Merge branches 'amd-iommu/fixes', 'amd-iommu/debug', 'amd-iommu/suspend-resume' and 'amd-iommu/extended-allocator' into amd-iommu/2.6.31

Conflicts:
	arch/x86/kernel/amd_iommu.c
	arch/x86/kernel/amd_iommu_init.c
This commit is contained in:
Joerg Roedel 2009-05-28 18:23:56 +02:00
commit 83cce2b69e
6 changed files with 594 additions and 229 deletions

View File

@ -329,11 +329,6 @@ and is between 256 and 4096 characters. It is defined in the file
flushed before they will be reused, which
is a lot of faster
amd_iommu_size= [HW,X86-64]
Define the size of the aperture for the AMD IOMMU
driver. Possible values are:
'32M', '64M' (default), '128M', '256M', '512M', '1G'
amijoy.map= [HW,JOY] Amiga joystick support
Map of devices attached to JOY0DAT and JOY1DAT
Format: <a>,<b>

View File

@ -159,6 +159,14 @@ config IOMMU_DEBUG
options. See Documentation/x86_64/boot-options.txt for more
details.
config IOMMU_STRESS
bool "Enable IOMMU stress-test mode"
---help---
This option disables various optimizations in IOMMU related
code to do real stress testing of the IOMMU code. This option
will cause a performance drop and should only be enabled for
testing.
config IOMMU_LEAK
bool "IOMMU leak tracing"
depends on IOMMU_DEBUG && DMA_API_DEBUG

View File

@ -27,6 +27,8 @@ extern int amd_iommu_init(void);
extern int amd_iommu_init_dma_ops(void);
extern void amd_iommu_detect(void);
extern irqreturn_t amd_iommu_int_handler(int irq, void *data);
extern void amd_iommu_flush_all_domains(void);
extern void amd_iommu_flush_all_devices(void);
#else
static inline int amd_iommu_init(void) { return -ENODEV; }
static inline void amd_iommu_detect(void) { }

View File

@ -194,6 +194,27 @@
#define PD_DMA_OPS_MASK (1UL << 0) /* domain used for dma_ops */
#define PD_DEFAULT_MASK (1UL << 1) /* domain is a default dma_ops
domain for an IOMMU */
extern bool amd_iommu_dump;
#define DUMP_printk(format, arg...) \
do { \
if (amd_iommu_dump) \
printk(KERN_INFO "AMD IOMMU: " format, ## arg); \
} while(0);
/*
* Make iterating over all IOMMUs easier
*/
#define for_each_iommu(iommu) \
list_for_each_entry((iommu), &amd_iommu_list, list)
#define for_each_iommu_safe(iommu, next) \
list_for_each_entry_safe((iommu), (next), &amd_iommu_list, list)
#define APERTURE_RANGE_SHIFT 27 /* 128 MB */
#define APERTURE_RANGE_SIZE (1ULL << APERTURE_RANGE_SHIFT)
#define APERTURE_RANGE_PAGES (APERTURE_RANGE_SIZE >> PAGE_SHIFT)
#define APERTURE_MAX_RANGES 32 /* allows 4GB of DMA address space */
#define APERTURE_RANGE_INDEX(a) ((a) >> APERTURE_RANGE_SHIFT)
#define APERTURE_PAGE_INDEX(a) (((a) >> 21) & 0x3fULL)
/*
* This structure contains generic data for IOMMU protection domains
@ -209,6 +230,26 @@ struct protection_domain {
void *priv; /* private data */
};
/*
* For dynamic growth the aperture size is split into ranges of 128MB of
* DMA address space each. This struct represents one such range.
*/
struct aperture_range {
/* address allocation bitmap */
unsigned long *bitmap;
/*
* Array of PTE pages for the aperture. In this array we save all the
* leaf pages of the domain page table used for the aperture. This way
* we don't need to walk the page table to find a specific PTE. We can
* just calculate its address in constant time.
