ARM: bcmring: use proper MMIO accessors

A lot of code in bcmring just dereferences pointers to MMIO
locations, which is not safe. This annotates the pointers
correctly using __iomem and uses readl/write to access them.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
Arnd Bergmann 2012-04-25 16:44:23 +00:00
parent 8a3fb8607a
commit 878040ef83
18 changed files with 306 additions and 304 deletions

View File

@ -61,21 +61,21 @@ static int chipcHw_divide(int num, int denom)
/****************************************************************************/ /****************************************************************************/
chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configurable clock */ chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configurable clock */
) { ) {
volatile uint32_t *pPLLReg = (uint32_t *) 0x0; uint32_t __iomem *pPLLReg = NULL;
volatile uint32_t *pClockCtrl = (uint32_t *) 0x0; uint32_t __iomem *pClockCtrl = NULL;
volatile uint32_t *pDependentClock = (uint32_t *) 0x0; uint32_t __iomem *pDependentClock = NULL;
uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */ uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */ uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
uint32_t dependentClockType = 0; uint32_t dependentClockType = 0;
uint32_t vcoHz = 0; uint32_t vcoHz = 0;
/* Get VCO frequencies */ /* Get VCO frequencies */
if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) { if ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
uint64_t adjustFreq = 0; uint64_t adjustFreq = 0;
vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
/* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */ /* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
@ -86,13 +86,13 @@ chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configur
} else { } else {
vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
} }
vcoFreqPll2Hz = vcoFreqPll2Hz =
chipcHw_XTAL_FREQ_Hz * chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> ((readl(&pChipcHw->PLLPreDivider2) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
switch (clock) { switch (clock) {
@ -187,51 +187,51 @@ chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configur
if (pPLLReg) { if (pPLLReg) {
/* Obtain PLL clock frequency */ /* Obtain PLL clock frequency */
if (*pPLLReg & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) { if (readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
/* Return crystal clock frequency when bypassed */ /* Return crystal clock frequency when bypassed */
return chipcHw_XTAL_FREQ_Hz; return chipcHw_XTAL_FREQ_Hz;
} else if (clock == chipcHw_CLOCK_DDR) { } else if (clock == chipcHw_CLOCK_DDR) {
/* DDR frequency is configured in PLLDivider register */ /* DDR frequency is configured in PLLDivider register */
return chipcHw_divide (vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256)); return chipcHw_divide (vcoHz, (((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) ? ((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) : 256));
} else { } else {
/* From chip revision number B0, LCD clock is internally divided by 2 */ /* From chip revision number B0, LCD clock is internally divided by 2 */
if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) { if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
vcoHz >>= 1; vcoHz >>= 1;
} }
/* Obtain PLL clock frequency using VCO dividers */ /* Obtain PLL clock frequency using VCO dividers */
return chipcHw_divide(vcoHz, ((*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256)); return chipcHw_divide(vcoHz, ((readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
} }
} else if (pClockCtrl) { } else if (pClockCtrl) {
/* Obtain divider clock frequency */ /* Obtain divider clock frequency */
uint32_t div; uint32_t div;
uint32_t freq = 0; uint32_t freq = 0;
if (*pClockCtrl & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) { if (readl(pClockCtrl) & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
/* Return crystal clock frequency when bypassed */ /* Return crystal clock frequency when bypassed */
return chipcHw_XTAL_FREQ_Hz; return chipcHw_XTAL_FREQ_Hz;
} else if (pDependentClock) { } else if (pDependentClock) {
/* Identify the dependent clock frequency */ /* Identify the dependent clock frequency */
switch (dependentClockType) { switch (dependentClockType) {
case PLL_CLOCK: case PLL_CLOCK:
if (*pDependentClock & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) { if (readl(pDependentClock) & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
/* Use crystal clock frequency when dependent PLL clock is bypassed */ /* Use crystal clock frequency when dependent PLL clock is bypassed */
freq = chipcHw_XTAL_FREQ_Hz; freq = chipcHw_XTAL_FREQ_Hz;
} else { } else {
/* Obtain PLL clock frequency using VCO dividers */ /* Obtain PLL clock frequency using VCO dividers */
div = *pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK; div = readl(pDependentClock) & chipcHw_REG_PLL_CLOCK_MDIV_MASK;
freq = div ? chipcHw_divide(vcoHz, div) : 0; freq = div ? chipcHw_divide(vcoHz, div) : 0;
} }
break; break;
case NON_PLL_CLOCK: case NON_PLL_CLOCK:
if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) { if (pDependentClock == &pChipcHw->ACLKClock) {
freq = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS); freq = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
} else { } else {
if (*pDependentClock & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) { if (readl(pDependentClock) & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
/* Use crystal clock frequency when dependent divider clock is bypassed */ /* Use crystal clock frequency when dependent divider clock is bypassed */
freq = chipcHw_XTAL_FREQ_Hz; freq = chipcHw_XTAL_FREQ_Hz;
} else { } else {
/* Obtain divider clock frequency using XTAL dividers */ /* Obtain divider clock frequency using XTAL dividers */
div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK; div = readl(pDependentClock) & chipcHw_REG_DIV_CLOCK_DIV_MASK;
freq = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, (div ? div : 256)); freq = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, (div ? div : 256));
} }
} }
@ -242,7 +242,7 @@ chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configur
freq = chipcHw_XTAL_FREQ_Hz; freq = chipcHw_XTAL_FREQ_Hz;
} }
div = *pClockCtrl & chipcHw_REG_DIV_CLOCK_DIV_MASK; div = readl(pClockCtrl) & chipcHw_REG_DIV_CLOCK_DIV_MASK;
return chipcHw_divide(freq, (div ? div : 256)); return chipcHw_divide(freq, (div ? div : 256));
} }
return 0; return 0;
@ -261,9 +261,9 @@ chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configur
chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configurable clock */ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configurable clock */
uint32_t freq /* [ IN ] Clock frequency in Hz */ uint32_t freq /* [ IN ] Clock frequency in Hz */
) { ) {
volatile uint32_t *pPLLReg = (uint32_t *) 0x0; uint32_t __iomem *pPLLReg = NULL;
volatile uint32_t *pClockCtrl = (uint32_t *) 0x0; uint32_t __iomem *pClockCtrl = NULL;
volatile uint32_t *pDependentClock = (uint32_t *) 0x0; uint32_t __iomem *pDependentClock = NULL;
uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */ uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
uint32_t desVcoFreqPll1Hz = 0; /* Desired VCO frequency for PLL1 in Hz */ uint32_t desVcoFreqPll1Hz = 0; /* Desired VCO frequency for PLL1 in Hz */
uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */ uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
@ -272,12 +272,12 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
uint32_t desVcoHz = 0; uint32_t desVcoHz = 0;
/* Get VCO frequencies */ /* Get VCO frequencies */
if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) { if ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
uint64_t adjustFreq = 0; uint64_t adjustFreq = 0;
vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
/* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */ /* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
@ -289,16 +289,16 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
/* Desired VCO frequency */ /* Desired VCO frequency */
desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
(((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> (((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT) + 1); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT) + 1);
} else { } else {
vcoFreqPll1Hz = desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz * vcoFreqPll1Hz = desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> ((readl(&pChipcHw->PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
} }
vcoFreqPll2Hz = chipcHw_XTAL_FREQ_Hz * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) * vcoFreqPll2Hz = chipcHw_XTAL_FREQ_Hz * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >> ((readl(&pChipcHw->PLLPreDivider2) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT); chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
switch (clock) { switch (clock) {
@ -307,8 +307,7 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
/* Dvide DDR_phy by two to obtain DDR_ctrl clock */ /* Dvide DDR_phy by two to obtain DDR_ctrl clock */
pChipcHw->DDRClock = (pChipcHw->DDRClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((((freq / 2) / chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) writel((readl(&pChipcHw->DDRClock) & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((((freq / 2) / chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) << chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT), &pChipcHw->DDRClock);
<< chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
pPLLReg = &pChipcHw->DDRClock; pPLLReg = &pChipcHw->DDRClock;
@ -329,8 +328,7 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
/* Configure the VPM:BUS ratio settings */ /* Configure the VPM:BUS ratio settings */
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((chipcHw_divide (freq, chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) writel((readl(&pChipcHw->VPMClock) & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((chipcHw_divide (freq, chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1) << chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT), &pChipcHw->VPMClock);
<< chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
pPLLReg = &pChipcHw->VPMClock; pPLLReg = &pChipcHw->VPMClock;
@ -428,9 +426,9 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
/* For DDR settings use only the PLL divider clock */ /* For DDR settings use only the PLL divider clock */
if (pPLLReg == &pChipcHw->DDRClock) { if (pPLLReg == &pChipcHw->DDRClock) {
/* Set M1DIV for PLL1, which controls the DDR clock */ /* Set M1DIV for PLL1, which controls the DDR clock */
reg32_write(&pChipcHw->PLLDivider, (pChipcHw->PLLDivider & 0x00FFFFFF) | ((chipcHw_REG_PLL_DIVIDER_MDIV (desVcoHz, freq)) << 24)); reg32_write(&pChipcHw->PLLDivider, (readl(&pChipcHw->PLLDivider) & 0x00FFFFFF) | ((chipcHw_REG_PLL_DIVIDER_MDIV (desVcoHz, freq)) << 24));
/* Calculate expected frequency */ /* Calculate expected frequency */
freq = chipcHw_divide(vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256)); freq = chipcHw_divide(vcoHz, (((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) ? ((readl(&pChipcHw->PLLDivider) & 0xFF000000) >> 24) : 256));
} else { } else {
/* From chip revision number B0, LCD clock is internally divided by 2 */ /* From chip revision number B0, LCD clock is internally divided by 2 */
if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) { if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
@ -441,7 +439,7 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
reg32_modify_and(pPLLReg, ~(chipcHw_REG_PLL_CLOCK_MDIV_MASK)); reg32_modify_and(pPLLReg, ~(chipcHw_REG_PLL_CLOCK_MDIV_MASK));
reg32_modify_or(pPLLReg, chipcHw_REG_PLL_DIVIDER_MDIV(desVcoHz, freq)); reg32_modify_or(pPLLReg, chipcHw_REG_PLL_DIVIDER_MDIV(desVcoHz, freq));
/* Calculate expected frequency */ /* Calculate expected frequency */
freq = chipcHw_divide(vcoHz, ((*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256)); freq = chipcHw_divide(vcoHz, ((readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (readl(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
} }
/* Wait for for atleast 200ns as per the protocol to change frequency */ /* Wait for for atleast 200ns as per the protocol to change frequency */
udelay(1); udelay(1);
@ -460,16 +458,16 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
if (pDependentClock) { if (pDependentClock) {
switch (dependentClockType) { switch (dependentClockType) {
case PLL_CLOCK: case PLL_CLOCK:
divider = chipcHw_divide(chipcHw_divide (desVcoHz, (*pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK)), freq); divider = chipcHw_divide(chipcHw_divide (desVcoHz, (readl(pDependentClock) & chipcHw_REG_PLL_CLOCK_MDIV_MASK)), freq);
break; break;
case NON_PLL_CLOCK: case NON_PLL_CLOCK:
{ {
uint32_t sourceClock = 0; uint32_t sourceClock = 0;
if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) { if (pDependentClock == &pChipcHw->ACLKClock) {
sourceClock = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS); sourceClock = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
} else { } else {
uint32_t div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK; uint32_t div = readl(pDependentClock) & chipcHw_REG_DIV_CLOCK_DIV_MASK;
sourceClock = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, ((div) ? div : 256)); sourceClock = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, ((div) ? div : 256));
} }
divider = chipcHw_divide(sourceClock, freq); divider = chipcHw_divide(sourceClock, freq);
@ -483,7 +481,7 @@ chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configu
if (divider) { if (divider) {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
/* Set the divider to obtain the required frequency */ /* Set the divider to obtain the required frequency */
*pClockCtrl = (*pClockCtrl & (~chipcHw_REG_DIV_CLOCK_DIV_MASK)) | (((divider > 256) ? chipcHw_REG_DIV_CLOCK_DIV_256 : divider) & chipcHw_REG_DIV_CLOCK_DIV_MASK); writel((readl(pClockCtrl) & (~chipcHw_REG_DIV_CLOCK_DIV_MASK)) | (((divider > 256) ? chipcHw_REG_DIV_CLOCK_DIV_256 : divider) & chipcHw_REG_DIV_CLOCK_DIV_MASK), pClockCtrl);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
return freq; return freq;
} }
@ -515,25 +513,26 @@ static int vpmPhaseAlignA0(void)
int count = 0; int count = 0;
for (iter = 0; (iter < MAX_PHASE_ALIGN_ATTEMPTS) && (adjustCount < MAX_PHASE_ADJUST_COUNT); iter++) { for (iter = 0; (iter < MAX_PHASE_ALIGN_ATTEMPTS) && (adjustCount < MAX_PHASE_ADJUST_COUNT); iter++) {
phaseControl = (pChipcHw->VPMClock & chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT; phaseControl = (readl(&pChipcHw->VPMClock) & chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT;
phaseValue = 0; phaseValue = 0;
prevPhaseComp = 0; prevPhaseComp = 0;
/* Step 1: Look for falling PH_COMP transition */ /* Step 1: Look for falling PH_COMP transition */
/* Read the contents of VPM Clock resgister */ /* Read the contents of VPM Clock resgister */
phaseValue = pChipcHw->VPMClock; phaseValue = readl(&pChipcHw->VPMClock);
do { do {
/* Store previous value of phase comparator */ /* Store previous value of phase comparator */
prevPhaseComp = phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP; prevPhaseComp = phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP;
/* Change the value of PH_CTRL. */ /* Change the value of PH_CTRL. */
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); reg32_write(&pChipcHw->VPMClock,
(readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */ /* Wait atleast 20 ns */
udelay(1); udelay(1);
/* Toggle the LOAD_CH after phase control is written. */ /* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
/* Read the contents of VPM Clock resgister. */ /* Read the contents of VPM Clock resgister. */
phaseValue = pChipcHw->VPMClock; phaseValue = readl(&pChipcHw->VPMClock);
if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) { if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
phaseControl = (0x3F & (phaseControl - 1)); phaseControl = (0x3F & (phaseControl - 1));
@ -557,12 +556,13 @@ static int vpmPhaseAlignA0(void)
for (count = 0; (count < 5) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) { for (count = 0; (count < 5) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
phaseControl = (0x3F & (phaseControl + 1)); phaseControl = (0x3F & (phaseControl + 1));
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); reg32_write(&pChipcHw->VPMClock,
(readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */ /* Wait atleast 20 ns */
udelay(1); udelay(1);
/* Toggle the LOAD_CH after phase control is written. */ /* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
phaseValue = pChipcHw->VPMClock; phaseValue = readl(&pChipcHw->VPMClock);
/* Count number of adjustment made */ /* Count number of adjustment made */
adjustCount++; adjustCount++;
} }
@ -581,12 +581,13 @@ static int vpmPhaseAlignA0(void)
for (count = 0; (count < 3) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) { for (count = 0; (count < 3) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
phaseControl = (0x3F & (phaseControl - 1)); phaseControl = (0x3F & (phaseControl - 1));
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); reg32_write(&pChipcHw->VPMClock,
(readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */ /* Wait atleast 20 ns */
udelay(1); udelay(1);
/* Toggle the LOAD_CH after phase control is written. */ /* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
phaseValue = pChipcHw->VPMClock; phaseValue = readl(&pChipcHw->VPMClock);
/* Count number of adjustment made */ /* Count number of adjustment made */
adjustCount++; adjustCount++;
} }
@ -605,12 +606,13 @@ static int vpmPhaseAlignA0(void)
for (count = 0; (count < 5); count++) { for (count = 0; (count < 5); count++) {
phaseControl = (0x3F & (phaseControl - 1)); phaseControl = (0x3F & (phaseControl - 1));
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); reg32_write(&pChipcHw->VPMClock,
(readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */ /* Wait atleast 20 ns */
udelay(1); udelay(1);
/* Toggle the LOAD_CH after phase control is written. */ /* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
phaseValue = pChipcHw->VPMClock; phaseValue = readl(&pChipcHw->VPMClock);
/* Count number of adjustment made */ /* Count number of adjustment made */
adjustCount++; adjustCount++;
} }
@ -631,14 +633,14 @@ static int vpmPhaseAlignA0(void)
/* Store previous value of phase comparator */ /* Store previous value of phase comparator */
prevPhaseComp = phaseValue; prevPhaseComp = phaseValue;
/* Change the value of PH_CTRL. */ /* Change the value of PH_CTRL. */
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); reg32_write(&pChipcHw->VPMClock,
(readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */ /* Wait atleast 20 ns */
udelay(1); udelay(1);
/* Toggle the LOAD_CH after phase control is written. */ /* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
/* Read the contents of VPM Clock resgister. */ /* Read the contents of VPM Clock resgister. */
phaseValue = pChipcHw->VPMClock; phaseValue = readl(&pChipcHw->VPMClock);
if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) { if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
phaseControl = (0x3F & (phaseControl - 1)); phaseControl = (0x3F & (phaseControl - 1));
@ -661,13 +663,13 @@ static int vpmPhaseAlignA0(void)
} }
/* For VPM Phase should be perfectly aligned. */ /* For VPM Phase should be perfectly aligned. */
phaseControl = (((pChipcHw->VPMClock >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT) - 1) & 0x3F); phaseControl = (((readl(&pChipcHw->VPMClock) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT) - 1) & 0x3F);
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT); writel((readl(&pChipcHw->VPMClock) & ~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT), &pChipcHw->VPMClock);
/* Load new phase value */ /* Load new phase value */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -697,7 +699,7 @@ int chipcHw_vpmPhaseAlign(void)
int adjustCount = 0; int adjustCount = 0;
/* Disable VPM access */ /* Disable VPM access */
pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE; writel(readl(&pChipcHw->Spare1) & ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE, &pChipcHw->Spare1);
/* Disable HW VPM phase alignment */ /* Disable HW VPM phase alignment */
chipcHw_vpmHwPhaseAlignDisable(); chipcHw_vpmHwPhaseAlignDisable();
/* Enable SW VPM phase alignment */ /* Enable SW VPM phase alignment */
@ -715,23 +717,24 @@ int chipcHw_vpmPhaseAlign(void)
phaseControl--; phaseControl--;
} else { } else {
/* Enable VPM access */ /* Enable VPM access */
pChipcHw->Spare1 |= chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE; writel(readl(&pChipcHw->Spare1) | chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE, &pChipcHw->Spare1);
/* Return adjust count */ /* Return adjust count */
return adjustCount; return adjustCount;
} }
/* Change the value of PH_CTRL. */ /* Change the value of PH_CTRL. */
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT)); reg32_write(&pChipcHw->VPMClock,
(readl(&pChipcHw->VPMClock) & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */ /* Wait atleast 20 ns */
udelay(1); udelay(1);
/* Toggle the LOAD_CH after phase control is written. */ /* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE; writel(readl(&pChipcHw->VPMClock) ^ chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE, &pChipcHw->VPMClock);
/* Count adjustment */ /* Count adjustment */
adjustCount++; adjustCount++;
} }
} }
/* Disable VPM access */ /* Disable VPM access */
pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE; writel(readl(&pChipcHw->Spare1) & ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE, &pChipcHw->Spare1);
return -1; return -1;
} }

