Documentation: Use "while" instead of "whilst"

Whilst making an unrelated change to some Documentation, Linus sayeth:

  | Afaik, even in Britain, "whilst" is unusual and considered more
  | formal, and "while" is the common word.
  |
  | [...]
  |
  | Can we just admit that we work with computers, and we don't need to
  | use þe eald Englisc spelling of words that most of the world never
  | uses?

dictionary.com refers to the word as "Chiefly British", which is
probably an undesirable attribute for technical documentation.

Replace all occurrences under Documentation/ with "while".

Cc: David Howells <dhowells@redhat.com>
Cc: Liam Girdwood <lgirdwood@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
Will Deacon 2018-11-19 11:02:45 +00:00 committed by Jonathan Corbet
parent 48c465d23d
commit 806654a966
33 changed files with 56 additions and 56 deletions

View File

@ -331,7 +331,7 @@
APC and your system crashes randomly. APC and your system crashes randomly.
apic= [APIC,X86] Advanced Programmable Interrupt Controller apic= [APIC,X86] Advanced Programmable Interrupt Controller
Change the output verbosity whilst booting Change the output verbosity while booting
Format: { quiet (default) | verbose | debug } Format: { quiet (default) | verbose | debug }
Change the amount of debugging information output Change the amount of debugging information output
when initialising the APIC and IO-APIC components. when initialising the APIC and IO-APIC components.

View File

@ -43,7 +43,7 @@ embargo has lifted; whichever comes first. The only exception to that
rule is if the bug is publicly known, in which case the preference is to rule is if the bug is publicly known, in which case the preference is to
release the fix as soon as it's available. release the fix as soon as it's available.
Whilst embargoed information may be shared with trusted individuals in While embargoed information may be shared with trusted individuals in
order to develop a fix, such information will not be published alongside order to develop a fix, such information will not be published alongside
the fix or on any other disclosure channel without the permission of the the fix or on any other disclosure channel without the permission of the
reporter. This includes but is not limited to the original bug report reporter. This includes but is not limited to the original bug report

View File

@ -126,7 +126,7 @@ tagged list.
The boot loader must pass at a minimum the size and location of the The boot loader must pass at a minimum the size and location of the
system memory, and the root filesystem location. The dtb must be system memory, and the root filesystem location. The dtb must be
placed in a region of memory where the kernel decompressor will not placed in a region of memory where the kernel decompressor will not
overwrite it, whilst remaining within the region which will be covered overwrite it, while remaining within the region which will be covered
by the kernel's low-memory mapping. by the kernel's low-memory mapping.
A safe location is just above the 128MiB boundary from start of RAM. A safe location is just above the 128MiB boundary from start of RAM.

View File

@ -55,7 +55,7 @@ out s3c2410 API, then here are some notes on the process.
as they have the same arguments, and can either take the pin specific as they have the same arguments, and can either take the pin specific
values, or the more generic special-function-number arguments. values, or the more generic special-function-number arguments.
3) s3c2410_gpio_pullup() changes have the problem that whilst the 3) s3c2410_gpio_pullup() changes have the problem that while the
s3c2410_gpio_pullup(x, 1) can be easily translated to the s3c2410_gpio_pullup(x, 1) can be easily translated to the
s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0) s3c_gpio_setpull(x, S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0)
are not so easy. are not so easy.

View File

@ -17,7 +17,7 @@ Introduction
versions. versions.
The S3C2416 and S3C2450 devices are very similar and S3C2450 support is The S3C2416 and S3C2450 devices are very similar and S3C2450 support is
included under the arch/arm/mach-s3c2416 directory. Note, whilst core included under the arch/arm/mach-s3c2416 directory. Note, while core
support for these SoCs is in, work on some of the extra peripherals support for these SoCs is in, work on some of the extra peripherals
and extra interrupts is still ongoing. and extra interrupts is still ongoing.

