in this case, P1's store to flag) cannot
|
||||
Since an instruction (in this case, P0's store to flag) cannot
|
||||
execute before itself, the specified outcome is impossible.
|
||||
|
||||
However, real computer hardware almost never follows the Sequential
|
||||
|
@ -419,7 +419,7 @@ example:
|
|||
|
||||
The object code might call f(5) either before or after g(6); the
|
||||
memory model cannot assume there is a fixed program order relation
|
||||
between them. (In fact, if the functions are inlined then the
|
||||
between them. (In fact, if the function calls are inlined then the
|
||||
compiler might even interleave their object code.)
|
||||
|
||||
|
||||
|
@ -499,7 +499,7 @@ different CPUs (external reads-from, or rfe).
|
|||
|
||||
For our purposes, a memory location's initial value is treated as
|
||||
though it had been written there by an imaginary initial store that
|
||||
executes on a separate CPU before the program runs.
|
||||
executes on a separate CPU before the main program runs.
|
||||
|
||||
Usage of the rf relation implicitly assumes that loads will always
|
||||
read from a single store. It doesn't apply properly in the presence
|
||||
|
@ -857,7 +857,7 @@ outlined above. These restrictions involve the necessity of
|
|||
maintaining cache coherence and the fact that a CPU can't operate on a
|
||||
value before it knows what that value is, among other things.
|
||||
|
||||
The formal version of the LKMM is defined by five requirements, or
|
||||
The formal version of the LKMM is defined by six requirements, or
|
||||
axioms:
|
||||
|
||||
Sequential consistency per variable: This requires that the
|
||||
|
@ -877,10 +877,14 @@ axioms:
|
|||
grace periods obey the rules of RCU, in particular, the
|
||||
Grace-Period Guarantee.
|
||||
|
||||
Plain-coherence: This requires that plain memory accesses
|
||||
(those not using READ_ONCE(), WRITE_ONCE(), etc.) must obey
|
||||
the operational model's rules regarding cache coherence.
|
||||
|
||||
The first and second are quite common; they can be found in many
|
||||
memory models (such as those for C11/C++11). The "happens-before" and
|
||||
"propagation" axioms have analogs in other memory models as well. The
|
||||
"rcu" axiom is specific to the LKMM.
|
||||
"rcu" and "plain-coherence" axioms are specific to the LKMM.
|
||||
|
||||
Each of these axioms is discussed below.
|
||||
|
||||
|
@ -955,7 +959,7 @@ atomic update. This is what the LKMM's "atomic" axiom says.
|
|||
THE PRESERVED PROGRAM ORDER RELATION: ppo
|
||||
-----------------------------------------
|
||||
|
||||
There are many situations where a CPU is obligated to execute two
|
||||
There are many situations where a CPU is obliged to execute two
|
||||
instructions in program order. We amalgamate them into the ppo (for
|
||||
"preserved program order") relation, which links the po-earlier
|
||||
instruction to the po-later instruction and is thus a sub-relation of
|
||||
|
@ -1425,8 +1429,8 @@ they execute means that it cannot have cycles. This requirement is
|
|||
the content of the LKMM's "propagation" axiom.
|
||||
|
||||
|
||||
RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-fence, and rb
|
||||
-------------------------------------------------------------
|
||||
RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-order, rcu-fence, and rb
|
||||
------------------------------------------------------------------------
|
||||
|
||||
RCU (Read-Copy-Update) is a powerful synchronization mechanism. It
|
||||
rests on two concepts: grace periods and read-side critical sections.
|
||||
|
@ -1536,29 +1540,29 @@ Z's CPU before Z begins but doesn't propagate to some other CPU until
|
|||
after X ends.) Similarly, X ->rcu-rscsi Y ->rcu-link Z says that X is
|
||||
the end of a critical section which starts before Z begins.
|
||||
|
||||
The LKMM goes on to define the rcu-fence relation as a sequence of
|
||||
The LKMM goes on to define the rcu-order relation as a sequence of
|
||||
rcu-gp and rcu-rscsi links separated by rcu-link links, in which the
|
||||
number of rcu-gp links is >= the number of rcu-rscsi links. For
|
||||
example:
|
||||
|
||||
X ->rcu-gp Y ->rcu-link Z ->rcu-rscsi T ->rcu-link U ->rcu-gp V
|
||||
|
||||
would imply that X ->rcu-fence V, because this sequence contains two
|
||||
would imply that X ->rcu-order V, because this sequence contains two
|
||||
rcu-gp links and one rcu-rscsi link. (It also implies that
|
||||
X ->rcu-fence T and Z ->rcu-fence V.) On the other hand:
|
||||
X ->rcu-order T and Z ->rcu-order V.) On the other hand:
|
||||
|
||||
X ->rcu-rscsi Y ->rcu-link Z ->rcu-rscsi T ->rcu-link U ->rcu-gp V
|
||||
|
||||
does not imply X ->rcu-fence V, because the sequence contains only
|
||||
does not imply X ->rcu-order V, because the sequence contains only
|
||||
one rcu-gp link but two rcu-rscsi links.