View File

@ -73,9 +73,9 @@ void chipcHw_pll2Enable(uint32_t vcoFreqHz)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->PLLConfig2 = writel(chipcHw_REG_PLL_CONFIG_D_RESET |
chipcHw_REG_PLL_CONFIG_D_RESET | chipcHw_REG_PLL_CONFIG_A_RESET,
chipcHw_REG_PLL_CONFIG_A_RESET; &pChipcHw->PLLConfig2);
pllPreDivider2 = chipcHw_REG_PLL_PREDIVIDER_POWER_DOWN | pllPreDivider2 = chipcHw_REG_PLL_PREDIVIDER_POWER_DOWN |
chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER | chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER |
@ -87,28 +87,30 @@ void chipcHw_pll2Enable(uint32_t vcoFreqHz)
chipcHw_REG_PLL_PREDIVIDER_P2_SHIFT); chipcHw_REG_PLL_PREDIVIDER_P2_SHIFT);
/* Enable CHIPC registers to control the PLL */ /* Enable CHIPC registers to control the PLL */
pChipcHw->PLLStatus |= chipcHw_REG_PLL_STATUS_CONTROL_ENABLE; writel(readl(&pChipcHw->PLLStatus) | chipcHw_REG_PLL_STATUS_CONTROL_ENABLE, &pChipcHw->PLLStatus);
/* Set pre divider to get desired VCO frequency */ /* Set pre divider to get desired VCO frequency */
pChipcHw->PLLPreDivider2 = pllPreDivider2; writel(pllPreDivider2, &pChipcHw->PLLPreDivider2);
/* Set NDIV Frac */ /* Set NDIV Frac */
pChipcHw->PLLDivider2 = chipcHw_REG_PLL_DIVIDER_NDIV_f; writel(chipcHw_REG_PLL_DIVIDER_NDIV_f, &pChipcHw->PLLDivider2);
/* This has to be removed once the default values are fixed for PLL2. */ /* This has to be removed once the default values are fixed for PLL2. */
pChipcHw->PLLControl12 = 0x38000700; writel(0x38000700, &pChipcHw->PLLControl12);
pChipcHw->PLLControl22 = 0x00000015; writel(0x00000015, &pChipcHw->PLLControl22);
/* Reset PLL2 */ /* Reset PLL2 */
if (vcoFreqHz > chipcHw_REG_PLL_CONFIG_VCO_SPLIT_FREQ) { if (vcoFreqHz > chipcHw_REG_PLL_CONFIG_VCO_SPLIT_FREQ) {
pChipcHw->PLLConfig2 = chipcHw_REG_PLL_CONFIG_D_RESET | writel(chipcHw_REG_PLL_CONFIG_D_RESET |
chipcHw_REG_PLL_CONFIG_A_RESET | chipcHw_REG_PLL_CONFIG_A_RESET |
chipcHw_REG_PLL_CONFIG_VCO_1601_3200 | chipcHw_REG_PLL_CONFIG_VCO_1601_3200 |
chipcHw_REG_PLL_CONFIG_POWER_DOWN; chipcHw_REG_PLL_CONFIG_POWER_DOWN,
&pChipcHw->PLLConfig2);
} else { } else {
pChipcHw->PLLConfig2 = chipcHw_REG_PLL_CONFIG_D_RESET | writel(chipcHw_REG_PLL_CONFIG_D_RESET |
chipcHw_REG_PLL_CONFIG_A_RESET | chipcHw_REG_PLL_CONFIG_A_RESET |
chipcHw_REG_PLL_CONFIG_VCO_800_1600 | chipcHw_REG_PLL_CONFIG_VCO_800_1600 |
chipcHw_REG_PLL_CONFIG_POWER_DOWN; chipcHw_REG_PLL_CONFIG_POWER_DOWN,
&pChipcHw->PLLConfig2);
} }
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -119,22 +121,25 @@ void chipcHw_pll2Enable(uint32_t vcoFreqHz)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
/* Remove analog reset and Power on the PLL */ /* Remove analog reset and Power on the PLL */
pChipcHw->PLLConfig2 &= writel(readl(&pChipcHw->PLLConfig2) &
~(chipcHw_REG_PLL_CONFIG_A_RESET | ~(chipcHw_REG_PLL_CONFIG_A_RESET |
chipcHw_REG_PLL_CONFIG_POWER_DOWN); chipcHw_REG_PLL_CONFIG_POWER_DOWN),
&pChipcHw->PLLConfig2);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
/* Wait until PLL is locked */ /* Wait until PLL is locked */
while (!(pChipcHw->PLLStatus2 & chipcHw_REG_PLL_STATUS_LOCKED)) while (!(readl(&pChipcHw->PLLStatus2) & chipcHw_REG_PLL_STATUS_LOCKED))
; ;
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
/* Remove digital reset */ /* Remove digital reset */
pChipcHw->PLLConfig2 &= ~chipcHw_REG_PLL_CONFIG_D_RESET; writel(readl(&pChipcHw->PLLConfig2) &
~chipcHw_REG_PLL_CONFIG_D_RESET,
&pChipcHw->PLLConfig2);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -157,9 +162,9 @@ void chipcHw_pll1Enable(uint32_t vcoFreqHz, chipcHw_SPREAD_SPECTRUM_e ssSupport)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->PLLConfig = writel(chipcHw_REG_PLL_CONFIG_D_RESET |
chipcHw_REG_PLL_CONFIG_D_RESET | chipcHw_REG_PLL_CONFIG_A_RESET,
chipcHw_REG_PLL_CONFIG_A_RESET; &pChipcHw->PLLConfig);
/* Setting VCO frequency */ /* Setting VCO frequency */
if (ssSupport == chipcHw_SPREAD_SPECTRUM_ALLOW) { if (ssSupport == chipcHw_SPREAD_SPECTRUM_ALLOW) {
pllPreDivider = pllPreDivider =
@ -182,30 +187,22 @@ void chipcHw_pll1Enable(uint32_t vcoFreqHz, chipcHw_SPREAD_SPECTRUM_e ssSupport)
} }
/* Enable CHIPC registers to control the PLL */ /* Enable CHIPC registers to control the PLL */
pChipcHw->PLLStatus |= chipcHw_REG_PLL_STATUS_CONTROL_ENABLE; writel(readl(&pChipcHw->PLLStatus) | chipcHw_REG_PLL_STATUS_CONTROL_ENABLE, &pChipcHw->PLLStatus);
/* Set pre divider to get desired VCO frequency */ /* Set pre divider to get desired VCO frequency */
pChipcHw->PLLPreDivider = pllPreDivider; writel(pllPreDivider, &pChipcHw->PLLPreDivider);
/* Set NDIV Frac */ /* Set NDIV Frac */
if (ssSupport == chipcHw_SPREAD_SPECTRUM_ALLOW) { if (ssSupport == chipcHw_SPREAD_SPECTRUM_ALLOW) {
pChipcHw->PLLDivider = chipcHw_REG_PLL_DIVIDER_M1DIV | writel(chipcHw_REG_PLL_DIVIDER_M1DIV | chipcHw_REG_PLL_DIVIDER_NDIV_f_SS, &pChipcHw->PLLDivider);
chipcHw_REG_PLL_DIVIDER_NDIV_f_SS;
} else { } else {
pChipcHw->PLLDivider = chipcHw_REG_PLL_DIVIDER_M1DIV | writel(chipcHw_REG_PLL_DIVIDER_M1DIV | chipcHw_REG_PLL_DIVIDER_NDIV_f, &pChipcHw->PLLDivider);
chipcHw_REG_PLL_DIVIDER_NDIV_f;
} }
/* Reset PLL1 */ /* Reset PLL1 */
if (vcoFreqHz > chipcHw_REG_PLL_CONFIG_VCO_SPLIT_FREQ) { if (vcoFreqHz > chipcHw_REG_PLL_CONFIG_VCO_SPLIT_FREQ) {
pChipcHw->PLLConfig = chipcHw_REG_PLL_CONFIG_D_RESET | writel(chipcHw_REG_PLL_CONFIG_D_RESET | chipcHw_REG_PLL_CONFIG_A_RESET | chipcHw_REG_PLL_CONFIG_VCO_1601_3200 | chipcHw_REG_PLL_CONFIG_POWER_DOWN, &pChipcHw->PLLConfig);
chipcHw_REG_PLL_CONFIG_A_RESET |
chipcHw_REG_PLL_CONFIG_VCO_1601_3200 |
chipcHw_REG_PLL_CONFIG_POWER_DOWN;
} else { } else {
pChipcHw->PLLConfig = chipcHw_REG_PLL_CONFIG_D_RESET | writel(chipcHw_REG_PLL_CONFIG_D_RESET | chipcHw_REG_PLL_CONFIG_A_RESET | chipcHw_REG_PLL_CONFIG_VCO_800_1600 | chipcHw_REG_PLL_CONFIG_POWER_DOWN, &pChipcHw->PLLConfig);
chipcHw_REG_PLL_CONFIG_A_RESET |
chipcHw_REG_PLL_CONFIG_VCO_800_1600 |
chipcHw_REG_PLL_CONFIG_POWER_DOWN;
} }
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
@ -216,22 +213,19 @@ void chipcHw_pll1Enable(uint32_t vcoFreqHz, chipcHw_SPREAD_SPECTRUM_e ssSupport)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
/* Remove analog reset and Power on the PLL */ /* Remove analog reset and Power on the PLL */
pChipcHw->PLLConfig &= writel(readl(&pChipcHw->PLLConfig) & ~(chipcHw_REG_PLL_CONFIG_A_RESET | chipcHw_REG_PLL_CONFIG_POWER_DOWN), &pChipcHw->PLLConfig);
~(chipcHw_REG_PLL_CONFIG_A_RESET |
chipcHw_REG_PLL_CONFIG_POWER_DOWN);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
/* Wait until PLL is locked */ /* Wait until PLL is locked */
while (!(pChipcHw->PLLStatus & chipcHw_REG_PLL_STATUS_LOCKED) while (!(readl(&pChipcHw->PLLStatus) & chipcHw_REG_PLL_STATUS_LOCKED)
|| !(pChipcHw-> || !(readl(&pChipcHw->PLLStatus2) & chipcHw_REG_PLL_STATUS_LOCKED))
PLLStatus2 & chipcHw_REG_PLL_STATUS_LOCKED))
; ;
/* Remove digital reset */ /* Remove digital reset */
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->PLLConfig &= ~chipcHw_REG_PLL_CONFIG_D_RESET; writel(readl(&pChipcHw->PLLConfig) & ~chipcHw_REG_PLL_CONFIG_D_RESET, &pChipcHw->PLLConfig);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
} }
@ -267,11 +261,7 @@ void chipcHw_Init(chipcHw_INIT_PARAM_t *initParam /* [ IN ] Misc chip initializ
chipcHw_clearStickyBits(chipcHw_REG_STICKY_CHIP_SOFT_RESET); chipcHw_clearStickyBits(chipcHw_REG_STICKY_CHIP_SOFT_RESET);
/* Before configuring the ARM clock, atleast we need to make sure BUS clock maintains the proper ratio with ARM clock */ /* Before configuring the ARM clock, atleast we need to make sure BUS clock maintains the proper ratio with ARM clock */
pChipcHw->ACLKClock = writel((readl(&pChipcHw->ACLKClock) & ~chipcHw_REG_ACLKClock_CLK_DIV_MASK) | (initParam-> armBusRatio & chipcHw_REG_ACLKClock_CLK_DIV_MASK), &pChipcHw->ACLKClock);
(pChipcHw->
ACLKClock & ~chipcHw_REG_ACLKClock_CLK_DIV_MASK) | (initParam->
armBusRatio &
chipcHw_REG_ACLKClock_CLK_DIV_MASK);
/* Set various core component frequencies. The order in which this is done is important for some. */ /* Set various core component frequencies. The order in which this is done is important for some. */
/* The RTBUS (DDR PHY) is derived from the BUS, and the BUS from the ARM, and VPM needs to know BUS */ /* The RTBUS (DDR PHY) is derived from the BUS, and the BUS from the ARM, and VPM needs to know BUS */

View File

@ -50,15 +50,16 @@ void chipcHw_reset(uint32_t mask)
chipcHw_softReset(chipcHw_REG_SOFT_RESET_CHIP_SOFT); chipcHw_softReset(chipcHw_REG_SOFT_RESET_CHIP_SOFT);
} }
/* Bypass the PLL clocks before reboot */ /* Bypass the PLL clocks before reboot */
pChipcHw->UARTClock |= chipcHw_REG_PLL_CLOCK_BYPASS_SELECT; writel(readl(&pChipcHw->UARTClock) | chipcHw_REG_PLL_CLOCK_BYPASS_SELECT,
pChipcHw->SPIClock |= chipcHw_REG_PLL_CLOCK_BYPASS_SELECT; &pChipcHw->UARTClock);
writel(readl(&pChipcHw->SPIClock) | chipcHw_REG_PLL_CLOCK_BYPASS_SELECT,
&pChipcHw->SPIClock);
/* Copy the chipcHw_warmReset_run_from_aram function into ARAM */ /* Copy the chipcHw_warmReset_run_from_aram function into ARAM */
do { do {
((uint32_t *) MM_IO_BASE_ARAM)[i] = writel(((uint32_t *) &chipcHw_reset_run_from_aram)[i], ((uint32_t __iomem *) MM_IO_BASE_ARAM) + i);
((uint32_t *) &chipcHw_reset_run_from_aram)[i];
i++; i++;
} while (((uint32_t *) MM_IO_BASE_ARAM)[i - 1] != 0xe1a0f00f); /* 0xe1a0f00f == asm ("mov r15, r15"); */ } while (readl(((uint32_t __iomem*) MM_IO_BASE_ARAM) + i - 1) != 0xe1a0f00f); /* 0xe1a0f00f == asm ("mov r15, r15"); */
flush_cache_all(); flush_cache_all();

View File

@ -27,7 +27,7 @@
/* ---- Include Files ---------------------------------------------------- */ /* ---- Include Files ---------------------------------------------------- */
#include <linux/types.h> #include <linux/types.h>
#include <linux/string.h> #include <linux/string.h>
#include <stddef.h> #include <linux/stddef.h>
#include <mach/csp/dmacHw.h> #include <mach/csp/dmacHw.h>
#include <mach/csp/dmacHw_reg.h> #include <mach/csp/dmacHw_reg.h>
@ -55,33 +55,32 @@ static uint32_t GetFifoSize(dmacHw_HANDLE_t handle /* [ IN ] DMA Channel handl
) { ) {
uint32_t val = 0; uint32_t val = 0;
dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle); dmacHw_CBLK_t *pCblk = dmacHw_HANDLE_TO_CBLK(handle);
dmacHw_MISC_t *pMiscReg = dmacHw_MISC_t __iomem *pMiscReg = (void __iomem *)dmacHw_REG_MISC_BASE(pCblk->module);
(dmacHw_MISC_t *) dmacHw_REG_MISC_BASE(pCblk->module);
switch (pCblk->channel) { switch (pCblk->channel) {
case 0: case 0:
val = (pMiscReg->CompParm2.lo & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm2.lo) & 0x70000000) >> 28;
break; break;
case 1: case 1:
val = (pMiscReg->CompParm3.hi & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm3.hi) & 0x70000000) >> 28;
break; break;
case 2: case 2:
val = (pMiscReg->CompParm3.lo & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm3.lo) & 0x70000000) >> 28;
break; break;
case 3: case 3:
val = (pMiscReg->CompParm4.hi & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm4.hi) & 0x70000000) >> 28;
break; break;
case 4: case 4:
val = (pMiscReg->CompParm4.lo & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm4.lo) & 0x70000000) >> 28;
break; break;
case 5: case 5:
val = (pMiscReg->CompParm5.hi & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm5.hi) & 0x70000000) >> 28;
break; break;
case 6: case 6:
val = (pMiscReg->CompParm5.lo & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm5.lo) & 0x70000000) >> 28;
break; break;
case 7: case 7:
val = (pMiscReg->CompParm6.hi & 0x70000000) >> 28; val = (readl(&pMiscReg->CompParm6.hi) & 0x70000000) >> 28;
break; break;
} }

View File

@ -27,7 +27,7 @@
/* ---- Include Files ---------------------------------------------------- */ /* ---- Include Files ---------------------------------------------------- */
#include <linux/types.h> #include <linux/types.h>
#include <stddef.h> #include <linux/stddef.h>
#include <mach/csp/dmacHw.h> #include <mach/csp/dmacHw.h>
#include <mach/csp/dmacHw_reg.h> #include <mach/csp/dmacHw_reg.h>