*/
u64 *pte_pages[64];
unsigned long offset;
};
/*
* Data container for a dma_ops specific protection domain
*/
@ -222,18 +263,10 @@ struct dma_ops_domain {
unsigned long aperture_size;
/* address we start to search for free addresses */
unsigned long next_bit;
unsigned long next_address;
/* address allocation bitmap */
unsigned long *bitmap;
/*
* Array of PTE pages for the aperture. In this array we save all the
* leaf pages of the domain page table used for the aperture. This way
* we don't need to walk the page table to find a specific PTE. We can
* just calculate its address in constant time.
*/
u64 **pte_pages;
/* address space relevant data */
struct aperture_range *aperture[APERTURE_MAX_RANGES];
/* This will be set to true when TLB needs to be flushed */
bool need_flush;

View File

@ -55,7 +55,12 @@ struct iommu_cmd {
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e);
static struct dma_ops_domain *find_protection_domain(u16 devid);
static u64* alloc_pte(struct protection_domain *dom,
unsigned long address, u64
**pte_page, gfp_t gfp);
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages);
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
@ -217,7 +222,7 @@ irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
struct amd_iommu *iommu;
list_for_each_entry(iommu, &amd_iommu_list, list)
for_each_iommu(iommu)
iommu_poll_events(iommu);
return IRQ_HANDLED;
@ -444,7 +449,7 @@ static void iommu_flush_domain(u16 domid)
__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
domid, 1, 1);
list_for_each_entry(iommu, &amd_iommu_list, list) {
for_each_iommu(iommu) {
spin_lock_irqsave(&iommu->lock, flags);
__iommu_queue_command(iommu, &cmd);
__iommu_completion_wait(iommu);
@ -453,6 +458,35 @@ static void iommu_flush_domain(u16 domid)
}
}
void amd_iommu_flush_all_domains(void)
{
int i;
for (i = 1; i < MAX_DOMAIN_ID; ++i) {
if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
continue;
iommu_flush_domain(i);
}
}
void amd_iommu_flush_all_devices(void)
{
struct amd_iommu *iommu;
int i;
for (i = 0; i <= amd_iommu_last_bdf; ++i) {
if (amd_iommu_pd_table[i] == NULL)
continue;
iommu = amd_iommu_rlookup_table[i];
if (!iommu)
continue;
iommu_queue_inv_dev_entry(iommu, i);
iommu_completion_wait(iommu);
}
}
/****************************************************************************
*
* The functions below are used the create the page table mappings for
@ -472,7 +506,7 @@ static int iommu_map_page(struct protection_domain *dom,
unsigned long phys_addr,
int prot)
{
u64 __pte, *pte, *page;
u64 __pte, *pte;
bus_addr = PAGE_ALIGN(bus_addr);
phys_addr = PAGE_ALIGN(phys_addr);
@ -481,27 +515,7 @@ static int iommu_map_page(struct protection_domain *dom,
if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
return -EINVAL;
pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*pte = IOMMU_L2_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*pte = IOMMU_L1_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
if (IOMMU_PTE_PRESENT(*pte))
return -EBUSY;
@ -599,7 +613,8 @@ static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
* as allocated in the aperture
*/
if (addr < dma_dom->aperture_size)
__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
__set_bit(addr >> PAGE_SHIFT,
dma_dom->aperture[0]->bitmap);
}
return 0;
@ -636,42 +651,191 @@ static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
****************************************************************************/
/*
* The address allocator core function.
* The address allocator core functions.
*
* called with domain->lock held
*/
/*
* This function checks if there is a PTE for a given dma address. If
* there is one, it returns the pointer to it.
*/
static u64* fetch_pte(struct protection_domain *domain,
unsigned long address)
{
u64 *pte;
pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(address)];
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L0_INDEX(address)];
return pte;
}
/*
* This function is used to add a new aperture range to an existing
* aperture in case of dma_ops domain allocation or address allocation
* failure.