|
||||
|
||||
The rcu-fence relation is important because the Grace Period Guarantee
|
||||
means that rcu-fence acts kind of like a strong fence. In particular,
|
||||
E ->rcu-fence F implies not only that E begins before F ends, but also
|
||||
that any write po-before E will propagate to every CPU before any
|
||||
instruction po-after F can execute. (However, it does not imply that
|
||||
E must execute before F; in fact, each synchronize_rcu() fence event
|
||||
is linked to itself by rcu-fence as a degenerate case.)
|
||||
The rcu-order relation is important because the Grace Period Guarantee
|
||||
means that rcu-order links act kind of like strong fences. In
|
||||
particular, E ->rcu-order F implies not only that E begins before F
|
||||
ends, but also that any write po-before E will propagate to every CPU
|
||||
before any instruction po-after F can execute. (However, it does not
|
||||
imply that E must execute before F; in fact, each synchronize_rcu()
|
||||
fence event is linked to itself by rcu-order as a degenerate case.)
|
||||
|
||||
To prove this in full generality requires some intellectual effort.
|
||||
We'll consider just a very simple case:
|
||||
|
@ -1572,7 +1576,7 @@ and there are events X, Y and a read-side critical section C such that:
|
|||
|
||||
2. X comes "before" Y in some sense (including rfe, co and fr);
|
||||
|
||||
2. Y is po-before Z;
|
||||
3. Y is po-before Z;
|
||||
|
||||
4. Z is the rcu_read_unlock() event marking the end of C;
|
||||
|
||||
|
@ -1585,7 +1589,26 @@ G's CPU before G starts must propagate to every CPU before C starts.
|
|||
In particular, the write propagates to every CPU before F finishes
|
||||
executing and hence before any instruction po-after F can execute.
|
||||
This sort of reasoning can be extended to handle all the situations
|
||||
covered by rcu-fence.
|
||||
covered by rcu-order.
|
||||
|
||||
The rcu-fence relation is a simple extension of rcu-order. While
|
||||
rcu-order only links certain fence events (calls to synchronize_rcu(),
|
||||
rcu_read_lock(), or rcu_read_unlock()), rcu-fence links any events
|
||||
that are separated by an rcu-order link. This is analogous to the way
|
||||
the strong-fence relation links events that are separated by an
|
||||
smp_mb() fence event (as mentioned above, rcu-order links act kind of
|
||||
like strong fences). Written symbolically, X ->rcu-fence Y means
|
||||
there are fence events E and F such that:
|
||||
|
||||
X ->po E ->rcu-order F ->po Y.
|
||||
|
||||
From the discussion above, we see this implies not only that X
|
||||
executes before Y, but also (if X is a store) that X propagates to
|
||||
every CPU before Y executes. Thus rcu-fence is sort of a
|
||||
"super-strong" fence: Unlike the original strong fences (smp_mb() and
|
||||
synchronize_rcu()), rcu-fence is able to link events on different
|
||||
CPUs. (Perhaps this fact should lead us to say that rcu-fence isn't
|
||||
really a fence at all!)
|
||||
|
||||
Finally, the LKMM defines the RCU-before (rb) relation in terms of
|
||||
rcu-fence. This is done in essentially the same way as the pb
|
||||
|
@ -1596,7 +1619,7 @@ before F, just as E ->pb F does (and for much the same reasons).
|
|||
Putting this all together, the LKMM expresses the Grace Period
|
||||
Guarantee by requiring that the rb relation does not contain a cycle.
|
||||
Equivalently, this "rcu" axiom requires that there are no events E
|
||||
and F with E ->rcu-link F ->rcu-fence E. Or to put it a third way,
|
||||
and F with E ->rcu-link F ->rcu-order E. Or to put it a third way,
|
||||
the axiom requires that there are no cycles consisting of rcu-gp and
|
||||
rcu-rscsi alternating with rcu-link, where the number of rcu-gp links
|
||||
is >= the number of rcu-rscsi links.
|
||||
|
@ -1750,7 +1773,7 @@ addition to normal RCU. The ideas involved are much the same as
|
|||
above, with new relations srcu-gp and srcu-rscsi added to represent
|
||||
SRCU grace periods and read-side critical sections. There is a
|
||||
restriction on the srcu-gp and srcu-rscsi links that can appear in an
|
||||
rcu-fence sequence (the srcu-rscsi links must be paired with srcu-gp
|
||||
rcu-order sequence (the srcu-rscsi links must be paired with srcu-gp
|
||||
links having the same SRCU domain with proper nesting); the details
|
||||
are relatively unimportant.
|
||||
|
||||
|
@ -1896,6 +1919,521 @@ architectures supported by the Linux kernel, albeit for various
|
|||
differing reasons.