View File

@ -47,7 +47,7 @@ static inline void chipcHw_setClock(chipcHw_CLOCK_e clock,
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getChipId(void) static inline uint32_t chipcHw_getChipId(void)
{ {
return pChipcHw->ChipId; return readl(&pChipcHw->ChipId);
} }
/****************************************************************************/ /****************************************************************************/
@ -59,15 +59,16 @@ static inline uint32_t chipcHw_getChipId(void)
/****************************************************************************/ /****************************************************************************/
static inline void chipcHw_enableSpreadSpectrum(void) static inline void chipcHw_enableSpreadSpectrum(void)
{ {
if ((pChipcHw-> if ((readl(&pChipcHw->
PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != PLLPreDivider) & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) !=
chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) { chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
ddrcReg_PHY_ADDR_CTL_REGP->ssCfg = writel((0xFFFF << ddrcReg_PHY_ADDR_SS_CFG_NDIV_AMPLITUDE_SHIFT) |
(0xFFFF << ddrcReg_PHY_ADDR_SS_CFG_NDIV_AMPLITUDE_SHIFT) |
(ddrcReg_PHY_ADDR_SS_CFG_MIN_CYCLE_PER_TICK << (ddrcReg_PHY_ADDR_SS_CFG_MIN_CYCLE_PER_TICK <<
ddrcReg_PHY_ADDR_SS_CFG_CYCLE_PER_TICK_SHIFT); ddrcReg_PHY_ADDR_SS_CFG_CYCLE_PER_TICK_SHIFT),
ddrcReg_PHY_ADDR_CTL_REGP->ssCtl |= &ddrcReg_PHY_ADDR_CTL_REGP->ssCfg);
ddrcReg_PHY_ADDR_SS_CTRL_ENABLE; writel(readl(&ddrcReg_PHY_ADDR_CTL_REGP->ssCtl) |
ddrcReg_PHY_ADDR_SS_CTRL_ENABLE,
&ddrcReg_PHY_ADDR_CTL_REGP->ssCtl);
} }
} }
@ -93,8 +94,8 @@ static inline void chipcHw_disableSpreadSpectrum(void)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getChipProductId(void) static inline uint32_t chipcHw_getChipProductId(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
ChipId & chipcHw_REG_CHIPID_BASE_MASK) >> ChipId) & chipcHw_REG_CHIPID_BASE_MASK) >>
chipcHw_REG_CHIPID_BASE_SHIFT; chipcHw_REG_CHIPID_BASE_SHIFT;
} }
@ -109,7 +110,7 @@ static inline uint32_t chipcHw_getChipProductId(void)
/****************************************************************************/ /****************************************************************************/
static inline chipcHw_REV_NUMBER_e chipcHw_getChipRevisionNumber(void) static inline chipcHw_REV_NUMBER_e chipcHw_getChipRevisionNumber(void)
{ {
return pChipcHw->ChipId & chipcHw_REG_CHIPID_REV_MASK; return readl(&pChipcHw->ChipId) & chipcHw_REG_CHIPID_REV_MASK;
} }
/****************************************************************************/ /****************************************************************************/
@ -156,7 +157,7 @@ static inline void chipcHw_busInterfaceClockDisable(uint32_t mask)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getBusInterfaceClockStatus(void) static inline uint32_t chipcHw_getBusInterfaceClockStatus(void)
{ {
return pChipcHw->BusIntfClock; return readl(&pChipcHw->BusIntfClock);
} }
/****************************************************************************/ /****************************************************************************/
@ -215,8 +216,9 @@ static inline void chipcHw_softResetDisable(uint64_t mask)
/* Deassert module soft reset */ /* Deassert module soft reset */
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->SoftReset1 ^= ctrl1; writel(readl(&pChipcHw->SoftReset1) ^ ctrl1, &pChipcHw->SoftReset1);
pChipcHw->SoftReset2 ^= (ctrl2 & (~chipcHw_REG_SOFT_RESET_UNHOLD_MASK)); writel(readl(&pChipcHw->SoftReset2) ^ (ctrl2 &
(~chipcHw_REG_SOFT_RESET_UNHOLD_MASK)), &pChipcHw->SoftReset2);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -227,9 +229,10 @@ static inline void chipcHw_softResetEnable(uint64_t mask)
uint32_t unhold = 0; uint32_t unhold = 0;
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->SoftReset1 |= ctrl1; writel(readl(&pChipcHw->SoftReset1) | ctrl1, &pChipcHw->SoftReset1);
/* Mask out unhold request bits */ /* Mask out unhold request bits */
pChipcHw->SoftReset2 |= (ctrl2 & (~chipcHw_REG_SOFT_RESET_UNHOLD_MASK)); writel(readl(&pChipcHw->SoftReset2) | (ctrl2 &
(~chipcHw_REG_SOFT_RESET_UNHOLD_MASK)), &pChipcHw->SoftReset2);
/* Process unhold requests */ /* Process unhold requests */
if (ctrl2 & chipcHw_REG_SOFT_RESET_VPM_GLOBAL_UNHOLD) { if (ctrl2 & chipcHw_REG_SOFT_RESET_VPM_GLOBAL_UNHOLD) {
@ -246,7 +249,7 @@ static inline void chipcHw_softResetEnable(uint64_t mask)
if (unhold) { if (unhold) {
/* Make sure unhold request is effective */ /* Make sure unhold request is effective */
pChipcHw->SoftReset1 &= ~unhold; writel(readl(&pChipcHw->SoftReset1) & ~unhold, &pChipcHw->SoftReset1);
} }
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -307,7 +310,7 @@ static inline void chipcHw_setOTPOption(uint64_t mask)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getStickyBits(void) static inline uint32_t chipcHw_getStickyBits(void)
{ {
return pChipcHw->Sticky; return readl(&pChipcHw->Sticky);
} }
/****************************************************************************/ /****************************************************************************/
@ -328,7 +331,7 @@ static inline void chipcHw_setStickyBits(uint32_t mask)
bits |= chipcHw_REG_STICKY_POR_BROM; bits |= chipcHw_REG_STICKY_POR_BROM;
} else { } else {
uint32_t sticky; uint32_t sticky;
sticky = pChipcHw->Sticky; sticky = readl(pChipcHw->Sticky);
if ((mask & chipcHw_REG_STICKY_BOOT_DONE) if ((mask & chipcHw_REG_STICKY_BOOT_DONE)
&& (sticky & chipcHw_REG_STICKY_BOOT_DONE) == 0) { && (sticky & chipcHw_REG_STICKY_BOOT_DONE) == 0) {
@ -355,7 +358,7 @@ static inline void chipcHw_setStickyBits(uint32_t mask)
bits |= chipcHw_REG_STICKY_GENERAL_5; bits |= chipcHw_REG_STICKY_GENERAL_5;
} }
} }
pChipcHw->Sticky = bits; writel(bits, pChipcHw->Sticky);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -377,7 +380,7 @@ static inline void chipcHw_clearStickyBits(uint32_t mask)
(chipcHw_REG_STICKY_BOOT_DONE | chipcHw_REG_STICKY_GENERAL_1 | (chipcHw_REG_STICKY_BOOT_DONE | chipcHw_REG_STICKY_GENERAL_1 |
chipcHw_REG_STICKY_GENERAL_2 | chipcHw_REG_STICKY_GENERAL_3 | chipcHw_REG_STICKY_GENERAL_2 | chipcHw_REG_STICKY_GENERAL_3 |
chipcHw_REG_STICKY_GENERAL_4 | chipcHw_REG_STICKY_GENERAL_5)) { chipcHw_REG_STICKY_GENERAL_4 | chipcHw_REG_STICKY_GENERAL_5)) {
uint32_t sticky = pChipcHw->Sticky; uint32_t sticky = readl(&pChipcHw->Sticky);
if ((mask & chipcHw_REG_STICKY_BOOT_DONE) if ((mask & chipcHw_REG_STICKY_BOOT_DONE)
&& (sticky & chipcHw_REG_STICKY_BOOT_DONE)) { && (sticky & chipcHw_REG_STICKY_BOOT_DONE)) {
@ -410,7 +413,7 @@ static inline void chipcHw_clearStickyBits(uint32_t mask)
mask &= ~chipcHw_REG_STICKY_GENERAL_5; mask &= ~chipcHw_REG_STICKY_GENERAL_5;
} }
} }
pChipcHw->Sticky = bits | mask; writel(bits | mask, &pChipcHw->Sticky);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -426,7 +429,7 @@ static inline void chipcHw_clearStickyBits(uint32_t mask)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getSoftStraps(void) static inline uint32_t chipcHw_getSoftStraps(void)
{ {
return pChipcHw->SoftStraps; return readl(&pChipcHw->SoftStraps);
} }
/****************************************************************************/ /****************************************************************************/
@ -456,7 +459,7 @@ static inline void chipcHw_setSoftStraps(uint32_t strapOptions)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getPinStraps(void) static inline uint32_t chipcHw_getPinStraps(void)
{ {
return pChipcHw->PinStraps; return readl(&pChipcHw->PinStraps);
} }
/****************************************************************************/ /****************************************************************************/
@ -671,9 +674,9 @@ static inline void chipcHw_selectGE3(void)
/****************************************************************************/ /****************************************************************************/
static inline chipcHw_GPIO_FUNCTION_e chipcHw_getGpioPinFunction(int pin) static inline chipcHw_GPIO_FUNCTION_e chipcHw_getGpioPinFunction(int pin)
{ {
return (*((uint32_t *) chipcHw_REG_GPIO_MUX(pin)) & return (readl(chipcHw_REG_GPIO_MUX(pin))) &
(chipcHw_REG_GPIO_MUX_MASK << (chipcHw_REG_GPIO_MUX_MASK <<
chipcHw_REG_GPIO_MUX_POSITION(pin))) >> chipcHw_REG_GPIO_MUX_POSITION(pin)) >>
chipcHw_REG_GPIO_MUX_POSITION(pin); chipcHw_REG_GPIO_MUX_POSITION(pin);
} }
@ -841,8 +844,8 @@ static inline void chipcHw_setUsbDevice(void)
static inline void chipcHw_setClock(chipcHw_CLOCK_e clock, static inline void chipcHw_setClock(chipcHw_CLOCK_e clock,
chipcHw_OPTYPE_e type, int mode) chipcHw_OPTYPE_e type, int mode)
{ {
volatile uint32_t *pPLLReg = (uint32_t *) 0x0; uint32_t __iomem *pPLLReg = NULL;
volatile uint32_t *pClockCtrl = (uint32_t *) 0x0; uint32_t __iomem *pClockCtrl = NULL;
switch (clock) { switch (clock) {