*/
static int alloc_new_range(struct amd_iommu *iommu,
struct dma_ops_domain *dma_dom,
bool populate, gfp_t gfp)
{
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
int i;
#ifdef CONFIG_IOMMU_STRESS
populate = false;
#endif
if (index >= APERTURE_MAX_RANGES)
return -ENOMEM;
dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
if (!dma_dom->aperture[index])
return -ENOMEM;
dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
if (!dma_dom->aperture[index]->bitmap)
goto out_free;
dma_dom->aperture[index]->offset = dma_dom->aperture_size;
if (populate) {
unsigned long address = dma_dom->aperture_size;
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
u64 *pte, *pte_page;
for (i = 0; i < num_ptes; ++i) {
pte = alloc_pte(&dma_dom->domain, address,
&pte_page, gfp);
if (!pte)
goto out_free;
dma_dom->aperture[index]->pte_pages[i] = pte_page;
address += APERTURE_RANGE_SIZE / 64;
}
}
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
/* Intialize the exclusion range if necessary */
if (iommu->exclusion_start &&
iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
int pages = iommu_num_pages(iommu->exclusion_start,
iommu->exclusion_length,
PAGE_SIZE);
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
/*
* Check for areas already mapped as present in the new aperture
* range and mark those pages as reserved in the allocator. Such
* mappings may already exist as a result of requested unity
* mappings for devices.
*/
for (i = dma_dom->aperture[index]->offset;
i < dma_dom->aperture_size;
i += PAGE_SIZE) {
u64 *pte = fetch_pte(&dma_dom->domain, i);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
continue;
dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
}
return 0;
out_free:
free_page((unsigned long)dma_dom->aperture[index]->bitmap);
kfree(dma_dom->aperture[index]);
dma_dom->aperture[index] = NULL;
return -ENOMEM;
}
static unsigned long dma_ops_area_alloc(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask,
unsigned long start)
{
unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
int i = start >> APERTURE_RANGE_SHIFT;
unsigned long boundary_size;
unsigned long address = -1;
unsigned long limit;
next_bit >>= PAGE_SHIFT;
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
PAGE_SIZE) >> PAGE_SHIFT;
for (;i < max_index; ++i) {
unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
if (dom->aperture[i]->offset >= dma_mask)
break;
limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
dma_mask >> PAGE_SHIFT);
address = iommu_area_alloc(dom->aperture[i]->bitmap,
limit, next_bit, pages, 0,
boundary_size, align_mask);
if (address != -1) {
address = dom->aperture[i]->offset +
(address << PAGE_SHIFT);
dom->next_address = address + (pages << PAGE_SHIFT);
break;
}
next_bit = 0;
}
return address;
}
static unsigned long dma_ops_alloc_addresses(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask)
{
unsigned long limit;
unsigned long address;
unsigned long boundary_size;
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
PAGE_SIZE) >> PAGE_SHIFT;
limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
dma_mask >> PAGE_SHIFT);
#ifdef CONFIG_IOMMU_STRESS
dom->next_address = 0;
dom->need_flush = true;
#endif
if (dom->next_bit >= limit) {
dom->next_bit = 0;
dom->need_flush = true;
}
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
dma_mask, dom->next_address);
address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
0 , boundary_size, align_mask);
if (address == -1) {
address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
0, boundary_size, align_mask);
dom->next_address = 0;
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
dma_mask, 0);
dom->need_flush = true;
}
if (likely(address != -1)) {
dom->next_bit = address + pages;
address <<= PAGE_SHIFT;
} else
if (unlikely(address == -1))
address = bad_dma_address;
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
@ -688,11 +852,23 @@ static void dma_ops_free_addresses(struct dma_ops_domain *dom,
unsigned long address,
unsigned int pages)
{
address >>= PAGE_SHIFT;
iommu_area_free(dom->bitmap, address, pages);
unsigned i = address >> APERTURE_RANGE_SHIFT;
struct aperture_range *range = dom->aperture[i];
if (address >= dom->next_bit)
BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
#ifdef CONFIG_IOMMU_STRESS
if (i < 4)
return;
#endif
if (address >= dom->next_address)
dom->need_flush = true;
address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
iommu_area_free(range->bitmap, address, pages);
}
/****************************************************************************
@ -740,12 +916,16 @@ static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages)
{
unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
if (start_page + pages > last_page)
pages = last_page - start_page;
iommu_area_reserve(dom->bitmap, start_page, pages);
for (i = start_page; i < start_page + pages; ++i) {
int index = i / APERTURE_RANGE_PAGES;
int page = i % APERTURE_RANGE_PAGES;
__set_bit(page, dom->aperture[index]->bitmap);
}
}
static void free_pagetable(struct protection_domain *domain)
@ -784,14 +964,19 @@ static void free_pagetable(struct protection_domain *domain)
*/