View File

@ -87,7 +87,7 @@ Debugging
suspending, which means that use of printascii() or similar direct suspending, which means that use of printascii() or similar direct
access to the UARTs will cause the debug to stop. access to the UARTs will cause the debug to stop.
2) Whilst the pm code itself will attempt to re-enable the UART clocks, 2) While the pm code itself will attempt to re-enable the UART clocks,
care should be taken that any external clock sources that the UARTs care should be taken that any external clock sources that the UARTs
rely on are still enabled at that point. rely on are still enabled at that point.

View File

@ -34,7 +34,7 @@ properties:
8. The array can iterated over. The objects will not necessarily come out in 8. The array can iterated over. The objects will not necessarily come out in
key order. key order.
9. The array can be iterated over whilst it is being modified, provided the 9. The array can be iterated over while it is being modified, provided the
RCU readlock is being held by the iterator. Note, however, under these RCU readlock is being held by the iterator. Note, however, under these
circumstances, some objects may be seen more than once. If this is a circumstances, some objects may be seen more than once. If this is a
problem, the iterator should lock against modification. Objects will not problem, the iterator should lock against modification. Objects will not
@ -42,7 +42,7 @@ properties:
10. Objects in the array can be looked up by means of their index key. 10. Objects in the array can be looked up by means of their index key.
11. Objects can be looked up whilst the array is being modified, provided the 11. Objects can be looked up while the array is being modified, provided the
RCU readlock is being held by the thread doing the look up. RCU readlock is being held by the thread doing the look up.
The implementation uses a tree of 16-pointer nodes internally that are indexed The implementation uses a tree of 16-pointer nodes internally that are indexed
@ -273,7 +273,7 @@ The function will return ``0`` if successful and ``-ENOMEM`` if there wasn't
enough memory. enough memory.
It is possible for other threads to iterate over or search the array under It is possible for other threads to iterate over or search the array under
the RCU read lock whilst this function is in progress. The caller should the RCU read lock while this function is in progress. The caller should
lock exclusively against other modifiers of the array. lock exclusively against other modifiers of the array.

View File

@ -146,7 +146,7 @@ The target is named "raid" and it accepts the following parameters:
[data_offset <sectors>] [data_offset <sectors>]
This option value defines the offset into each data device This option value defines the offset into each data device
where the data starts. This is used to provide out-of-place where the data starts. This is used to provide out-of-place
reshaping space to avoid writing over data whilst reshaping space to avoid writing over data while
changing the layout of stripes, hence an interruption/crash changing the layout of stripes, hence an interruption/crash
may happen at any time without the risk of losing data. may happen at any time without the risk of losing data.
E.g. when adding devices to an existing raid set during E.g. when adding devices to an existing raid set during

View File

@ -142,7 +142,7 @@ characterised by the following graph:
The graph is split in two parts delimited by time 1ms on the X-axis. The graph is split in two parts delimited by time 1ms on the X-axis.
The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
and denotes the energy costs incurred whilst entering and leaving the idle and denotes the energy costs incurred while entering and leaving the idle
state. state.
The graph curve in the area delimited by X-axis values = {x | x > 1ms } has The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
shallower slope and essentially represents the energy consumption of the idle shallower slope and essentially represents the energy consumption of the idle

View File

@ -56,7 +56,7 @@ For CAM, this 24-bit offset is:
cfg_offset(bus, device, function, register) = cfg_offset(bus, device, function, register) =
bus << 16 | device << 11 | function << 8 | register bus << 16 | device << 11 | function << 8 | register
Whilst ECAM extends this by 4 bits to accommodate 4k of function space: While ECAM extends this by 4 bits to accommodate 4k of function space:
cfg_offset(bus, device, function, register) = cfg_offset(bus, device, function, register) =
bus << 20 | device << 15 | function << 12 | register bus << 20 | device << 15 | function << 12 | register

View File

@ -16,7 +16,7 @@ Optional properties:
- linux,rs485-enabled-at-boot-time: empty property telling to enable the rs485 - linux,rs485-enabled-at-boot-time: empty property telling to enable the rs485
feature at boot time. It can be disabled later with proper ioctl. feature at boot time. It can be disabled later with proper ioctl.
- rs485-rx-during-tx: empty property that enables the receiving of data even - rs485-rx-during-tx: empty property that enables the receiving of data even
whilst sending data. while sending data.
RS485 example for Atmel USART: RS485 example for Atmel USART:
usart0: serial@fff8c000 { usart0: serial@fff8c000 {