case chipcHw_CLOCK_DDR: case chipcHw_CLOCK_DDR:
@ -1071,7 +1074,7 @@ static inline void chipcHw_bypassClockDisable(chipcHw_CLOCK_e clock)
/****************************************************************************/ /****************************************************************************/
static inline int chipcHw_isSoftwareStrapsEnable(void) static inline int chipcHw_isSoftwareStrapsEnable(void)
{ {
return pChipcHw->SoftStraps & 0x00000001; return readl(&pChipcHw->SoftStraps) & 0x00000001;
} }
/****************************************************************************/ /****************************************************************************/
@ -1138,7 +1141,7 @@ static inline void chipcHw_pll2TestDisable(void)
/****************************************************************************/ /****************************************************************************/
static inline int chipcHw_isPllTestEnable(void) static inline int chipcHw_isPllTestEnable(void)
{ {
return pChipcHw->PLLConfig & chipcHw_REG_PLL_CONFIG_TEST_ENABLE; return readl(&pChipcHw->PLLConfig) & chipcHw_REG_PLL_CONFIG_TEST_ENABLE;
} }
/****************************************************************************/ /****************************************************************************/
@ -1147,7 +1150,7 @@ static inline int chipcHw_isPllTestEnable(void)
/****************************************************************************/ /****************************************************************************/
static inline int chipcHw_isPll2TestEnable(void) static inline int chipcHw_isPll2TestEnable(void)
{ {
return pChipcHw->PLLConfig2 & chipcHw_REG_PLL_CONFIG_TEST_ENABLE; return readl(&pChipcHw->PLLConfig2) & chipcHw_REG_PLL_CONFIG_TEST_ENABLE;
} }
/****************************************************************************/ /****************************************************************************/
@ -1183,8 +1186,8 @@ static inline void chipcHw_pll2TestSelect(uint32_t val)
/****************************************************************************/ /****************************************************************************/
static inline uint8_t chipcHw_getPllTestSelected(void) static inline uint8_t chipcHw_getPllTestSelected(void)
{ {
return (uint8_t) ((pChipcHw-> return (uint8_t) ((readl(&pChipcHw->
PLLConfig & chipcHw_REG_PLL_CONFIG_TEST_SELECT_MASK) PLLConfig) & chipcHw_REG_PLL_CONFIG_TEST_SELECT_MASK)
>> chipcHw_REG_PLL_CONFIG_TEST_SELECT_SHIFT); >> chipcHw_REG_PLL_CONFIG_TEST_SELECT_SHIFT);
} }
@ -1194,8 +1197,8 @@ static inline uint8_t chipcHw_getPllTestSelected(void)
/****************************************************************************/ /****************************************************************************/
static inline uint8_t chipcHw_getPll2TestSelected(void) static inline uint8_t chipcHw_getPll2TestSelected(void)
{ {
return (uint8_t) ((pChipcHw-> return (uint8_t) ((readl(&pChipcHw->
PLLConfig2 & chipcHw_REG_PLL_CONFIG_TEST_SELECT_MASK) PLLConfig2) & chipcHw_REG_PLL_CONFIG_TEST_SELECT_MASK)
>> chipcHw_REG_PLL_CONFIG_TEST_SELECT_SHIFT); >> chipcHw_REG_PLL_CONFIG_TEST_SELECT_SHIFT);
} }
@ -1208,7 +1211,8 @@ static inline uint8_t chipcHw_getPll2TestSelected(void)
static inline void chipcHw_pll1Disable(void) static inline void chipcHw_pll1Disable(void)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->PLLConfig |= chipcHw_REG_PLL_CONFIG_POWER_DOWN; writel(readl(&pChipcHw->PLLConfig) | chipcHw_REG_PLL_CONFIG_POWER_DOWN,
&pChipcHw->PLLConfig);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -1221,7 +1225,8 @@ static inline void chipcHw_pll1Disable(void)
static inline void chipcHw_pll2Disable(void) static inline void chipcHw_pll2Disable(void)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->PLLConfig2 |= chipcHw_REG_PLL_CONFIG_POWER_DOWN; writel(readl(&pChipcHw->PLLConfig2) | chipcHw_REG_PLL_CONFIG_POWER_DOWN,
&pChipcHw->PLLConfig2);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -1233,7 +1238,8 @@ static inline void chipcHw_pll2Disable(void)
static inline void chipcHw_ddrPhaseAlignInterruptEnable(void) static inline void chipcHw_ddrPhaseAlignInterruptEnable(void)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->Spare1 |= chipcHw_REG_SPARE1_DDR_PHASE_INTR_ENABLE; writel(readl(&pChipcHw->Spare1) | chipcHw_REG_SPARE1_DDR_PHASE_INTR_ENABLE,
&pChipcHw->Spare1);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -1245,7 +1251,8 @@ static inline void chipcHw_ddrPhaseAlignInterruptEnable(void)
static inline void chipcHw_ddrPhaseAlignInterruptDisable(void) static inline void chipcHw_ddrPhaseAlignInterruptDisable(void)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_DDR_PHASE_INTR_ENABLE; writel(readl(&pChipcHw->Spare1) & ~chipcHw_REG_SPARE1_DDR_PHASE_INTR_ENABLE,
&pChipcHw->Spare1);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -1333,7 +1340,8 @@ static inline void chipcHw_ddrHwPhaseAlignDisable(void)
static inline void chipcHw_vpmSwPhaseAlignEnable(void) static inline void chipcHw_vpmSwPhaseAlignEnable(void)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->VPMPhaseCtrl1 |= chipcHw_REG_VPM_SW_PHASE_CTRL_ENABLE; writel(readl(&pChipcHw->VPMPhaseCtrl1) | chipcHw_REG_VPM_SW_PHASE_CTRL_ENABLE,
&pChipcHw->VPMPhaseCtrl1);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -1372,7 +1380,8 @@ static inline void chipcHw_vpmHwPhaseAlignEnable(void)
static inline void chipcHw_vpmHwPhaseAlignDisable(void) static inline void chipcHw_vpmHwPhaseAlignDisable(void)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
pChipcHw->VPMPhaseCtrl1 &= ~chipcHw_REG_VPM_HW_PHASE_CTRL_ENABLE; writel(readl(&pChipcHw->VPMPhaseCtrl1) & ~chipcHw_REG_VPM_HW_PHASE_CTRL_ENABLE,
&pChipcHw->VPMPhaseCtrl1);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
@ -1474,8 +1483,8 @@ chipcHw_setVpmHwPhaseAlignMargin(chipcHw_VPM_HW_PHASE_MARGIN_e margin)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_isDdrHwPhaseAligned(void) static inline uint32_t chipcHw_isDdrHwPhaseAligned(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
PhaseAlignStatus & chipcHw_REG_DDR_PHASE_ALIGNED) ? 1 : 0; PhaseAlignStatus) & chipcHw_REG_DDR_PHASE_ALIGNED) ? 1 : 0;
} }
/****************************************************************************/ /****************************************************************************/
@ -1488,8 +1497,8 @@ static inline uint32_t chipcHw_isDdrHwPhaseAligned(void)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_isVpmHwPhaseAligned(void) static inline uint32_t chipcHw_isVpmHwPhaseAligned(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
PhaseAlignStatus & chipcHw_REG_VPM_PHASE_ALIGNED) ? 1 : 0; PhaseAlignStatus) & chipcHw_REG_VPM_PHASE_ALIGNED) ? 1 : 0;
} }
/****************************************************************************/ /****************************************************************************/
@ -1500,8 +1509,8 @@ static inline uint32_t chipcHw_isVpmHwPhaseAligned(void)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getDdrHwPhaseAlignStatus(void) static inline uint32_t chipcHw_getDdrHwPhaseAlignStatus(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
PhaseAlignStatus & chipcHw_REG_DDR_PHASE_STATUS_MASK) >> PhaseAlignStatus) & chipcHw_REG_DDR_PHASE_STATUS_MASK) >>
chipcHw_REG_DDR_PHASE_STATUS_SHIFT; chipcHw_REG_DDR_PHASE_STATUS_SHIFT;
} }
@ -1513,8 +1522,8 @@ static inline uint32_t chipcHw_getDdrHwPhaseAlignStatus(void)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getVpmHwPhaseAlignStatus(void) static inline uint32_t chipcHw_getVpmHwPhaseAlignStatus(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
PhaseAlignStatus & chipcHw_REG_VPM_PHASE_STATUS_MASK) >> PhaseAlignStatus) & chipcHw_REG_VPM_PHASE_STATUS_MASK) >>
chipcHw_REG_VPM_PHASE_STATUS_SHIFT; chipcHw_REG_VPM_PHASE_STATUS_SHIFT;
} }
@ -1526,8 +1535,8 @@ static inline uint32_t chipcHw_getVpmHwPhaseAlignStatus(void)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getDdrPhaseControl(void) static inline uint32_t chipcHw_getDdrPhaseControl(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
PhaseAlignStatus & chipcHw_REG_DDR_PHASE_CTRL_MASK) >> PhaseAlignStatus) & chipcHw_REG_DDR_PHASE_CTRL_MASK) >>
chipcHw_REG_DDR_PHASE_CTRL_SHIFT; chipcHw_REG_DDR_PHASE_CTRL_SHIFT;
} }
@ -1539,8 +1548,8 @@ static inline uint32_t chipcHw_getDdrPhaseControl(void)
/****************************************************************************/ /****************************************************************************/
static inline uint32_t chipcHw_getVpmPhaseControl(void) static inline uint32_t chipcHw_getVpmPhaseControl(void)
{ {
return (pChipcHw-> return (readl(&pChipcHw->
PhaseAlignStatus & chipcHw_REG_VPM_PHASE_CTRL_MASK) >> PhaseAlignStatus) & chipcHw_REG_VPM_PHASE_CTRL_MASK) >>
chipcHw_REG_VPM_PHASE_CTRL_SHIFT; chipcHw_REG_VPM_PHASE_CTRL_SHIFT;
} }