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
int i;
if (!dom)
return;
free_pagetable(&dom->domain);
kfree(dom->pte_pages);
kfree(dom->bitmap);
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
if (!dom->aperture[i])
continue;
free_page((unsigned long)dom->aperture[i]->bitmap);
kfree(dom->aperture[i]);
}
kfree(dom);
}
@ -801,19 +986,9 @@ static void dma_ops_domain_free(struct dma_ops_domain *dom)
* It also intializes the page table and the address allocator data
* structures required for the dma_ops interface
*/
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
unsigned order)
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
{
struct dma_ops_domain *dma_dom;
unsigned i, num_pte_pages;
u64 *l2_pde;
u64 address;
/*
* Currently the DMA aperture must be between 32 MB and 1GB in size
*/
if ((order < 25) || (order > 30))
return NULL;
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
if (!dma_dom)
@ -830,55 +1005,20 @@ static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
dma_dom->domain.priv = dma_dom;
if (!dma_dom->domain.pt_root)
goto free_dma_dom;
dma_dom->aperture_size = (1ULL << order);
dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
GFP_KERNEL);
if (!dma_dom->bitmap)
goto free_dma_dom;
/*
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
dma_dom->bitmap[0] = 1;
dma_dom->next_bit = 0;
dma_dom->need_flush = false;
dma_dom->target_dev = 0xffff;
/* Intialize the exclusion range if necessary */
if (iommu->exclusion_start &&
iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
int pages = iommu_num_pages(iommu->exclusion_start,
iommu->exclusion_length,
PAGE_SIZE);
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
goto free_dma_dom;
/*
* At the last step, build the page tables so we don't need to
* allocate page table pages in the dma_ops mapping/unmapping
* path.
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
GFP_KERNEL);
if (!dma_dom->pte_pages)
goto free_dma_dom;
dma_dom->aperture[0]->bitmap[0] = 1;
dma_dom->next_address = 0;
l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
if (l2_pde == NULL)
goto free_dma_dom;
dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
for (i = 0; i < num_pte_pages; ++i) {
dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
if (!dma_dom->pte_pages[i])
goto free_dma_dom;
address = virt_to_phys(dma_dom->pte_pages[i]);
l2_pde[i] = IOMMU_L1_PDE(address);
}
return dma_dom;
@ -987,7 +1127,6 @@ static int device_change_notifier(struct notifier_block *nb,
struct protection_domain *domain;
struct dma_ops_domain *dma_domain;
struct amd_iommu *iommu;
int order = amd_iommu_aperture_order;
unsigned long flags;
if (devid > amd_iommu_last_bdf)
@ -1013,8 +1152,9 @@ static int device_change_notifier(struct notifier_block *nb,
if (!dma_domain)
dma_domain = iommu->default_dom;
attach_device(iommu, &dma_domain->domain, devid);
printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
"device %s\n", dma_domain->domain.id, dev_name(dev));
DUMP_printk(KERN_INFO "AMD IOMMU: Using protection domain "
"%d for device %s\n",
dma_domain->domain.id, dev_name(dev));
break;
case BUS_NOTIFY_UNBOUND_DRIVER:
if (!domain)
@ -1026,7 +1166,7 @@ static int device_change_notifier(struct notifier_block *nb,
dma_domain = find_protection_domain(devid);
if (dma_domain)
goto out;
dma_domain = dma_ops_domain_alloc(iommu, order);
dma_domain = dma_ops_domain_alloc(iommu);
if (!dma_domain)
goto out;
dma_domain->target_dev = devid;
@ -1137,8 +1277,9 @@ static int get_device_resources(struct device *dev,
dma_dom = (*iommu)->default_dom;
*domain = &dma_dom->domain;
attach_device(*iommu, *domain, *bdf);
printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
"device %s\n", (*domain)->id, dev_name(dev));
DUMP_printk(KERN_INFO "AMD IOMMU: Using protection domain "
"%d for device %s\n",
(*domain)->id, dev_name(dev));
}
if (domain_for_device(_bdf) == NULL)
@ -1147,6 +1288,66 @@ static int get_device_resources(struct device *dev,
return 1;
}
/*
* If the pte_page is not yet allocated this function is called
*/
static u64* alloc_pte(struct protection_domain *dom,
unsigned long address, u64 **pte_page, gfp_t gfp)
{
u64 *pte, *page;
pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(gfp);
if (!page)
return NULL;
*pte = IOMMU_L2_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(address)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(gfp);
if (!page)
return NULL;
*pte = IOMMU_L1_PDE(virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
if (pte_page)
*pte_page = pte;
pte = &pte[IOMMU_PTE_L0_INDEX(address)];
return pte;
}
/*
* This function fetches the PTE for a given address in the aperture
*/
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
unsigned long address)
{
struct aperture_range *aperture;
u64 *pte, *pte_page;
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
if (!aperture)
return NULL;
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte) {
pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
} else
pte += IOMMU_PTE_L0_INDEX(address);
return pte;
}
/*
* This is the generic map function. It maps one 4kb page at paddr to
* the given address in the DMA address space for the domain.