|
||||
|
||||
|
||||
PLAIN ACCESSES AND DATA RACES
|
||||
-----------------------------
|
||||
|
||||
In the LKMM, memory accesses such as READ_ONCE(x), atomic_inc(&y),
|
||||
smp_load_acquire(&z), and so on are collectively referred to as
|
||||
"marked" accesses, because they are all annotated with special
|
||||
operations of one kind or another. Ordinary C-language memory
|
||||
accesses such as x or y = 0 are simply called "plain" accesses.
|
||||
|
||||
Early versions of the LKMM had nothing to say about plain accesses.
|
||||
The C standard allows compilers to assume that the variables affected
|
||||
by plain accesses are not concurrently read or written by any other
|
||||
threads or CPUs. This leaves compilers free to implement all manner
|
||||
of transformations or optimizations of code containing plain accesses,
|
||||
making such code very difficult for a memory model to handle.
|
||||
|
||||
Here is just one example of a possible pitfall:
|
||||
|
||||
int a = 6;
|
||||
int *x = &a;
|
||||
|
||||
P0()
|
||||
{
|
||||
int *r1;
|
||||
int r2 = 0;
|
||||
|
||||
r1 = x;
|
||||
if (r1 != NULL)
|
||||
r2 = READ_ONCE(*r1);
|
||||
}
|
||||
|
||||
P1()
|
||||
{
|
||||
WRITE_ONCE(x, NULL);
|
||||
}
|
||||
|
||||
On the face of it, one would expect that when this code runs, the only
|
||||
possible final values for r2 are 6 and 0, depending on whether or not
|
||||
P1's store to x propagates to P0 before P0's load from x executes.
|
||||
But since P0's load from x is a plain access, the compiler may decide
|
||||
to carry out the load twice (for the comparison against NULL, then again
|
||||
for the READ_ONCE()) and eliminate the temporary variable r1. The
|
||||
object code generated for P0 could therefore end up looking rather
|
||||
like this:
|
||||
|
||||
P0()
|
||||
{
|
||||
int r2 = 0;
|
||||
|
||||
if (x != NULL)
|
||||
r2 = READ_ONCE(*x);
|
||||
}
|
||||
|
||||
And now it is obvious that this code runs the risk of dereferencing a
|
||||
NULL pointer, because P1's store to x might propagate to P0 after the
|
||||
test against NULL has been made but before the READ_ONCE() executes.
|
||||
If the original code had said "r1 = READ_ONCE(x)" instead of "r1 = x",
|
||||
the compiler would not have performed this optimization and there
|
||||
would be no possibility of a NULL-pointer dereference.
|
||||
|
||||
Given the possibility of transformations like this one, the LKMM
|
||||
doesn't try to predict all possible outcomes of code containing plain
|
||||
accesses. It is instead content to determine whether the code
|
||||
violates the compiler's assumptions, which would render the ultimate
|
||||
outcome undefined.
|
||||
|
||||
In technical terms, the compiler is allowed to assume that when the
|
||||
program executes, there will not be any data races. A "data race"
|
||||
occurs when two conflicting memory accesses execute concurrently;
|
||||
two memory accesses "conflict" if:
|
||||
|
||||
they access the same location,
|
||||
|
||||
they occur on different CPUs (or in different threads on the
|
||||
same CPU),
|
||||
|
||||
at least one of them is a plain access,
|
||||
|
||||
and at least one of them is a store.
|
||||
|
||||
The LKMM tries to determine whether a program contains two conflicting
|
||||
accesses which may execute concurrently; if it does then the LKMM says
|
||||
there is a potential data race and makes no predictions about the
|
||||
program's outcome.
|
||||
|
||||
Determining whether two accesses conflict is easy; you can see that
|
||||
all the concepts involved in the definition above are already part of
|
||||
the memory model. The hard part is telling whether they may execute
|
||||
concurrently. The LKMM takes a conservative attitude, assuming that
|
||||
accesses may be concurrent unless it can prove they cannot.
|
||||
|
||||
If two memory accesses aren't concurrent then one must execute before
|
||||
the other. Therefore the LKMM decides two accesses aren't concurrent
|
||||
if they can be connected by a sequence of hb, pb, and rb links
|
||||
(together referred to as xb, for "executes before"). However, there
|
||||
are two complicating factors.
|
||||
|
||||
If X is a load and X executes before a store Y, then indeed there is
|
||||
no danger of X and Y being concurrent. After all, Y can't have any
|
||||
effect on the value obtained by X until the memory subsystem has
|
||||
propagated Y from its own CPU to X's CPU, which won't happen until
|
||||
some time after Y executes and thus after X executes. But if X is a
|
||||
store, then even if X executes before Y it is still possible that X
|
||||
will propagate to Y's CPU just as Y is executing. In such a case X
|
||||
could very well interfere somehow with Y, and we would have to
|
||||
consider X and Y to be concurrent.