View File

@ -131,8 +131,8 @@ typedef struct {
uint32_t MiscInput_0_15; /* Input type for MISC 0 - 16 */ uint32_t MiscInput_0_15; /* Input type for MISC 0 - 16 */
} chipcHw_REG_t; } chipcHw_REG_t;
#define pChipcHw ((volatile chipcHw_REG_t *) chipcHw_BASE_ADDRESS) #define pChipcHw ((chipcHw_REG_t __iomem *) chipcHw_BASE_ADDRESS)
#define pChipcPhysical ((volatile chipcHw_REG_t *) MM_ADDR_IO_CHIPC) #define pChipcPhysical (MM_ADDR_IO_CHIPC)
#define chipcHw_REG_CHIPID_BASE_MASK 0xFFFFF000 #define chipcHw_REG_CHIPID_BASE_MASK 0xFFFFF000
#define chipcHw_REG_CHIPID_BASE_SHIFT 12 #define chipcHw_REG_CHIPID_BASE_SHIFT 12

View File

@ -416,7 +416,7 @@ extern "C" {
} ddrcReg_PHY_ADDR_CTL_REG_t; } ddrcReg_PHY_ADDR_CTL_REG_t;
#define ddrcReg_PHY_ADDR_CTL_REG_OFFSET 0x0400 #define ddrcReg_PHY_ADDR_CTL_REG_OFFSET 0x0400
#define ddrcReg_PHY_ADDR_CTL_REGP ((volatile ddrcReg_PHY_ADDR_CTL_REG_t *) (MM_IO_BASE_DDRC + ddrcReg_PHY_ADDR_CTL_REG_OFFSET)) #define ddrcReg_PHY_ADDR_CTL_REGP ((volatile ddrcReg_PHY_ADDR_CTL_REG_t __iomem*) (MM_IO_BASE_DDRC + ddrcReg_PHY_ADDR_CTL_REG_OFFSET))
/* @todo These SS definitions are duplicates of ones below */ /* @todo These SS definitions are duplicates of ones below */

View File

@ -23,7 +23,7 @@
#ifndef _DMACHW_H #ifndef _DMACHW_H
#define _DMACHW_H #define _DMACHW_H
#include <stddef.h> #include <linux/stddef.h>
#include <linux/types.h> #include <linux/types.h>
#include <mach/csp/dmacHw_reg.h> #include <mach/csp/dmacHw_reg.h>