@ -1163,8 +1364,9 @@ static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
paddr &= PAGE_MASK;
pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
pte += IOMMU_PTE_L0_INDEX(address);
pte = dma_ops_get_pte(dom, address);
if (!pte)
return bad_dma_address;
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
@ -1189,14 +1391,20 @@ static void dma_ops_domain_unmap(struct amd_iommu *iommu,
struct dma_ops_domain *dom,
unsigned long address)
{
struct aperture_range *aperture;
u64 *pte;
if (address >= dom->aperture_size)
return;
WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
if (!aperture)
return;
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte)
return;
pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
pte += IOMMU_PTE_L0_INDEX(address);
WARN_ON(!*pte);
@ -1220,7 +1428,7 @@ static dma_addr_t __map_single(struct device *dev,
u64 dma_mask)
{
dma_addr_t offset = paddr & ~PAGE_MASK;
dma_addr_t address, start;
dma_addr_t address, start, ret;
unsigned int pages;
unsigned long align_mask = 0;
int i;
@ -1236,14 +1444,33 @@ static dma_addr_t __map_single(struct device *dev,
if (align)
align_mask = (1UL << get_order(size)) - 1;
retry:
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
dma_mask);
if (unlikely(address == bad_dma_address))
goto out;
if (unlikely(address == bad_dma_address)) {
/*
* setting next_address here will let the address
* allocator only scan the new allocated range in the
* first run. This is a small optimization.
*/
dma_dom->next_address = dma_dom->aperture_size;
if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
goto out;
/*
* aperture was sucessfully enlarged by 128 MB, try
* allocation again
*/
goto retry;
}
start = address;
for (i = 0; i < pages; ++i) {
dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
if (ret == bad_dma_address)
goto out_unmap;
paddr += PAGE_SIZE;
start += PAGE_SIZE;
}
@ -1259,6 +1486,17 @@ static dma_addr_t __map_single(struct device *dev,
out:
return address;
out_unmap:
for (--i; i >= 0; --i) {
start -= PAGE_SIZE;
dma_ops_domain_unmap(iommu, dma_dom, start);
}
dma_ops_free_addresses(dma_dom, address, pages);
return bad_dma_address;
}
/*
@ -1629,7 +1867,6 @@ static void prealloc_protection_domains(void)
struct pci_dev *dev = NULL;
struct dma_ops_domain *dma_dom;
struct amd_iommu *iommu;
int order = amd_iommu_aperture_order;
u16 devid;
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
@ -1642,7 +1879,7 @@ static void prealloc_protection_domains(void)
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
continue;
dma_dom = dma_ops_domain_alloc(iommu, order);
dma_dom = dma_ops_domain_alloc(iommu);
if (!dma_dom)
continue;
init_unity_mappings_for_device(dma_dom, devid);
@ -1668,7 +1905,6 @@ static struct dma_map_ops amd_iommu_dma_ops = {
int __init amd_iommu_init_dma_ops(void)
{
struct amd_iommu *iommu;
int order = amd_iommu_aperture_order;
int ret;
/*
@ -1676,8 +1912,8 @@ int __init amd_iommu_init_dma_ops(void)
* found in the system. Devices not assigned to any other
* protection domain will be assigned to the default one.