View File

@ -704,7 +704,7 @@ FS-Cache provides some utilities that a cache backend may make use of:
void fscache_get_retrieval(struct fscache_retrieval *op); void fscache_get_retrieval(struct fscache_retrieval *op);
void fscache_put_retrieval(struct fscache_retrieval *op); void fscache_put_retrieval(struct fscache_retrieval *op);
These two functions are used to retain a retrieval record whilst doing These two functions are used to retain a retrieval record while doing
asynchronous data retrieval and block allocation. asynchronous data retrieval and block allocation.

View File

@ -45,7 +45,7 @@ filesystems are very specific in nature.
CacheFiles creates a misc character device - "/dev/cachefiles" - that is used CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon. Only one thing may have this open at once, to communication with the daemon. Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence. The daemon and while it is open, a cache is at least partially in existence. The daemon
opens this and sends commands down it to control the cache. opens this and sends commands down it to control the cache.
CacheFiles is currently limited to a single cache. CacheFiles is currently limited to a single cache.
@ -163,7 +163,7 @@ Do not mount other things within the cache as this will cause problems. The
kernel module contains its own very cut-down path walking facility that ignores kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them. mountpoints, but the daemon can't avoid them.
Do not create, rename or unlink files and directories in the cache whilst the Do not create, rename or unlink files and directories in the cache while the
cache is active, as this may cause the state to become uncertain. cache is active, as this may cause the state to become uncertain.
Renaming files in the cache might make objects appear to be other objects (the Renaming files in the cache might make objects appear to be other objects (the

View File

@ -382,7 +382,7 @@ MISCELLANEOUS OBJECT REGISTRATION
An optional step is to request an object of miscellaneous type be created in An optional step is to request an object of miscellaneous type be created in
the cache. This is almost identical to index cookie acquisition. The only the cache. This is almost identical to index cookie acquisition. The only
difference is that the type in the object definition should be something other difference is that the type in the object definition should be something other
than index type. Whilst the parent object could be an index, it's more likely than index type. While the parent object could be an index, it's more likely
it would be some other type of object such as a data file. it would be some other type of object such as a data file.
xattr->cache = xattr->cache =

View File

@ -171,7 +171,7 @@ Operations are used through the following procedure:
(3) If the submitting thread wants to do the work itself, and has marked the (3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting). necessary (the object might have died while the thread was waiting).
When it has finished doing its processing, it should call When it has finished doing its processing, it should call
fscache_op_complete() and fscache_put_operation() on it. fscache_op_complete() and fscache_put_operation() on it.

View File

@ -87,7 +87,7 @@ addressed with 16 direct blocks.
For more than 16 blocks an indirect addressing in form of another tree is For more than 16 blocks an indirect addressing in form of another tree is
used. (scheme is the same as the one used for the superblock root nodes) used. (scheme is the same as the one used for the superblock root nodes)
The filesize is stored 64bit. Inode counting starts with 1. (whilst long The filesize is stored 64bit. Inode counting starts with 1. (while long
filename inodes start with 0) filename inodes start with 0)
Directories Directories
@ -155,7 +155,7 @@ Then userspace.
The requirement for a static, fixed preallocated system area comes from how The requirement for a static, fixed preallocated system area comes from how
qnx6fs deals with writes. qnx6fs deals with writes.
Each superblock got it's own half of the system area. So superblock #1 Each superblock got it's own half of the system area. So superblock #1
always uses blocks from the lower half whilst superblock #2 just writes to always uses blocks from the lower half while superblock #2 just writes to
blocks represented by the upper half bitmap system area bits. blocks represented by the upper half bitmap system area bits.
Bitmap blocks, Inode blocks and indirect addressing blocks for those two Bitmap blocks, Inode blocks and indirect addressing blocks for those two