View File

@ -121,75 +121,75 @@ typedef struct {
} dmacHw_MISC_t; } dmacHw_MISC_t;
/* Base registers */ /* Base registers */
#define dmacHw_0_MODULE_BASE_ADDR (char *) MM_IO_BASE_DMA0 /* DMAC 0 module's base address */ #define dmacHw_0_MODULE_BASE_ADDR (char __iomem*) MM_IO_BASE_DMA0 /* DMAC 0 module's base address */
#define dmacHw_1_MODULE_BASE_ADDR (char *) MM_IO_BASE_DMA1 /* DMAC 1 module's base address */ #define dmacHw_1_MODULE_BASE_ADDR (char __iomem*) MM_IO_BASE_DMA1 /* DMAC 1 module's base address */
extern uint32_t dmaChannelCount_0; extern uint32_t dmaChannelCount_0;
extern uint32_t dmaChannelCount_1; extern uint32_t dmaChannelCount_1;
/* Define channel specific registers */ /* Define channel specific registers */
#define dmacHw_CHAN_BASE(module, chan) ((dmacHw_CH_REG_t *) ((char *)((module) ? dmacHw_1_MODULE_BASE_ADDR : dmacHw_0_MODULE_BASE_ADDR) + ((chan) * sizeof(dmacHw_CH_REG_t)))) #define dmacHw_CHAN_BASE(module, chan) ((dmacHw_CH_REG_t __iomem*) ((char __iomem*)((module) ? dmacHw_1_MODULE_BASE_ADDR : dmacHw_0_MODULE_BASE_ADDR) + ((chan) * sizeof(dmacHw_CH_REG_t))))
/* Raw interrupt status registers */ /* Raw interrupt status registers */
#define dmacHw_REG_INT_RAW_BASE(module) ((char *)dmacHw_CHAN_BASE((module), ((module) ? dmaChannelCount_1 : dmaChannelCount_0))) #define dmacHw_REG_INT_RAW_BASE(module) ((char __iomem *)dmacHw_CHAN_BASE((module), ((module) ? dmaChannelCount_1 : dmaChannelCount_0)))
#define dmacHw_REG_INT_RAW_TRAN(module) (((dmacHw_INT_RAW_t *) dmacHw_REG_INT_RAW_BASE((module)))->RawTfr.lo) #define dmacHw_REG_INT_RAW_TRAN(module) (((dmacHw_INT_RAW_t __iomem *) dmacHw_REG_INT_RAW_BASE((module)))->RawTfr.lo)
#define dmacHw_REG_INT_RAW_BLOCK(module) (((dmacHw_INT_RAW_t *) dmacHw_REG_INT_RAW_BASE((module)))->RawBlock.lo) #define dmacHw_REG_INT_RAW_BLOCK(module) (((dmacHw_INT_RAW_t __iomem *) dmacHw_REG_INT_RAW_BASE((module)))->RawBlock.lo)
#define dmacHw_REG_INT_RAW_STRAN(module) (((dmacHw_INT_RAW_t *) dmacHw_REG_INT_RAW_BASE((module)))->RawSrcTran.lo) #define dmacHw_REG_INT_RAW_STRAN(module) (((dmacHw_INT_RAW_t __iomem *) dmacHw_REG_INT_RAW_BASE((module)))->RawSrcTran.lo)
#define dmacHw_REG_INT_RAW_DTRAN(module) (((dmacHw_INT_RAW_t *) dmacHw_REG_INT_RAW_BASE((module)))->RawDstTran.lo) #define dmacHw_REG_INT_RAW_DTRAN(module) (((dmacHw_INT_RAW_t __iomem *) dmacHw_REG_INT_RAW_BASE((module)))->RawDstTran.lo)
#define dmacHw_REG_INT_RAW_ERROR(module) (((dmacHw_INT_RAW_t *) dmacHw_REG_INT_RAW_BASE((module)))->RawErr.lo) #define dmacHw_REG_INT_RAW_ERROR(module) (((dmacHw_INT_RAW_t __iomem *) dmacHw_REG_INT_RAW_BASE((module)))->RawErr.lo)
/* Interrupt status registers */ /* Interrupt status registers */
#define dmacHw_REG_INT_STAT_BASE(module) ((char *)(dmacHw_REG_INT_RAW_BASE((module)) + sizeof(dmacHw_INT_RAW_t))) #define dmacHw_REG_INT_STAT_BASE(module) ((char __iomem*)(dmacHw_REG_INT_RAW_BASE((module)) + sizeof(dmacHw_INT_RAW_t)))
#define dmacHw_REG_INT_STAT_TRAN(module) (((dmacHw_INT_STATUS_t *) dmacHw_REG_INT_STAT_BASE((module)))->StatusTfr.lo) #define dmacHw_REG_INT_STAT_TRAN(module) (((dmacHw_INT_STATUS_t __iomem *) dmacHw_REG_INT_STAT_BASE((module)))->StatusTfr.lo)
#define dmacHw_REG_INT_STAT_BLOCK(module) (((dmacHw_INT_STATUS_t *) dmacHw_REG_INT_STAT_BASE((module)))->StatusBlock.lo) #define dmacHw_REG_INT_STAT_BLOCK(module) (((dmacHw_INT_STATUS_t __iomem *) dmacHw_REG_INT_STAT_BASE((module)))->StatusBlock.lo)
#define dmacHw_REG_INT_STAT_STRAN(module) (((dmacHw_INT_STATUS_t *) dmacHw_REG_INT_STAT_BASE((module)))->StatusSrcTran.lo) #define dmacHw_REG_INT_STAT_STRAN(module) (((dmacHw_INT_STATUS_t __iomem *) dmacHw_REG_INT_STAT_BASE((module)))->StatusSrcTran.lo)
#define dmacHw_REG_INT_STAT_DTRAN(module) (((dmacHw_INT_STATUS_t *) dmacHw_REG_INT_STAT_BASE((module)))->StatusDstTran.lo) #define dmacHw_REG_INT_STAT_DTRAN(module) (((dmacHw_INT_STATUS_t __iomem *) dmacHw_REG_INT_STAT_BASE((module)))->StatusDstTran.lo)
#define dmacHw_REG_INT_STAT_ERROR(module) (((dmacHw_INT_STATUS_t *) dmacHw_REG_INT_STAT_BASE((module)))->StatusErr.lo) #define dmacHw_REG_INT_STAT_ERROR(module) (((dmacHw_INT_STATUS_t __iomem *) dmacHw_REG_INT_STAT_BASE((module)))->StatusErr.lo)
/* Interrupt status registers */ /* Interrupt status registers */
#define dmacHw_REG_INT_MASK_BASE(module) ((char *)(dmacHw_REG_INT_STAT_BASE((module)) + sizeof(dmacHw_INT_STATUS_t))) #define dmacHw_REG_INT_MASK_BASE(module) ((char __iomem*)(dmacHw_REG_INT_STAT_BASE((module)) + sizeof(dmacHw_INT_STATUS_t)))
#define dmacHw_REG_INT_MASK_TRAN(module) (((dmacHw_INT_MASK_t *) dmacHw_REG_INT_MASK_BASE((module)))->MaskTfr.lo) #define dmacHw_REG_INT_MASK_TRAN(module) (((dmacHw_INT_MASK_t __iomem *) dmacHw_REG_INT_MASK_BASE((module)))->MaskTfr.lo)
#define dmacHw_REG_INT_MASK_BLOCK(module) (((dmacHw_INT_MASK_t *) dmacHw_REG_INT_MASK_BASE((module)))->MaskBlock.lo) #define dmacHw_REG_INT_MASK_BLOCK(module) (((dmacHw_INT_MASK_t __iomem *) dmacHw_REG_INT_MASK_BASE((module)))->MaskBlock.lo)
#define dmacHw_REG_INT_MASK_STRAN(module) (((dmacHw_INT_MASK_t *) dmacHw_REG_INT_MASK_BASE((module)))->MaskSrcTran.lo) #define dmacHw_REG_INT_MASK_STRAN(module) (((dmacHw_INT_MASK_t __iomem *) dmacHw_REG_INT_MASK_BASE((module)))->MaskSrcTran.lo)
#define dmacHw_REG_INT_MASK_DTRAN(module) (((dmacHw_INT_MASK_t *) dmacHw_REG_INT_MASK_BASE((module)))->MaskDstTran.lo) #define dmacHw_REG_INT_MASK_DTRAN(module) (((dmacHw_INT_MASK_t __iomem *) dmacHw_REG_INT_MASK_BASE((module)))->MaskDstTran.lo)
#define dmacHw_REG_INT_MASK_ERROR(module) (((dmacHw_INT_MASK_t *) dmacHw_REG_INT_MASK_BASE((module)))->MaskErr.lo) #define dmacHw_REG_INT_MASK_ERROR(module) (((dmacHw_INT_MASK_t __iomem *) dmacHw_REG_INT_MASK_BASE((module)))->MaskErr.lo)
/* Interrupt clear registers */ /* Interrupt clear registers */
#define dmacHw_REG_INT_CLEAR_BASE(module) ((char *)(dmacHw_REG_INT_MASK_BASE((module)) + sizeof(dmacHw_INT_MASK_t))) #define dmacHw_REG_INT_CLEAR_BASE(module) ((char __iomem*)(dmacHw_REG_INT_MASK_BASE((module)) + sizeof(dmacHw_INT_MASK_t)))
#define dmacHw_REG_INT_CLEAR_TRAN(module) (((dmacHw_INT_CLEAR_t *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearTfr.lo) #define dmacHw_REG_INT_CLEAR_TRAN(module) (((dmacHw_INT_CLEAR_t __iomem *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearTfr.lo)
#define dmacHw_REG_INT_CLEAR_BLOCK(module) (((dmacHw_INT_CLEAR_t *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearBlock.lo) #define dmacHw_REG_INT_CLEAR_BLOCK(module) (((dmacHw_INT_CLEAR_t __iomem *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearBlock.lo)
#define dmacHw_REG_INT_CLEAR_STRAN(module) (((dmacHw_INT_CLEAR_t *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearSrcTran.lo) #define dmacHw_REG_INT_CLEAR_STRAN(module) (((dmacHw_INT_CLEAR_t __iomem *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearSrcTran.lo)
#define dmacHw_REG_INT_CLEAR_DTRAN(module) (((dmacHw_INT_CLEAR_t *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearDstTran.lo) #define dmacHw_REG_INT_CLEAR_DTRAN(module) (((dmacHw_INT_CLEAR_t __iomem *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearDstTran.lo)
#define dmacHw_REG_INT_CLEAR_ERROR(module) (((dmacHw_INT_CLEAR_t *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearErr.lo) #define dmacHw_REG_INT_CLEAR_ERROR(module) (((dmacHw_INT_CLEAR_t __iomem *) dmacHw_REG_INT_CLEAR_BASE((module)))->ClearErr.lo)
#define dmacHw_REG_INT_STATUS(module) (((dmacHw_INT_CLEAR_t *) dmacHw_REG_INT_CLEAR_BASE((module)))->StatusInt.lo) #define dmacHw_REG_INT_STATUS(module) (((dmacHw_INT_CLEAR_t __iomem *) dmacHw_REG_INT_CLEAR_BASE((module)))->StatusInt.lo)
/* Software handshaking registers */ /* Software handshaking registers */
#define dmacHw_REG_SW_HS_BASE(module) ((char *)(dmacHw_REG_INT_CLEAR_BASE((module)) + sizeof(dmacHw_INT_CLEAR_t))) #define dmacHw_REG_SW_HS_BASE(module) ((char __iomem*)(dmacHw_REG_INT_CLEAR_BASE((module)) + sizeof(dmacHw_INT_CLEAR_t)))
#define dmacHw_REG_SW_HS_SRC_REQ(module) (((dmacHw_SW_HANDSHAKE_t *) dmacHw_REG_SW_HS_BASE((module)))->ReqSrcReg.lo) #define dmacHw_REG_SW_HS_SRC_REQ(module) (((dmacHw_SW_HANDSHAKE_t __iomem *) dmacHw_REG_SW_HS_BASE((module)))->ReqSrcReg.lo)
#define dmacHw_REG_SW_HS_DST_REQ(module) (((dmacHw_SW_HANDSHAKE_t *) dmacHw_REG_SW_HS_BASE((module)))->ReqDstReg.lo) #define dmacHw_REG_SW_HS_DST_REQ(module) (((dmacHw_SW_HANDSHAKE_t __iomem *) dmacHw_REG_SW_HS_BASE((module)))->ReqDstReg.lo)
#define dmacHw_REG_SW_HS_SRC_SGL_REQ(module) (((dmacHw_SW_HANDSHAKE_t *) dmacHw_REG_SW_HS_BASE((module)))->SglReqSrcReg.lo) #define dmacHw_REG_SW_HS_SRC_SGL_REQ(module) (((dmacHw_SW_HANDSHAKE_t __iomem *) dmacHw_REG_SW_HS_BASE((module)))->SglReqSrcReg.lo)
#define dmacHw_REG_SW_HS_DST_SGL_REQ(module) (((dmacHw_SW_HANDSHAKE_t *) dmacHw_REG_SW_HS_BASE((module)))->SglReqDstReg.lo) #define dmacHw_REG_SW_HS_DST_SGL_REQ(module) (((dmacHw_SW_HANDSHAKE_t __iomem *) dmacHw_REG_SW_HS_BASE((module)))->SglReqDstReg.lo)
#define dmacHw_REG_SW_HS_SRC_LST_REQ(module) (((dmacHw_SW_HANDSHAKE_t *) dmacHw_REG_SW_HS_BASE((module)))->LstSrcReg.lo) #define dmacHw_REG_SW_HS_SRC_LST_REQ(module) (((dmacHw_SW_HANDSHAKE_t __iomem *) dmacHw_REG_SW_HS_BASE((module)))->LstSrcReg.lo)
#define dmacHw_REG_SW_HS_DST_LST_REQ(module) (((dmacHw_SW_HANDSHAKE_t *) dmacHw_REG_SW_HS_BASE((module)))->LstDstReg.lo) #define dmacHw_REG_SW_HS_DST_LST_REQ(module) (((dmacHw_SW_HANDSHAKE_t __iomem *) dmacHw_REG_SW_HS_BASE((module)))->LstDstReg.lo)
/* Miscellaneous registers */ /* Miscellaneous registers */
#define dmacHw_REG_MISC_BASE(module) ((char *)(dmacHw_REG_SW_HS_BASE((module)) + sizeof(dmacHw_SW_HANDSHAKE_t))) #define dmacHw_REG_MISC_BASE(module) ((char __iomem*)(dmacHw_REG_SW_HS_BASE((module)) + sizeof(dmacHw_SW_HANDSHAKE_t)))
#define dmacHw_REG_MISC_CFG(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->DmaCfgReg.lo) #define dmacHw_REG_MISC_CFG(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->DmaCfgReg.lo)
#define dmacHw_REG_MISC_CH_ENABLE(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->ChEnReg.lo) #define dmacHw_REG_MISC_CH_ENABLE(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->ChEnReg.lo)
#define dmacHw_REG_MISC_ID(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->DmaIdReg.lo) #define dmacHw_REG_MISC_ID(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->DmaIdReg.lo)
#define dmacHw_REG_MISC_TEST(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->DmaTestReg.lo) #define dmacHw_REG_MISC_TEST(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->DmaTestReg.lo)
#define dmacHw_REG_MISC_COMP_PARAM1_LO(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm1.lo) #define dmacHw_REG_MISC_COMP_PARAM1_LO(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm1.lo)
#define dmacHw_REG_MISC_COMP_PARAM1_HI(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm1.hi) #define dmacHw_REG_MISC_COMP_PARAM1_HI(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm1.hi)
#define dmacHw_REG_MISC_COMP_PARAM2_LO(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm2.lo) #define dmacHw_REG_MISC_COMP_PARAM2_LO(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm2.lo)
#define dmacHw_REG_MISC_COMP_PARAM2_HI(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm2.hi) #define dmacHw_REG_MISC_COMP_PARAM2_HI(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm2.hi)
#define dmacHw_REG_MISC_COMP_PARAM3_LO(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm3.lo) #define dmacHw_REG_MISC_COMP_PARAM3_LO(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm3.lo)
#define dmacHw_REG_MISC_COMP_PARAM3_HI(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm3.hi) #define dmacHw_REG_MISC_COMP_PARAM3_HI(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm3.hi)
#define dmacHw_REG_MISC_COMP_PARAM4_LO(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm4.lo) #define dmacHw_REG_MISC_COMP_PARAM4_LO(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm4.lo)
#define dmacHw_REG_MISC_COMP_PARAM4_HI(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm4.hi) #define dmacHw_REG_MISC_COMP_PARAM4_HI(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm4.hi)
#define dmacHw_REG_MISC_COMP_PARAM5_LO(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm5.lo) #define dmacHw_REG_MISC_COMP_PARAM5_LO(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm5.lo)
#define dmacHw_REG_MISC_COMP_PARAM5_HI(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm5.hi) #define dmacHw_REG_MISC_COMP_PARAM5_HI(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm5.hi)
#define dmacHw_REG_MISC_COMP_PARAM6_LO(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm6.lo) #define dmacHw_REG_MISC_COMP_PARAM6_LO(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm6.lo)
#define dmacHw_REG_MISC_COMP_PARAM6_HI(module) (((dmacHw_MISC_t *) dmacHw_REG_MISC_BASE((module)))->CompParm6.hi) #define dmacHw_REG_MISC_COMP_PARAM6_HI(module) (((dmacHw_MISC_t __iomem*) dmacHw_REG_MISC_BASE((module)))->CompParm6.hi)
/* Channel control registers */ /* Channel control registers */
#define dmacHw_REG_SAR(module, chan) (dmacHw_CHAN_BASE((module), (chan))->ChannelSar.lo) #define dmacHw_REG_SAR(module, chan) (dmacHw_CHAN_BASE((module), (chan))->ChannelSar.lo)