|
||||
|
||||
Therefore when X is a store, for X and Y to be non-concurrent the LKMM
|
||||
requires not only that X must execute before Y but also that X must
|
||||
propagate to Y's CPU before Y executes. (Or vice versa, of course, if
|
||||
Y executes before X -- then Y must propagate to X's CPU before X
|
||||
executes if Y is a store.) This is expressed by the visibility
|
||||
relation (vis), where X ->vis Y is defined to hold if there is an
|
||||
intermediate event Z such that:
|
||||
|
||||
X is connected to Z by a possibly empty sequence of
|
||||
cumul-fence links followed by an optional rfe link (if none of
|
||||
these links are present, X and Z are the same event),
|
||||
|
||||
and either:
|
||||
|
||||
Z is connected to Y by a strong-fence link followed by a
|
||||
possibly empty sequence of xb links,
|
||||
|
||||
or:
|
||||
|
||||
Z is on the same CPU as Y and is connected to Y by a possibly
|
||||
empty sequence of xb links (again, if the sequence is empty it
|
||||
means Z and Y are the same event).
|
||||
|
||||
The motivations behind this definition are straightforward:
|
||||
|
||||
cumul-fence memory barriers force stores that are po-before
|
||||
the barrier to propagate to other CPUs before stores that are
|
||||
po-after the barrier.
|
||||
|
||||
An rfe link from an event W to an event R says that R reads
|
||||
from W, which certainly means that W must have propagated to
|
||||
R's CPU before R executed.
|
||||
|
||||
strong-fence memory barriers force stores that are po-before
|
||||
the barrier, or that propagate to the barrier's CPU before the
|
||||
barrier executes, to propagate to all CPUs before any events
|
||||
po-after the barrier can execute.
|
||||
|
||||
To see how this works out in practice, consider our old friend, the MP
|
||||
pattern (with fences and statement labels, but without the conditional
|
||||
test):
|
||||
|
||||
int buf = 0, flag = 0;
|
||||
|
||||
P0()
|
||||
{
|
||||
X: WRITE_ONCE(buf, 1);
|
||||
smp_wmb();
|
||||
W: WRITE_ONCE(flag, 1);
|
||||
}
|
||||
|
||||
P1()
|
||||
{
|
||||
int r1;
|
||||
int r2 = 0;
|
||||
|
||||
Z: r1 = READ_ONCE(flag);
|
||||
smp_rmb();
|
||||
Y: r2 = READ_ONCE(buf);
|
||||
}
|
||||
|
||||
The smp_wmb() memory barrier gives a cumul-fence link from X to W, and
|
||||
assuming r1 = 1 at the end, there is an rfe link from W to Z. This
|
||||
means that the store to buf must propagate from P0 to P1 before Z
|
||||
executes. Next, Z and Y are on the same CPU and the smp_rmb() fence
|
||||
provides an xb link from Z to Y (i.e., it forces Z to execute before
|
||||
Y). Therefore we have X ->vis Y: X must propagate to Y's CPU before Y
|
||||
executes.
|
||||
|
||||
The second complicating factor mentioned above arises from the fact
|
||||
that when we are considering data races, some of the memory accesses
|
||||
are plain. Now, although we have not said so explicitly, up to this
|
||||
point most of the relations defined by the LKMM (ppo, hb, prop,
|
||||
cumul-fence, pb, and so on -- including vis) apply only to marked
|
||||
accesses.
|
||||
|
||||
There are good reasons for this restriction. The compiler is not
|
||||
allowed to apply fancy transformations to marked accesses, and
|
||||
consequently each such access in the source code corresponds more or
|
||||
less directly to a single machine instruction in the object code. But
|
||||
plain accesses are a different story; the compiler may combine them,
|
||||
split them up, duplicate them, eliminate them, invent new ones, and
|
||||
who knows what else. Seeing a plain access in the source code tells
|
||||
you almost nothing about what machine instructions will end up in the
|
||||
object code.
|
||||
|
||||
Fortunately, the compiler isn't completely free; it is subject to some
|
||||
limitations. For one, it is not allowed to introduce a data race into
|
||||
the object code if the source code does not already contain a data
|
||||
race (if it could, memory models would be useless and no multithreaded
|
||||
code would be safe!). For another, it cannot move a plain access past
|
||||
a compiler barrier.
|
||||
|
||||
A compiler barrier is a kind of fence, but as the name implies, it
|
||||
only affects the compiler; it does not necessarily have any effect on
|
||||
how instructions are executed by the CPU. In Linux kernel source
|
||||
code, the barrier() function is a compiler barrier. It doesn't give
|
||||
rise directly to any machine instructions in the object code; rather,
|
||||
it affects how the compiler generates the rest of the object code.
|
||||
Given source code like this:
|
||||
|
||||
... some memory accesses ...
|
||||
barrier();
|
||||
... some other memory accesses ...