View File

@ -1131,7 +1131,7 @@ struct dentry_operations {
d_manage: called to allow the filesystem to manage the transition from a d_manage: called to allow the filesystem to manage the transition from a
dentry (optional). This allows autofs, for example, to hold up clients dentry (optional). This allows autofs, for example, to hold up clients
waiting to explore behind a 'mountpoint' whilst letting the daemon go waiting to explore behind a 'mountpoint' while letting the daemon go
past and construct the subtree there. 0 should be returned to let the past and construct the subtree there. 0 should be returned to let the
calling process continue. -EISDIR can be returned to tell pathwalk to calling process continue. -EISDIR can be returned to tell pathwalk to
use this directory as an ordinary directory and to ignore anything use this directory as an ordinary directory and to ignore anything

View File

@ -110,7 +110,7 @@ owner field in the metadata object, we can immediately do top down validation to
determine the scope of the problem. determine the scope of the problem.
Different types of metadata have different owner identifiers. For example, Different types of metadata have different owner identifiers. For example,
directory, attribute and extent tree blocks are all owned by an inode, whilst directory, attribute and extent tree blocks are all owned by an inode, while
freespace btree blocks are owned by an allocation group. Hence the size and freespace btree blocks are owned by an allocation group. Hence the size and
contents of the owner field are determined by the type of metadata object we are contents of the owner field are determined by the type of metadata object we are
looking at. The owner information can also identify misplaced writes (e.g. looking at. The owner information can also identify misplaced writes (e.g.

View File

@ -417,7 +417,7 @@ level directory:
filesystem from ever unmounting fully in the case of "retry forever" filesystem from ever unmounting fully in the case of "retry forever"
handler configurations. handler configurations.
Note: there is no guarantee that fail_at_unmount can be set whilst an Note: there is no guarantee that fail_at_unmount can be set while an
unmount is in progress. It is possible that the sysfs entries are unmount is in progress. It is possible that the sysfs entries are
removed by the unmounting filesystem before a "retry forever" error removed by the unmounting filesystem before a "retry forever" error
handler configuration causes unmount to hang, and hence the filesystem handler configuration causes unmount to hang, and hence the filesystem

View File

@ -15,7 +15,7 @@ existing subsystems with minimal additional code. Examples are the disk-activity
nand-disk and sharpsl-charge triggers. With led triggers disabled, the code nand-disk and sharpsl-charge triggers. With led triggers disabled, the code
optimises away. optimises away.
Complex triggers whilst available to all LEDs have LED specific Complex triggers while available to all LEDs have LED specific
parameters and work on a per LED basis. The timer trigger is an example. parameters and work on a per LED basis. The timer trigger is an example.
The timer trigger will periodically change the LED brightness between The timer trigger will periodically change the LED brightness between
LED_OFF and the current brightness setting. The "on" and "off" time can LED_OFF and the current brightness setting. The "on" and "off" time can

View File

@ -3980,7 +3980,7 @@ demodulator. It receives radio frequency (RF) from the antenna and
converts that received signal to lower intermediate frequency (IF) or converts that received signal to lower intermediate frequency (IF) or
baseband frequency (BB). Tuners that could do baseband output are often baseband frequency (BB). Tuners that could do baseband output are often
called Zero-IF tuners. Older tuners were typically simple PLL tuners called Zero-IF tuners. Older tuners were typically simple PLL tuners
inside a metal box, whilst newer ones are highly integrated chips inside a metal box, while newer ones are highly integrated chips
without a metal box "silicon tuners". These controls are mostly without a metal box "silicon tuners". These controls are mostly
applicable for new feature rich silicon tuners, just because older applicable for new feature rich silicon tuners, just because older
tuners does not have much adjustable features. tuners does not have much adjustable features.