View File

@ -37,9 +37,9 @@
#define INTCHW_NUM_INTC 3 #define INTCHW_NUM_INTC 3
/* Defines for interrupt controllers. This simplifies and cleans up the function calls. */ /* Defines for interrupt controllers. This simplifies and cleans up the function calls. */
#define INTCHW_INTC0 ((void *)MM_IO_BASE_INTC0) #define INTCHW_INTC0 (MM_IO_BASE_INTC0)
#define INTCHW_INTC1 ((void *)MM_IO_BASE_INTC1) #define INTCHW_INTC1 (MM_IO_BASE_INTC1)
#define INTCHW_SINTC ((void *)MM_IO_BASE_SINTC) #define INTCHW_SINTC (MM_IO_BASE_SINTC)
/* INTC0 - interrupt controller 0 */ /* INTC0 - interrupt controller 0 */
#define INTCHW_INTC0_PIF_BITNUM 31 /* Peripheral interface interrupt */ #define INTCHW_INTC0_PIF_BITNUM 31 /* Peripheral interface interrupt */
@ -232,15 +232,15 @@
/* ---- Public Variable Externs ------------------------------------------ */ /* ---- Public Variable Externs ------------------------------------------ */
/* ---- Public Function Prototypes --------------------------------------- */ /* ---- Public Function Prototypes --------------------------------------- */
/* Clear one or more IRQ interrupts. */ /* Clear one or more IRQ interrupts. */
static inline void intcHw_irq_disable(void *basep, uint32_t mask) static inline void intcHw_irq_disable(void __iomem *basep, uint32_t mask)
{ {
__REG32(basep + INTCHW_INTENCLEAR) = mask; writel(mask, basep + INTCHW_INTENCLEAR);
} }
/* Enables one or more IRQ interrupts. */ /* Enables one or more IRQ interrupts. */
static inline void intcHw_irq_enable(void *basep, uint32_t mask) static inline void intcHw_irq_enable(void __iomem *basep, uint32_t mask)
{ {
__REG32(basep + INTCHW_INTENABLE) = mask; writel(mask, basep + INTCHW_INTENABLE);
} }
#endif /* _INTCHW_REG_H */ #endif /* _INTCHW_REG_H */

View File

@ -49,7 +49,7 @@
#ifdef __ASSEMBLY__ #ifdef __ASSEMBLY__
#define MM_IO_PHYS_TO_VIRT(phys) (0xF0000000 | (((phys) >> 4) & 0x0F000000) | ((phys) & 0xFFFFFF)) #define MM_IO_PHYS_TO_VIRT(phys) (0xF0000000 | (((phys) >> 4) & 0x0F000000) | ((phys) & 0xFFFFFF))
#else #else
#define MM_IO_PHYS_TO_VIRT(phys) (((phys) == MM_ADDR_IO_VPM_EXTMEM_RSVD) ? 0xF0000000 : \ #define MM_IO_PHYS_TO_VIRT(phys) (void __iomem *)(((phys) == MM_ADDR_IO_VPM_EXTMEM_RSVD) ? 0xF0000000 : \
(0xF0000000 | (((phys) >> 4) & 0x0F000000) | ((phys) & 0xFFFFFF))) (0xF0000000 | (((phys) >> 4) & 0x0F000000) | ((phys) & 0xFFFFFF)))
#endif #endif
#endif #endif
@ -60,8 +60,8 @@
#ifdef __ASSEMBLY__ #ifdef __ASSEMBLY__
#define MM_IO_VIRT_TO_PHYS(virt) ((((virt) & 0x0F000000) << 4) | ((virt) & 0xFFFFFF)) #define MM_IO_VIRT_TO_PHYS(virt) ((((virt) & 0x0F000000) << 4) | ((virt) & 0xFFFFFF))
#else #else
#define MM_IO_VIRT_TO_PHYS(virt) (((virt) == 0xF0000000) ? MM_ADDR_IO_VPM_EXTMEM_RSVD : \ #define MM_IO_VIRT_TO_PHYS(virt) (((unsigned long)(virt) == 0xF0000000) ? MM_ADDR_IO_VPM_EXTMEM_RSVD : \
((((virt) & 0x0F000000) << 4) | ((virt) & 0xFFFFFF))) ((((unsigned long)(virt) & 0x0F000000) << 4) | ((unsigned long)(virt) & 0xFFFFFF)))
#endif #endif
#endif #endif

View File

@ -26,12 +26,13 @@
/* ---- Include Files ---------------------------------------------------- */ /* ---- Include Files ---------------------------------------------------- */
#include <linux/types.h> #include <linux/types.h>
#include <linux/io.h>
/* ---- Public Constants and Types --------------------------------------- */ /* ---- Public Constants and Types --------------------------------------- */
#define __REG32(x) (*((volatile uint32_t *)(x))) #define __REG32(x) (*((volatile uint32_t __iomem *)(x)))
#define __REG16(x) (*((volatile uint16_t *)(x))) #define __REG16(x) (*((volatile uint16_t __iomem *)(x)))
#define __REG8(x) (*((volatile uint8_t *) (x))) #define __REG8(x) (*((volatile uint8_t __iomem *) (x)))
/* Macros used to define a sequence of reserved registers. The start / end */ /* Macros used to define a sequence of reserved registers. The start / end */
/* are byte offsets in the particular register definition, with the "end" */ /* are byte offsets in the particular register definition, with the "end" */
@ -84,31 +85,31 @@
#endif #endif
static inline void reg32_modify_and(volatile uint32_t *reg, uint32_t value) static inline void reg32_modify_and(volatile uint32_t __iomem *reg, uint32_t value)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
*reg &= value; __raw_writel(__raw_readl(reg) & value, reg);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
static inline void reg32_modify_or(volatile uint32_t *reg, uint32_t value) static inline void reg32_modify_or(volatile uint32_t __iomem *reg, uint32_t value)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
*reg |= value; __raw_writel(__raw_readl(reg) | value, reg);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
static inline void reg32_modify_mask(volatile uint32_t *reg, uint32_t mask, static inline void reg32_modify_mask(volatile uint32_t __iomem *reg, uint32_t mask,
uint32_t value) uint32_t value)
{ {
REG_LOCAL_IRQ_SAVE; REG_LOCAL_IRQ_SAVE;
*reg = (*reg & mask) | value; __raw_writel((__raw_readl(reg) & mask) | value, reg);
REG_LOCAL_IRQ_RESTORE; REG_LOCAL_IRQ_RESTORE;
} }
static inline void reg32_write(volatile uint32_t *reg, uint32_t value) static inline void reg32_write(volatile uint32_t __iomem *reg, uint32_t value)
{ {
*reg = value; __raw_writel(value, reg);
} }
#endif /* CSP_REG_H */ #endif /* CSP_REG_H */

View File

@ -34,7 +34,7 @@
/****************************************************************************/ /****************************************************************************/
static inline void secHw_setSecure(uint32_t mask /* mask of type secHw_BLK_MASK_XXXXXX */ static inline void secHw_setSecure(uint32_t mask /* mask of type secHw_BLK_MASK_XXXXXX */
) { ) {
secHw_REGS_t *regp = (secHw_REGS_t *) MM_IO_BASE_TZPC; secHw_REGS_t __iomem *regp = MM_IO_BASE_TZPC;
if (mask & 0x0000FFFF) { if (mask & 0x0000FFFF) {
regp->reg[secHw_IDX_LS].setSecure = mask & 0x0000FFFF; regp->reg[secHw_IDX_LS].setSecure = mask & 0x0000FFFF;
@ -53,13 +53,13 @@ static inline void secHw_setSecure(uint32_t mask /* mask of type secHw_BLK_MASK
/****************************************************************************/ /****************************************************************************/
static inline void secHw_setUnsecure(uint32_t mask /* mask of type secHw_BLK_MASK_XXXXXX */ static inline void secHw_setUnsecure(uint32_t mask /* mask of type secHw_BLK_MASK_XXXXXX */
) { ) {
secHw_REGS_t *regp = (secHw_REGS_t *) MM_IO_BASE_TZPC; secHw_REGS_t __iomem *regp = MM_IO_BASE_TZPC;
if (mask & 0x0000FFFF) { if (mask & 0x0000FFFF) {
regp->reg[secHw_IDX_LS].setUnsecure = mask & 0x0000FFFF; writel(mask & 0x0000FFFF, &regp->reg[secHw_IDX_LS].setUnsecure);
} }
if (mask & 0xFFFF0000) { if (mask & 0xFFFF0000) {
regp->reg[secHw_IDX_MS].setUnsecure = mask >> 16; writel(mask >> 16, &regp->reg[secHw_IDX_MS].setUnsecure);
} }
} }
@ -71,7 +71,7 @@ static inline void secHw_setUnsecure(uint32_t mask /* mask of type secHw_BLK_MA
/****************************************************************************/ /****************************************************************************/
static inline uint32_t secHw_getStatus(void) static inline uint32_t secHw_getStatus(void)
{ {
secHw_REGS_t *regp = (secHw_REGS_t *) MM_IO_BASE_TZPC; secHw_REGS_t __iomem *regp = MM_IO_BASE_TZPC;
return (regp->reg[1].status << 16) + regp->reg[0].status; return (regp->reg[1].status << 16) + regp->reg[0].status;
} }

View File

@ -233,5 +233,5 @@
#define REG_UMI_BCH_ERR_LOC_WORD 0x00000018 #define REG_UMI_BCH_ERR_LOC_WORD 0x00000018
/* location within a page (512 byte) */ /* location within a page (512 byte) */
#define REG_UMI_BCH_ERR_LOC_PAGE 0x00001FE0 #define REG_UMI_BCH_ERR_LOC_PAGE 0x00001FE0
#define REG_UMI_BCH_ERR_LOC_ADDR(index) (__REG32(HW_UMI_BASE + 0x64 + (index / 2)*4) >> ((index % 2) * 16)) #define REG_UMI_BCH_ERR_LOC_ADDR(index) (readl(HW_UMI_BASE + 0x64 + (index / 2)*4) >> ((index % 2) * 16))
#endif #endif