|
||||
|
||||
the barrier() function ensures that the machine instructions
|
||||
corresponding to the first group of accesses will all end po-before
|
||||
any machine instructions corresponding to the second group of accesses
|
||||
-- even if some of the accesses are plain. (Of course, the CPU may
|
||||
then execute some of those accesses out of program order, but we
|
||||
already know how to deal with such issues.) Without the barrier()
|
||||
there would be no such guarantee; the two groups of accesses could be
|
||||
intermingled or even reversed in the object code.
|
||||
|
||||
The LKMM doesn't say much about the barrier() function, but it does
|
||||
require that all fences are also compiler barriers. In addition, it
|
||||
requires that the ordering properties of memory barriers such as
|
||||
smp_rmb() or smp_store_release() apply to plain accesses as well as to
|
||||
marked accesses.
|
||||
|
||||
This is the key to analyzing data races. Consider the MP pattern
|
||||
again, now using plain accesses for buf:
|
||||
|
||||
int buf = 0, flag = 0;
|
||||
|
||||
P0()
|
||||
{
|
||||
U: buf = 1;
|
||||
smp_wmb();
|
||||
X: WRITE_ONCE(flag, 1);
|
||||
}
|
||||
|
||||
P1()
|
||||
{
|
||||
int r1;
|
||||
int r2 = 0;
|
||||
|
||||
Y: r1 = READ_ONCE(flag);
|
||||
if (r1) {
|
||||
smp_rmb();
|
||||
V: r2 = buf;
|
||||
}
|
||||
}
|
||||
|
||||
This program does not contain a data race. Although the U and V
|
||||
accesses conflict, the LKMM can prove they are not concurrent as
|
||||
follows:
|
||||
|
||||
The smp_wmb() fence in P0 is both a compiler barrier and a
|
||||
cumul-fence. It guarantees that no matter what hash of
|
||||
machine instructions the compiler generates for the plain
|
||||
access U, all those instructions will be po-before the fence.
|
||||
Consequently U's store to buf, no matter how it is carried out
|
||||
at the machine level, must propagate to P1 before X's store to
|
||||
flag does.
|
||||
|
||||
X and Y are both marked accesses. Hence an rfe link from X to
|
||||
Y is a valid indicator that X propagated to P1 before Y
|
||||
executed, i.e., X ->vis Y. (And if there is no rfe link then
|
||||
r1 will be 0, so V will not be executed and ipso facto won't
|
||||
race with U.)
|
||||
|
||||
The smp_rmb() fence in P1 is a compiler barrier as well as a
|
||||
fence. It guarantees that all the machine-level instructions
|
||||
corresponding to the access V will be po-after the fence, and
|
||||
therefore any loads among those instructions will execute
|
||||
after the fence does and hence after Y does.
|
||||
|
||||
Thus U's store to buf is forced to propagate to P1 before V's load
|
||||
executes (assuming V does execute), ruling out the possibility of a
|
||||
data race between them.
|
||||
|
||||
This analysis illustrates how the LKMM deals with plain accesses in
|
||||
general. Suppose R is a plain load and we want to show that R
|
||||
executes before some marked access E. We can do this by finding a
|
||||
marked access X such that R and X are ordered by a suitable fence and
|
||||
X ->xb* E. If E was also a plain access, we would also look for a
|
||||
marked access Y such that X ->xb* Y, and Y and E are ordered by a
|
||||
fence. We describe this arrangement by saying that R is
|
||||
"post-bounded" by X and E is "pre-bounded" by Y.
|
||||
|
||||
In fact, we go one step further: Since R is a read, we say that R is
|
||||
"r-post-bounded" by X. Similarly, E would be "r-pre-bounded" or
|
||||
"w-pre-bounded" by Y, depending on whether E was a store or a load.
|
||||
This distinction is needed because some fences affect only loads
|
||||
(i.e., smp_rmb()) and some affect only stores (smp_wmb()); otherwise
|
||||
the two types of bounds are the same. And as a degenerate case, we
|
||||
say that a marked access pre-bounds and post-bounds itself (e.g., if R
|
||||
above were a marked load then X could simply be taken to be R itself.)
|
||||
|
||||
The need to distinguish between r- and w-bounding raises yet another
|
||||
issue. When the source code contains a plain store, the compiler is
|
||||
allowed to put plain loads of the same location into the object code.
|
||||
For example, given the source code:
|
||||
|
||||
x = 1;
|
||||
|
||||
the compiler is theoretically allowed to generate object code that
|
||||
looks like:
|
||||
|
||||
if (x != 1)
|
||||
x = 1;
|
||||
|
||||
thereby adding a load (and possibly replacing the store entirely).
|
||||
For this reason, whenever the LKMM requires a plain store to be
|
||||
w-pre-bounded or w-post-bounded by a marked access, it also requires
|
||||
the store to be r-pre-bounded or r-post-bounded, so as to handle cases
|
||||
where the compiler adds a load.
|
||||
|
||||
(This may be overly cautious. We don't know of any examples where a
|
||||
compiler has augmented a store with a load in this fashion, and the
|
||||
Linux kernel developers would probably fight pretty hard to change a
|
||||
compiler if it ever did this. Still, better safe than sorry.)