View File

@ -587,7 +587,7 @@ leading to the following situation:
(Q == &B) and (D == 2) ???? (Q == &B) and (D == 2) ????
Whilst this may seem like a failure of coherency or causality maintenance, it While this may seem like a failure of coherency or causality maintenance, it
isn't, and this behaviour can be observed on certain real CPUs (such as the DEC isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
Alpha). Alpha).
@ -2008,7 +2008,7 @@ for each construct. These operations all imply certain barriers:
Certain locking variants of the ACQUIRE operation may fail, either due to Certain locking variants of the ACQUIRE operation may fail, either due to
being unable to get the lock immediately, or due to receiving an unblocked being unable to get the lock immediately, or due to receiving an unblocked
signal whilst asleep waiting for the lock to become available. Failed signal while asleep waiting for the lock to become available. Failed
locks do not imply any sort of barrier. locks do not imply any sort of barrier.
[!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only [!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only
@ -2508,7 +2508,7 @@ CPU, that CPU's dependency ordering logic will take care of everything else.
ATOMIC OPERATIONS ATOMIC OPERATIONS
----------------- -----------------
Whilst they are technically interprocessor interaction considerations, atomic While they are technically interprocessor interaction considerations, atomic
operations are noted specially as some of them imply full memory barriers and operations are noted specially as some of them imply full memory barriers and
some don't, but they're very heavily relied on as a group throughout the some don't, but they're very heavily relied on as a group throughout the
kernel. kernel.
@ -2531,7 +2531,7 @@ the device to malfunction.
Inside of the Linux kernel, I/O should be done through the appropriate accessor Inside of the Linux kernel, I/O should be done through the appropriate accessor
routines - such as inb() or writel() - which know how to make such accesses routines - such as inb() or writel() - which know how to make such accesses
appropriately sequential. Whilst this, for the most part, renders the explicit appropriately sequential. While this, for the most part, renders the explicit
use of memory barriers unnecessary, there are a couple of situations where they use of memory barriers unnecessary, there are a couple of situations where they
might be needed: might be needed:
@ -2555,7 +2555,7 @@ access the device.
This may be alleviated - at least in part - by disabling local interrupts (a This may be alleviated - at least in part - by disabling local interrupts (a
form of locking), such that the critical operations are all contained within form of locking), such that the critical operations are all contained within
the interrupt-disabled section in the driver. Whilst the driver's interrupt the interrupt-disabled section in the driver. While the driver's interrupt
routine is executing, the driver's core may not run on the same CPU, and its routine is executing, the driver's core may not run on the same CPU, and its
interrupt is not permitted to happen again until the current interrupt has been interrupt is not permitted to happen again until the current interrupt has been
handled, thus the interrupt handler does not need to lock against that. handled, thus the interrupt handler does not need to lock against that.
@ -2763,7 +2763,7 @@ CACHE COHERENCY
Life isn't quite as simple as it may appear above, however: for while the Life isn't quite as simple as it may appear above, however: for while the
caches are expected to be coherent, there's no guarantee that that coherency caches are expected to be coherent, there's no guarantee that that coherency
will be ordered. This means that whilst changes made on one CPU will will be ordered. This means that while changes made on one CPU will
eventually become visible on all CPUs, there's no guarantee that they will eventually become visible on all CPUs, there's no guarantee that they will
become apparent in the same order on those other CPUs. become apparent in the same order on those other CPUs.
@ -2799,7 +2799,7 @@ Imagine the system has the following properties:
(*) an even-numbered cache line may be in cache B, cache D or it may still be (*) an even-numbered cache line may be in cache B, cache D or it may still be
resident in memory; resident in memory;
(*) whilst the CPU core is interrogating one cache, the other cache may be (*) while the CPU core is interrogating one cache, the other cache may be
making use of the bus to access the rest of the system - perhaps to making use of the bus to access the rest of the system - perhaps to
displace a dirty cacheline or to do a speculative load; displace a dirty cacheline or to do a speculative load;
@ -2835,7 +2835,7 @@ now imagine that the second CPU wants to read those values:
x = *q; x = *q;
The above pair of reads may then fail to happen in the expected order, as the The above pair of reads may then fail to happen in the expected order, as the
cacheline holding p may get updated in one of the second CPU's caches whilst cacheline holding p may get updated in one of the second CPU's caches while
the update to the cacheline holding v is delayed in the other of the second the update to the cacheline holding v is delayed in the other of the second
CPU's caches by some other cache event: CPU's caches by some other cache event:
@ -2855,7 +2855,7 @@ CPU's caches by some other cache event:
<C:unbusy> <C:unbusy>
<C:commit v=2> <C:commit v=2>
Basically, whilst both cachelines will be updated on CPU 2 eventually, there's Basically, while both cachelines will be updated on CPU 2 eventually, there's
no guarantee that, without intervention, the order of update will be the same no guarantee that, without intervention, the order of update will be the same
as that committed on CPU 1. as that committed on CPU 1.
@ -2885,7 +2885,7 @@ coherency queue before processing any further requests:
This sort of problem can be encountered on DEC Alpha processors as they have a This sort of problem can be encountered on DEC Alpha processors as they have a
split cache that improves performance by making better use of the data bus. split cache that improves performance by making better use of the data bus.
Whilst most CPUs do imply a data dependency barrier on the read when a memory While most CPUs do imply a data dependency barrier on the read when a memory
access depends on a read, not all do, so it may not be relied on. access depends on a read, not all do, so it may not be relied on.
Other CPUs may also have split caches, but must coordinate between the various Other CPUs may also have split caches, but must coordinate between the various
@ -2974,7 +2974,7 @@ assumption doesn't hold because:
thus cutting down on transaction setup costs (memory and PCI devices may thus cutting down on transaction setup costs (memory and PCI devices may
both be able to do this); and both be able to do this); and
(*) the CPU's data cache may affect the ordering, and whilst cache-coherency (*) the CPU's data cache may affect the ordering, and while cache-coherency
mechanisms may alleviate this - once the store has actually hit the cache mechanisms may alleviate this - once the store has actually hit the cache
- there's no guarantee that the coherency management will be propagated in - there's no guarantee that the coherency management will be propagated in
order to other CPUs. order to other CPUs.