*/
list_for_each_entry(iommu, &amd_iommu_list, list) {
iommu->default_dom = dma_ops_domain_alloc(iommu, order);
for_each_iommu(iommu) {
iommu->default_dom = dma_ops_domain_alloc(iommu);
if (iommu->default_dom == NULL)
return -ENOMEM;
iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
@ -1714,7 +1950,7 @@ int __init amd_iommu_init_dma_ops(void)
free_domains:
list_for_each_entry(iommu, &amd_iommu_list, list) {
for_each_iommu(iommu) {
if (iommu->default_dom)
dma_ops_domain_free(iommu->default_dom);
}

View File

@ -115,15 +115,21 @@ struct ivmd_header {
u64 range_length;
} __attribute__((packed));
bool amd_iommu_dump;
static int __initdata amd_iommu_detected;
u16 amd_iommu_last_bdf; /* largest PCI device id we have
to handle */
LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
we find in ACPI */
unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
#ifdef CONFIG_IOMMU_STRESS
bool amd_iommu_isolate = false;
#else
bool amd_iommu_isolate = true; /* if true, device isolation is
enabled */
#endif
bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
@ -193,7 +199,7 @@ static inline unsigned long tbl_size(int entry_size)
* This function set the exclusion range in the IOMMU. DMA accesses to the
* exclusion range are passed through untranslated
*/
static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
{
u64 start = iommu->exclusion_start & PAGE_MASK;
u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
@ -225,7 +231,7 @@ static void __init iommu_set_device_table(struct amd_iommu *iommu)
}
/* Generic functions to enable/disable certain features of the IOMMU. */
static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
@ -244,7 +250,7 @@ static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
}
/* Function to enable the hardware */
static void __init iommu_enable(struct amd_iommu *iommu)
static void iommu_enable(struct amd_iommu *iommu)
{
printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
dev_name(&iommu->dev->dev), iommu->cap_ptr);
@ -252,11 +258,9 @@ static void __init iommu_enable(struct amd_iommu *iommu)
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}
/* Function to enable IOMMU event logging and event interrupts */
static void __init iommu_enable_event_logging(struct amd_iommu *iommu)
static void iommu_disable(struct amd_iommu *iommu)
{
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
}
/*
@ -413,25 +417,36 @@ static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(CMD_BUFFER_SIZE));
u64 entry;
if (cmd_buf == NULL)
return NULL;
iommu->cmd_buf_size = CMD_BUFFER_SIZE;
entry = (u64)virt_to_phys(cmd_buf);
return cmd_buf;
}
/*
* This function writes the command buffer address to the hardware and
* enables it.
*/
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->cmd_buf == NULL);
entry = (u64)virt_to_phys(iommu->cmd_buf);
entry |= MMIO_CMD_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
return cmd_buf;
}
static void __init free_command_buffer(struct amd_iommu *iommu)
@ -443,20 +458,27 @@ static void __init free_command_buffer(struct amd_iommu *iommu)
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(EVT_BUFFER_SIZE));
if (iommu->evt_buf == NULL)
return NULL;
return iommu->evt_buf;
}
static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->evt_buf == NULL);
entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
&entry, sizeof(entry));
iommu->evt_buf_size = EVT_BUFFER_SIZE;
return iommu->evt_buf;
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
}
static void __init free_event_buffer(struct amd_iommu *iommu)
@ -596,32 +618,83 @@ static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
p += sizeof(struct ivhd_header);
end += h->length;
while (p < end) {
e = (struct ivhd_entry *)p;
switch (e->type) {
case IVHD_DEV_ALL:
DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
" last device %02x:%02x.%x flags: %02x\n",
PCI_BUS(iommu->first_device),
PCI_SLOT(iommu->first_device),
PCI_FUNC(iommu->first_device),
PCI_BUS(iommu->last_device),