|
||||
|
||||
Incidentally, the other tranformation -- augmenting a plain load by
|
||||
adding in a store to the same location -- is not allowed. This is
|
||||
because the compiler cannot know whether any other CPUs might perform
|
||||
a concurrent load from that location. Two concurrent loads don't
|
||||
constitute a race (they can't interfere with each other), but a store
|
||||
does race with a concurrent load. Thus adding a store might create a
|
||||
data race where one was not already present in the source code,
|
||||
something the compiler is forbidden to do. Augmenting a store with a
|
||||
load, on the other hand, is acceptable because doing so won't create a
|
||||
data race unless one already existed.
|
||||
|
||||
The LKMM includes a second way to pre-bound plain accesses, in
|
||||
addition to fences: an address dependency from a marked load. That
|
||||
is, in the sequence:
|
||||
|
||||
p = READ_ONCE(ptr);
|
||||
r = *p;
|
||||
|
||||
the LKMM says that the marked load of ptr pre-bounds the plain load of
|
||||
*p; the marked load must execute before any of the machine
|
||||
instructions corresponding to the plain load. This is a reasonable
|
||||
stipulation, since after all, the CPU can't perform the load of *p
|
||||
until it knows what value p will hold. Furthermore, without some
|
||||
assumption like this one, some usages typical of RCU would count as
|
||||
data races. For example:
|
||||
|
||||
int a = 1, b;
|
||||
int *ptr = &a;
|
||||
|
||||
P0()
|
||||
{
|
||||
b = 2;
|
||||
rcu_assign_pointer(ptr, &b);
|
||||
}
|
||||
|
||||
P1()
|
||||
{
|
||||
int *p;
|
||||
int r;
|
||||
|
||||
rcu_read_lock();
|
||||
p = rcu_dereference(ptr);
|
||||
r = *p;
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
(In this example the rcu_read_lock() and rcu_read_unlock() calls don't
|
||||
really do anything, because there aren't any grace periods. They are
|
||||
included merely for the sake of good form; typically P0 would call
|
||||
synchronize_rcu() somewhere after the rcu_assign_pointer().)
|
||||
|
||||
rcu_assign_pointer() performs a store-release, so the plain store to b
|
||||
is definitely w-post-bounded before the store to ptr, and the two
|
||||
stores will propagate to P1 in that order. However, rcu_dereference()
|
||||
is only equivalent to READ_ONCE(). While it is a marked access, it is
|
||||
not a fence or compiler barrier. Hence the only guarantee we have
|
||||
that the load of ptr in P1 is r-pre-bounded before the load of *p
|
||||
(thus avoiding a race) is the assumption about address dependencies.
|
||||
|
||||
This is a situation where the compiler can undermine the memory model,
|
||||
and a certain amount of care is required when programming constructs
|
||||
like this one. In particular, comparisons between the pointer and
|
||||
other known addresses can cause trouble. If you have something like:
|
||||
|
||||
p = rcu_dereference(ptr);
|
||||
if (p == &x)
|
||||
r = *p;
|
||||
|
||||
then the compiler just might generate object code resembling:
|
||||
|
||||
p = rcu_dereference(ptr);
|
||||
if (p == &x)
|
||||
r = x;
|
||||
|
||||
or even:
|
||||
|
||||
rtemp = x;
|
||||
p = rcu_dereference(ptr);
|
||||
if (p == &x)
|
||||
r = rtemp;
|
||||
|
||||
which would invalidate the memory model's assumption, since the CPU
|
||||
could now perform the load of x before the load of ptr (there might be
|
||||
a control dependency but no address dependency at the machine level).
|
||||
|
||||
Finally, it turns out there is a situation in which a plain write does
|
||||
not need to be w-post-bounded: when it is separated from the
|
||||
conflicting access by a fence. At first glance this may seem
|
||||
impossible. After all, to be conflicting the second access has to be
|
||||
on a different CPU from the first, and fences don't link events on
|
||||
different CPUs. Well, normal fences don't -- but rcu-fence can!
|
||||
Here's an example:
|
||||
|
||||
int x, y;
|
||||
|
||||
P0()
|
||||
{
|
||||
WRITE_ONCE(x, 1);
|
||||
synchronize_rcu();
|
||||
y = 3;
|
||||
}
|
||||
|
||||
P1()
|
||||
{
|
||||
rcu_read_lock();
|
||||
if (READ_ONCE(x) == 0)
|
||||
y = 2;
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
Do the plain stores to y race? Clearly not if P1 reads a non-zero
|
||||
value for x, so let's assume the READ_ONCE(x) does obtain 0. This
|
||||
means that the read-side critical section in P1 must finish executing
|
||||
before the grace period in P0 does, because RCU's Grace-Period
|
||||
Guarantee says that otherwise P0's store to x would have propagated to
|
||||
P1 before the critical section started and so would have been visible
|
||||
to the READ_ONCE(). (Another way of putting it is that the fre link
|
||||
from the READ_ONCE() to the WRITE_ONCE() gives rise to an rcu-link
|
||||
between those two events.)