View File

@ -84,7 +84,7 @@
Automedia detection is included so that in principle you can disconnect Automedia detection is included so that in principle you can disconnect
from, e.g. TP, reconnect to BNC and things will still work (after a from, e.g. TP, reconnect to BNC and things will still work (after a
pause whilst the driver figures out where its media went). My tests pause while the driver figures out where its media went). My tests
using ping showed that it appears to work.... using ping showed that it appears to work....
By default, the driver will now autodetect any DECchip based card. By default, the driver will now autodetect any DECchip based card.

View File

@ -661,7 +661,7 @@ A server would be set up to accept operations in the following manner:
setsockopt(server, SOL_RXRPC, RXRPC_SECURITY_KEYRING, "AFSkeys", 7); setsockopt(server, SOL_RXRPC, RXRPC_SECURITY_KEYRING, "AFSkeys", 7);
The keyring can be manipulated after it has been given to the socket. This The keyring can be manipulated after it has been given to the socket. This
permits the server to add more keys, replace keys, etc. whilst it is live. permits the server to add more keys, replace keys, etc. while it is live.
(3) A local address must then be bound: (3) A local address must then be bound:
@ -1032,7 +1032,7 @@ The kernel interface functions are as follows:
struct sockaddr_rxrpc *srx, struct sockaddr_rxrpc *srx,
struct key *key); struct key *key);
This attempts to partially reinitialise a call and submit it again whilst This attempts to partially reinitialise a call and submit it again while
reusing the original call's Tx queue to avoid the need to repackage and reusing the original call's Tx queue to avoid the need to repackage and
re-encrypt the data to be sent. call indicates the call to retry, srx the re-encrypt the data to be sent. call indicates the call to retry, srx the
new address to send it to and key the encryption key to use for signing or new address to send it to and key the encryption key to use for signing or
@ -1064,7 +1064,7 @@ The kernel interface functions are as follows:
waiting for a suitable interval. waiting for a suitable interval.
This allows the caller to work out if the server is still contactable and This allows the caller to work out if the server is still contactable and
if the call is still alive on the server whilst waiting for the server to if the call is still alive on the server while waiting for the server to
process a client operation. process a client operation.
This function may transmit a PING ACK. This function may transmit a PING ACK.
@ -1144,14 +1144,14 @@ adjusted through sysctls in /proc/net/rxrpc/:
(*) connection_expiry (*) connection_expiry
The amount of time in seconds after a connection was last used before we The amount of time in seconds after a connection was last used before we
remove it from the connection list. Whilst a connection is in existence, remove it from the connection list. While a connection is in existence,
it serves as a placeholder for negotiated security; when it is deleted, it serves as a placeholder for negotiated security; when it is deleted,
the security must be renegotiated. the security must be renegotiated.
(*) transport_expiry (*) transport_expiry
The amount of time in seconds after a transport was last used before we The amount of time in seconds after a transport was last used before we
remove it from the transport list. Whilst a transport is in existence, it remove it from the transport list. While a transport is in existence, it
serves to anchor the peer data and keeps the connection ID counter. serves to anchor the peer data and keeps the connection ID counter.
(*) rxrpc_rx_window_size (*) rxrpc_rx_window_size