PCI_SLOT(iommu->last_device),
PCI_FUNC(iommu->last_device),
e->flags);
for (dev_i = iommu->first_device;
dev_i <= iommu->last_device; ++dev_i)
set_dev_entry_from_acpi(iommu, dev_i,
e->flags, 0);
break;
case IVHD_DEV_SELECT:
DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
"flags: %02x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
case IVHD_DEV_SELECT_RANGE_START:
DUMP_printk(" DEV_SELECT_RANGE_START\t "
"devid: %02x:%02x.%x flags: %02x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid_start = e->devid;
flags = e->flags;
ext_flags = 0;
alias = false;
break;
case IVHD_DEV_ALIAS:
DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
"flags: %02x devid_to: %02x:%02x.%x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid = e->devid;
devid_to = e->ext >> 8;
set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
amd_iommu_alias_table[devid] = devid_to;
break;
case IVHD_DEV_ALIAS_RANGE:
DUMP_printk(" DEV_ALIAS_RANGE\t\t "
"devid: %02x:%02x.%x flags: %02x "
"devid_to: %02x:%02x.%x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid_start = e->devid;
flags = e->flags;
devid_to = e->ext >> 8;
@ -629,17 +702,39 @@ static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
alias = true;
break;
case IVHD_DEV_EXT_SELECT:
DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
"flags: %02x ext: %08x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags,
e->ext);
break;
case IVHD_DEV_EXT_SELECT_RANGE:
DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
"%02x:%02x.%x flags: %02x ext: %08x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid_start = e->devid;
flags = e->flags;
ext_flags = e->ext;
alias = false;
break;
case IVHD_DEV_RANGE_END:
DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid));
devid = e->devid;
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
if (alias)
@ -679,7 +774,7 @@ static void __init free_iommu_all(void)
{
struct amd_iommu *iommu, *next;
list_for_each_entry_safe(iommu, next, &amd_iommu_list, list) {
for_each_iommu_safe(iommu, next) {
list_del(&iommu->list);
free_iommu_one(iommu);
kfree(iommu);
@ -710,7 +805,6 @@ static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
if (!iommu->mmio_base)
return -ENOMEM;
iommu_set_device_table(iommu);
iommu->cmd_buf = alloc_command_buffer(iommu);
if (!iommu->cmd_buf)
return -ENOMEM;
@ -746,6 +840,15 @@ static int __init init_iommu_all(struct acpi_table_header *table)
h = (struct ivhd_header *)p;
switch (*p) {
case ACPI_IVHD_TYPE:
DUMP_printk("IOMMU: device: %02x:%02x.%01x cap: %04x "
"seg: %d flags: %01x info %04x\n",
PCI_BUS(h->devid), PCI_SLOT(h->devid),
PCI_FUNC(h->devid), h->cap_ptr,
h->pci_seg, h->flags, h->info);
DUMP_printk(" mmio-addr: %016llx\n",
h->mmio_phys);
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
if (iommu == NULL)
return -ENOMEM;
@ -773,56 +876,9 @@ static int __init init_iommu_all(struct acpi_table_header *table)
*
****************************************************************************/
static int __init iommu_setup_msix(struct amd_iommu *iommu)
{
struct amd_iommu *curr;
struct msix_entry entries[32]; /* only 32 supported by AMD IOMMU */
int nvec = 0, i;
list_for_each_entry(curr, &amd_iommu_list, list) {
if (curr->dev == iommu->dev) {
entries[nvec].entry = curr->evt_msi_num;
entries[nvec].vector = 0;
curr->int_enabled = true;
nvec++;
}
}
if (pci_enable_msix(iommu->dev, entries, nvec)) {
pci_disable_msix(iommu->dev);
return 1;
}
for (i = 0; i < nvec; ++i) {
int r = request_irq(entries->vector, amd_iommu_int_handler,
IRQF_SAMPLE_RANDOM,
"AMD IOMMU",
NULL);
if (r)
goto out_free;
}
return 0;
out_free:
for (i -= 1; i >= 0; --i)
free_irq(entries->vector, NULL);
pci_disable_msix(iommu->dev);
return 1;
}
static int __init iommu_setup_msi(struct amd_iommu *iommu)
{
int r;
struct amd_iommu *curr;
list_for_each_entry(curr, &amd_iommu_list, list) {
if (curr->dev == iommu->dev)
curr->int_enabled = true;
}
if (pci_enable_msi(iommu->dev))
return 1;