|
||||
|
||||
This means there is an rcu-fence link from P1's "y = 2" store to P0's
|
||||
"y = 3" store, and consequently the first must propagate from P1 to P0
|
||||
before the second can execute. Therefore the two stores cannot be
|
||||
concurrent and there is no race, even though P1's plain store to y
|
||||
isn't w-post-bounded by any marked accesses.
|
||||
|
||||
Putting all this material together yields the following picture. For
|
||||
two conflicting stores W and W', where W ->co W', the LKMM says the
|
||||
stores don't race if W can be linked to W' by a
|
||||
|
||||
w-post-bounded ; vis ; w-pre-bounded
|
||||
|
||||
sequence. If W is plain then they also have to be linked by an
|
||||
|
||||
r-post-bounded ; xb* ; w-pre-bounded
|
||||
|
||||
sequence, and if W' is plain then they also have to be linked by a
|
||||
|
||||
w-post-bounded ; vis ; r-pre-bounded
|
||||
|
||||
sequence. For a conflicting load R and store W, the LKMM says the two
|
||||
accesses don't race if R can be linked to W by an
|
||||
|
||||
r-post-bounded ; xb* ; w-pre-bounded
|
||||
|
||||
sequence or if W can be linked to R by a
|
||||
|
||||
w-post-bounded ; vis ; r-pre-bounded
|
||||
|
||||
sequence. For the cases involving a vis link, the LKMM also accepts
|
||||
sequences in which W is linked to W' or R by a
|
||||
|
||||
strong-fence ; xb* ; {w and/or r}-pre-bounded
|
||||
|
||||
sequence with no post-bounding, and in every case the LKMM also allows
|
||||
the link simply to be a fence with no bounding at all. If no sequence
|
||||
of the appropriate sort exists, the LKMM says that the accesses race.
|
||||
|
||||
There is one more part of the LKMM related to plain accesses (although
|
||||
not to data races) we should discuss. Recall that many relations such
|
||||
as hb are limited to marked accesses only. As a result, the
|
||||
happens-before, propagates-before, and rcu axioms (which state that
|
||||
various relation must not contain a cycle) doesn't apply to plain
|
||||
accesses. Nevertheless, we do want to rule out such cycles, because
|
||||
they don't make sense even for plain accesses.
|
||||
|
||||
To this end, the LKMM imposes three extra restrictions, together
|
||||
called the "plain-coherence" axiom because of their resemblance to the
|
||||
rules used by the operational model to ensure cache coherence (that
|
||||
is, the rules governing the memory subsystem's choice of a store to
|
||||
satisfy a load request and its determination of where a store will
|
||||
fall in the coherence order):
|
||||
|
||||
If R and W conflict and it is possible to link R to W by one
|
||||
of the xb* sequences listed above, then W ->rfe R is not
|
||||
allowed (i.e., a load cannot read from a store that it
|
||||
executes before, even if one or both is plain).
|
||||
|
||||
If W and R conflict and it is possible to link W to R by one
|
||||
of the vis sequences listed above, then R ->fre W is not
|
||||
allowed (i.e., if a store is visible to a load then the load
|
||||
must read from that store or one coherence-after it).
|
||||
|
||||
If W and W' conflict and it is possible to link W to W' by one
|
||||
of the vis sequences listed above, then W' ->co W is not
|
||||
allowed (i.e., if one store is visible to a second then the
|
||||
second must come after the first in the coherence order).
|
||||
|
||||
This is the extent to which the LKMM deals with plain accesses.
|
||||
Perhaps it could say more (for example, plain accesses might
|
||||
contribute to the ppo relation), but at the moment it seems that this
|
||||
minimal, conservative approach is good enough.
|
||||
|
||||
|
||||
ODDS AND ENDS
|
||||
-------------
|
||||
|
||||
|
@ -1943,6 +2481,16 @@ treated as READ_ONCE() and rcu_assign_pointer() is treated as
|
|||
smp_store_release() -- which is basically how the Linux kernel treats
|
||||
them.
|
||||
|
||||
Although we said that plain accesses are not linked by the ppo
|
||||
relation, they do contribute to it indirectly. Namely, when there is
|
||||
an address dependency from a marked load R to a plain store W,
|
||||
followed by smp_wmb() and then a marked store W', the LKMM creates a
|
||||
ppo link from R to W'. The reasoning behind this is perhaps a little
|
||||
shaky, but essentially it says there is no way to generate object code
|
||||
for this source code in which W' could execute before R. Just as with
|
||||
pre-bounding by address dependencies, it is possible for the compiler
|
||||
to undermine this relation if sufficient care is not taken.