View File

@ -20,12 +20,12 @@
#include <mach/hardware.h> #include <mach/hardware.h>
#include <mach/csp/mm_io.h> #include <mach/csp/mm_io.h>
#define IO_DESC(va, sz) { .virtual = va, \ #define IO_DESC(va, sz) { .virtual = (unsigned long)va, \
.pfn = __phys_to_pfn(HW_IO_VIRT_TO_PHYS(va)), \ .pfn = __phys_to_pfn(HW_IO_VIRT_TO_PHYS(va)), \
.length = sz, \ .length = sz, \
.type = MT_DEVICE } .type = MT_DEVICE }
#define MEM_DESC(va, sz) { .virtual = va, \ #define MEM_DESC(va, sz) { .virtual = (unsigned long)va, \
.pfn = __phys_to_pfn(HW_IO_VIRT_TO_PHYS(va)), \ .pfn = __phys_to_pfn(HW_IO_VIRT_TO_PHYS(va)), \
.length = sz, \ .length = sz, \
.type = MT_MEMORY } .type = MT_MEMORY }

View File

@ -249,20 +249,20 @@ static int nand_dev_ready(struct mtd_info *mtd)
int bcm_umi_nand_inithw(void) int bcm_umi_nand_inithw(void)
{ {
/* Configure nand timing parameters */ /* Configure nand timing parameters */
REG_UMI_NAND_TCR &= ~0x7ffff; writel(readl(&REG_UMI_NAND_TCR) & ~0x7ffff, &REG_UMI_NAND_TCR);
REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR; writel(readl(&REG_UMI_NAND_TCR) | HW_CFG_NAND_TCR, &REG_UMI_NAND_TCR);
#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS) #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
/* enable software control of CS */ /* enable software control of CS */
REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; writel(readl(&REG_UMI_NAND_TCR) | REG_UMI_NAND_TCR_CS_SWCTRL, &REG_UMI_NAND_TCR);
#endif #endif
/* keep NAND chip select asserted */ /* keep NAND chip select asserted */
REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; writel(readl(&REG_UMI_NAND_RCSR) | REG_UMI_NAND_RCSR_CS_ASSERTED, &REG_UMI_NAND_RCSR);
REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16; writel(readl(&REG_UMI_NAND_TCR) & ~REG_UMI_NAND_TCR_WORD16, &REG_UMI_NAND_TCR);
/* enable writes to flash */ /* enable writes to flash */
REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; writel(readl(&REG_UMI_MMD_ICR) | REG_UMI_MMD_ICR_FLASH_WP, &REG_UMI_MMD_ICR);
writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET); writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
nand_bcm_umi_wait_till_ready(); nand_bcm_umi_wait_till_ready();

View File

@ -48,7 +48,7 @@ int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
/* Check in device is ready */ /* Check in device is ready */
static inline int nand_bcm_umi_dev_ready(void) static inline int nand_bcm_umi_dev_ready(void)
{ {
return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY; return readl(&REG_UMI_NAND_RCSR) & REG_UMI_NAND_RCSR_RDY;
} }
/* Wait until device is ready */ /* Wait until device is ready */
@ -62,10 +62,11 @@ static inline void nand_bcm_umi_wait_till_ready(void)
static inline void nand_bcm_umi_hamming_enable_hwecc(void) static inline void nand_bcm_umi_hamming_enable_hwecc(void)
{ {
/* disable and reset ECC, 512 byte page */ /* disable and reset ECC, 512 byte page */
REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | writel(readl(&REG_UMI_NAND_ECC_CSR) & ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
REG_UMI_NAND_ECC_CSR_256BYTE); REG_UMI_NAND_ECC_CSR_256BYTE), &REG_UMI_NAND_ECC_CSR);
/* enable ECC */ /* enable ECC */
REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; writel(readl(&REG_UMI_NAND_ECC_CSR) | REG_UMI_NAND_ECC_CSR_ECC_ENABLE,
&REG_UMI_NAND_ECC_CSR);
} }
#if NAND_ECC_BCH #if NAND_ECC_BCH
@ -76,18 +77,18 @@ static inline void nand_bcm_umi_hamming_enable_hwecc(void)
static inline void nand_bcm_umi_bch_enable_read_hwecc(void) static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
{ {
/* disable and reset ECC */ /* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; writel(REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID, &REG_UMI_BCH_CTRL_STATUS);
/* Turn on ECC */ /* Turn on ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, &REG_UMI_BCH_CTRL_STATUS);
} }
/* Enable BCH Write ECC */ /* Enable BCH Write ECC */
static inline void nand_bcm_umi_bch_enable_write_hwecc(void) static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
{ {
/* disable and reset ECC */ /* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID; writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID, &REG_UMI_BCH_CTRL_STATUS);
/* Turn on ECC */ /* Turn on ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN; writel(REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN, &REG_UMI_BCH_CTRL_STATUS);
} }
/* Config number of BCH ECC bytes */ /* Config number of BCH ECC bytes */
@ -99,9 +100,9 @@ static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
uint32_t numBits = numEccBytes * 8; uint32_t numBits = numEccBytes * 8;
/* disable and reset ECC */ /* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID,
REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; &REG_UMI_BCH_CTRL_STATUS);
/* Every correctible bit requires 13 ECC bits */ /* Every correctible bit requires 13 ECC bits */
tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);
@ -113,23 +114,21 @@ static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);
/* Write the settings */ /* Write the settings */
REG_UMI_BCH_N = nValue; writel(nValue, &REG_UMI_BCH_N);
REG_UMI_BCH_T = tValue; writel(tValue, &REG_UMI_BCH_T);
REG_UMI_BCH_K = kValue; writel(kValue, &REG_UMI_BCH_K);
} }
/* Pause during ECC read calculation to skip bytes in OOB */ /* Pause during ECC read calculation to skip bytes in OOB */
static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
{ {
REG_UMI_BCH_CTRL_STATUS = writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC, &REG_UMI_BCH_CTRL_STATUS);
REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
} }
/* Resume during ECC read calculation after skipping bytes in OOB */ /* Resume during ECC read calculation after skipping bytes in OOB */
static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
{ {
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, &REG_UMI_BCH_CTRL_STATUS);
} }
/* Poll read ECC calc to check when hardware completes */ /* Poll read ECC calc to check when hardware completes */
@ -139,7 +138,7 @@ static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
do { do {
/* wait for ECC to be valid */ /* wait for ECC to be valid */
regVal = REG_UMI_BCH_CTRL_STATUS; regVal = readl(&REG_UMI_BCH_CTRL_STATUS);
} while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
return regVal; return regVal;
@ -149,7 +148,7 @@ static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
{ {
/* wait for ECC to be valid */ /* wait for ECC to be valid */
while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) while ((readl(&REG_UMI_BCH_CTRL_STATUS) & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
== 0) == 0)
; ;
} }
@ -170,9 +169,9 @@ static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
if (pageSize != NAND_DATA_ACCESS_SIZE) { if (pageSize != NAND_DATA_ACCESS_SIZE) {
/* skip BI */ /* skip BI */
#if defined(__KERNEL__) && !defined(STANDALONE) #if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8; *oobp++ = readb(&REG_NAND_DATA8);
#else #else
REG_NAND_DATA8; readb(&REG_NAND_DATA8);
#endif #endif
numToRead--; numToRead--;
} }
@ -180,9 +179,9 @@ static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
while (numToRead > numEccBytes) { while (numToRead > numEccBytes) {
/* skip free oob region */ /* skip free oob region */
#if defined(__KERNEL__) && !defined(STANDALONE) #if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8; *oobp++ = readb(&REG_NAND_DATA8);
#else #else
REG_NAND_DATA8; readb(&REG_NAND_DATA8);
#endif #endif
numToRead--; numToRead--;
} }
@ -193,11 +192,11 @@ static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
while (numToRead > 11) { while (numToRead > 11) {
#if defined(__KERNEL__) && !defined(STANDALONE) #if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8; *oobp = readb(&REG_NAND_DATA8);
eccCalc[eccPos++] = *oobp; eccCalc[eccPos++] = *oobp;
oobp++; oobp++;
#else #else
eccCalc[eccPos++] = REG_NAND_DATA8; eccCalc[eccPos++] = readb(&REG_NAND_DATA8);
#endif #endif
numToRead--; numToRead--;
} }
@ -207,9 +206,9 @@ static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
if (numToRead == 11) { if (numToRead == 11) {
/* read BI */ /* read BI */
#if defined(__KERNEL__) && !defined(STANDALONE) #if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8; *oobp++ = readb(&REG_NAND_DATA8);
#else #else
REG_NAND_DATA8; readb(&REG_NAND_DATA8);
#endif #endif
numToRead--; numToRead--;
} }
@ -219,11 +218,11 @@ static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
nand_bcm_umi_bch_resume_read_ecc_calc(); nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead) { while (numToRead) {
#if defined(__KERNEL__) && !defined(STANDALONE) #if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8; *oobp = readb(&REG_NAND_DATA8);
eccCalc[eccPos++] = *oobp; eccCalc[eccPos++] = *oobp;
oobp++; oobp++;
#else #else
eccCalc[eccPos++] = REG_NAND_DATA8; eccCalc[eccPos++] = readb(&REG_NAND_DATA8);
#endif #endif
numToRead--; numToRead--;
} }
@ -255,7 +254,7 @@ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
if (pageSize == NAND_DATA_ACCESS_SIZE) { if (pageSize == NAND_DATA_ACCESS_SIZE) {
/* Now fill in the ECC bytes */ /* Now fill in the ECC bytes */
if (numEccBytes >= 13) if (numEccBytes >= 13)
eccVal = REG_UMI_BCH_WR_ECC_3; eccVal = readl(&REG_UMI_BCH_WR_ECC_3);
/* Usually we skip CM in oob[0,1] */ /* Usually we skip CM in oob[0,1] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
@ -268,7 +267,7 @@ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
eccVal & 0xff); /* ECC 12 */ eccVal & 0xff); /* ECC 12 */
if (numEccBytes >= 9) if (numEccBytes >= 9)
eccVal = REG_UMI_BCH_WR_ECC_2; eccVal = readl(&REG_UMI_BCH_WR_ECC_2);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
(eccVal >> 24) & 0xff); /* ECC11 */ (eccVal >> 24) & 0xff); /* ECC11 */
@ -281,7 +280,7 @@ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
/* Now fill in the ECC bytes */ /* Now fill in the ECC bytes */
if (numEccBytes >= 13) if (numEccBytes >= 13)
eccVal = REG_UMI_BCH_WR_ECC_3; eccVal = readl(&REG_UMI_BCH_WR_ECC_3);
/* Usually skip CM in oob[1,2] */ /* Usually skip CM in oob[1,2] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
@ -294,7 +293,7 @@ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
eccVal & 0xff); /* ECC12 */ eccVal & 0xff); /* ECC12 */
if (numEccBytes >= 9) if (numEccBytes >= 9)
eccVal = REG_UMI_BCH_WR_ECC_2; eccVal = readl(&REG_UMI_BCH_WR_ECC_2);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
(eccVal >> 24) & 0xff); /* ECC11 */ (eccVal >> 24) & 0xff); /* ECC11 */
@ -309,7 +308,7 @@ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
eccVal & 0xff); /* ECC8 */ eccVal & 0xff); /* ECC8 */
if (numEccBytes >= 5) if (numEccBytes >= 5)
eccVal = REG_UMI_BCH_WR_ECC_1; eccVal = readl(&REG_UMI_BCH_WR_ECC_1);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
(eccVal >> 24) & 0xff); /* ECC7 */ (eccVal >> 24) & 0xff); /* ECC7 */
@ -321,7 +320,7 @@ static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
eccVal & 0xff); /* ECC4 */ eccVal & 0xff); /* ECC4 */
if (numEccBytes >= 1) if (numEccBytes >= 1)
eccVal = REG_UMI_BCH_WR_ECC_0; eccVal = readl(&REG_UMI_BCH_WR_ECC_0);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
(eccVal >> 24) & 0xff); /* ECC3 */ (eccVal >> 24) & 0xff); /* ECC3 */