@ -837,17 +893,18 @@ static int __init iommu_setup_msi(struct amd_iommu *iommu)
return 1;
}
iommu->int_enabled = true;
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
return 0;
}
static int __init iommu_init_msi(struct amd_iommu *iommu)
static int iommu_init_msi(struct amd_iommu *iommu)
{
if (iommu->int_enabled)
return 0;
if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSIX))
return iommu_setup_msix(iommu);
else if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
return iommu_setup_msi(iommu);
return 1;
@ -899,6 +956,7 @@ static int __init init_exclusion_range(struct ivmd_header *m)
static int __init init_unity_map_range(struct ivmd_header *m)
{
struct unity_map_entry *e = 0;
char *s;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL)
@ -909,13 +967,16 @@ static int __init init_unity_map_range(struct ivmd_header *m)
kfree(e);
return 0;
case ACPI_IVMD_TYPE:
s = "IVMD_TYPEi\t\t\t";
e->devid_start = e->devid_end = m->devid;
break;
case ACPI_IVMD_TYPE_ALL:
s = "IVMD_TYPE_ALL\t\t";
e->devid_start = 0;
e->devid_end = amd_iommu_last_bdf;
break;
case ACPI_IVMD_TYPE_RANGE:
s = "IVMD_TYPE_RANGE\t\t";
e->devid_start = m->devid;
e->devid_end = m->aux;
break;
@ -924,6 +985,13 @@ static int __init init_unity_map_range(struct ivmd_header *m)
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
e->prot = m->flags >> 1;
DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
" range_start: %016llx range_end: %016llx flags: %x\n", s,
PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
e->address_start, e->address_end, m->flags);
list_add_tail(&e->list, &amd_iommu_unity_map);
return 0;
@ -969,18 +1037,28 @@ static void init_device_table(void)
* This function finally enables all IOMMUs found in the system after
* they have been initialized
*/
static void __init enable_iommus(void)
static void enable_iommus(void)
{
struct amd_iommu *iommu;
list_for_each_entry(iommu, &amd_iommu_list, list) {
for_each_iommu(iommu) {
iommu_set_device_table(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_set_exclusion_range(iommu);
iommu_init_msi(iommu);
iommu_enable_event_logging(iommu);
iommu_enable(iommu);
}
}
static void disable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_disable(iommu);
}
/*
* Suspend/Resume support
* disable suspend until real resume implemented
@ -988,12 +1066,31 @@ static void __init enable_iommus(void)
static int amd_iommu_resume(struct sys_device *dev)
{
/*
* Disable IOMMUs before reprogramming the hardware registers.
* IOMMU is still enabled from the resume kernel.
*/
disable_iommus();
/* re-load the hardware */
enable_iommus();
/*
* we have to flush after the IOMMUs are enabled because a
* disabled IOMMU will never execute the commands we send
*/
amd_iommu_flush_all_domains();
amd_iommu_flush_all_devices();
return 0;
}
static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
return -EINVAL;
/* disable IOMMUs to go out of the way for BIOS */
disable_iommus();
return 0;
}
static struct sysdev_class amd_iommu_sysdev_class = {
@ -1139,9 +1236,6 @@ int __init amd_iommu_init(void)
enable_iommus();
printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
(1 << (amd_iommu_aperture_order-20)));
printk(KERN_INFO "AMD IOMMU: device isolation ");
if (amd_iommu_isolate)
printk("enabled\n");
@ -1213,6 +1307,13 @@ void __init amd_iommu_detect(void)
*
****************************************************************************/
static int __init parse_amd_iommu_dump(char *str)
{
amd_iommu_dump = true;
return 1;
}
static int __init parse_amd_iommu_options(char *str)
{
for (; *str; ++str) {
@ -1227,15 +1328,5 @@ static int __init parse_amd_iommu_options(char *str)
return 1;
}
static int __init parse_amd_iommu_size_options(char *str)
{
unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));
if ((order > 24) && (order < 31))
amd_iommu_aperture_order = order;
return 1;
}
__setup("amd_iommu_dump", parse_amd_iommu_dump);
__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_size=", parse_amd_iommu_size_options);