|
||||
|
||||
There are a few oddball fences which need special treatment:
|
||||
smp_mb__before_atomic(), smp_mb__after_atomic(), and
|
||||
smp_mb__after_spinlock(). The LKMM uses fence events with special
|
||||
|
|
|
@ -197,7 +197,7 @@ empty (wr-incoh | rw-incoh | ww-incoh) as plain-coherence
|
|||
(* Actual races *)
|
||||
let ww-nonrace = ww-vis & ((Marked * W) | rw-xbstar) & ((W * Marked) | wr-vis)
|
||||
let ww-race = (pre-race & co) \ ww-nonrace
|
||||
let wr-race = (pre-race & (co? ; rf)) \ wr-vis
|
||||
let wr-race = (pre-race & (co? ; rf)) \ wr-vis \ rw-xbstar^-1
|
||||
let rw-race = (pre-race & fr) \ rw-xbstar
|
||||
|
||||
flag ~empty (ww-race | wr-race | rw-race) as data-race
|
||||
|
|
|
@ -1,8 +1,5 @@
|
|||
CONFIG_SMP=y
|
||||
CONFIG_NR_CPUS=2
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_PREEMPT_NONE=n
|
||||
CONFIG_PREEMPT_VOLUNTARY=n
|
||||
CONFIG_PREEMPT=y
|
||||
|
|
|
@ -9,9 +9,6 @@ CONFIG_NO_HZ_IDLE=y
|
|||
CONFIG_NO_HZ_FULL=n
|
||||
CONFIG_RCU_FAST_NO_HZ=n
|
||||
CONFIG_RCU_TRACE=n
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_RCU_FANOUT=3
|
||||
CONFIG_RCU_FANOUT_LEAF=3
|
||||
CONFIG_RCU_NOCB_CPU=n
|
||||
|
|
|
@ -9,9 +9,6 @@ CONFIG_NO_HZ_IDLE=n
|
|||
CONFIG_NO_HZ_FULL=y
|
||||
CONFIG_RCU_FAST_NO_HZ=y
|
||||
CONFIG_RCU_TRACE=y
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_RCU_FANOUT=4
|
||||
CONFIG_RCU_FANOUT_LEAF=3
|
||||
CONFIG_DEBUG_LOCK_ALLOC=n
|
||||
|
|
|
@ -9,9 +9,6 @@ CONFIG_NO_HZ_IDLE=y
|
|||
CONFIG_NO_HZ_FULL=n
|
||||
CONFIG_RCU_FAST_NO_HZ=n
|
||||
CONFIG_RCU_TRACE=n
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_RCU_FANOUT=6
|
||||
CONFIG_RCU_FANOUT_LEAF=6
|
||||
CONFIG_RCU_NOCB_CPU=n
|
||||
|
|
|
@ -9,9 +9,6 @@ CONFIG_NO_HZ_IDLE=y
|
|||
CONFIG_NO_HZ_FULL=n
|
||||
CONFIG_RCU_FAST_NO_HZ=n
|
||||
CONFIG_RCU_TRACE=n
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_RCU_FANOUT=3
|
||||
CONFIG_RCU_FANOUT_LEAF=2
|
||||
CONFIG_RCU_NOCB_CPU=y
|
||||
|
|
|
@ -8,9 +8,6 @@ CONFIG_HZ_PERIODIC=n
|
|||
CONFIG_NO_HZ_IDLE=y
|
||||
CONFIG_NO_HZ_FULL=n
|
||||
CONFIG_RCU_TRACE=n
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_RCU_NOCB_CPU=n
|
||||
CONFIG_DEBUG_LOCK_ALLOC=n
|
||||
CONFIG_RCU_BOOST=n
|
||||
|
|
|
@ -6,9 +6,6 @@ CONFIG_PREEMPT=n
|
|||
CONFIG_HZ_PERIODIC=n
|
||||
CONFIG_NO_HZ_IDLE=y
|
||||
CONFIG_NO_HZ_FULL=n
|
||||
CONFIG_HOTPLUG_CPU=n
|
||||
CONFIG_SUSPEND=n
|
||||
CONFIG_HIBERNATION=n
|
||||
CONFIG_DEBUG_LOCK_ALLOC=n
|
||||
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
|
||||
CONFIG_RCU_EXPERT=y
|
||||
|
|
|
@ -6,7 +6,6 @@ Kconfig Parameters:
|
|||
|
||||
CONFIG_DEBUG_LOCK_ALLOC -- Do three, covering CONFIG_PROVE_LOCKING & not.
|
||||
CONFIG_DEBUG_OBJECTS_RCU_HEAD -- Do one.
|
||||
CONFIG_HOTPLUG_CPU -- Do half. (Every second.)
|
||||
CONFIG_HZ_PERIODIC -- Do one.
|
||||
CONFIG_NO_HZ_IDLE -- Do those not otherwise specified. (Groups of two.)
|
||||
CONFIG_NO_HZ_FULL -- Do two, one with partial CPU enablement.
|
||||
|
|
Loading…
Reference in New Issue