View File

@ -22,7 +22,7 @@ Nomenclature
Some terms used in this document:- Some terms used in this document:-
o Regulator - Electronic device that supplies power to other devices. o Regulator - Electronic device that supplies power to other devices.
Most regulators can enable and disable their output whilst Most regulators can enable and disable their output while
some can control their output voltage and or current. some can control their output voltage and or current.
Input Voltage -> Regulator -> Output Voltage Input Voltage -> Regulator -> Output Voltage

View File

@ -16,7 +16,7 @@ Sep 2002: Dynamically get 3270 input buffer
Sep 2002: Fix tubfs kmalloc()s Sep 2002: Fix tubfs kmalloc()s
* Do read and write lengths correctly in fs3270_read() * Do read and write lengths correctly in fs3270_read()
and fs3270_write(), whilst never asking kmalloc() and fs3270_write(), while never asking kmalloc()
for more than 0x800 bytes. Affects tubfs.c and tubio.h. for more than 0x800 bytes. Affects tubfs.c and tubio.h.
Sep 2002: Recognize 3270 control unit type 3174 Sep 2002: Recognize 3270 control unit type 3174

View File

@ -291,7 +291,7 @@ for example), it must be considered immutable, barring two exceptions:
1. The reference count may be altered. 1. The reference count may be altered.
2. Whilst the keyring subscriptions of a set of credentials may not be 2. While the keyring subscriptions of a set of credentials may not be
changed, the keyrings subscribed to may have their contents altered. changed, the keyrings subscribed to may have their contents altered.
To catch accidental credential alteration at compile time, struct task_struct To catch accidental credential alteration at compile time, struct task_struct
@ -358,7 +358,7 @@ Once a reference has been obtained, it must be released with ``put_cred()``,
Accessing Another Task's Credentials Accessing Another Task's Credentials
------------------------------------ ------------------------------------
Whilst a task may access its own credentials without the need for locking, the While a task may access its own credentials without the need for locking, the
same is not true of a task wanting to access another task's credentials. It same is not true of a task wanting to access another task's credentials. It
must use the RCU read lock and ``rcu_dereference()``. must use the RCU read lock and ``rcu_dereference()``.
@ -382,7 +382,7 @@ This should be used inside the RCU read lock, as in the following example::
} }
Should it be necessary to hold another task's credentials for a long period of Should it be necessary to hold another task's credentials for a long period of
time, and possibly to sleep whilst doing so, then the caller should get a time, and possibly to sleep while doing so, then the caller should get a
reference on them using:: reference on them using::
const struct cred *get_task_cred(struct task_struct *task); const struct cred *get_task_cred(struct task_struct *task);
@ -442,7 +442,7 @@ duplicate of the current process's credentials, returning with the mutex still
held if successful. It returns NULL if not successful (out of memory). held if successful. It returns NULL if not successful (out of memory).
The mutex prevents ``ptrace()`` from altering the ptrace state of a process The mutex prevents ``ptrace()`` from altering the ptrace state of a process
whilst security checks on credentials construction and changing is taking place while security checks on credentials construction and changing is taking place
as the ptrace state may alter the outcome, particularly in the case of as the ptrace state may alter the outcome, particularly in the case of
``execve()``. ``execve()``.

View File

@ -132,7 +132,7 @@ Negative Instantiation And Rejection
Rather than instantiating a key, it is possible for the possessor of an Rather than instantiating a key, it is possible for the possessor of an
authorisation key to negatively instantiate a key that's under construction. authorisation key to negatively instantiate a key that's under construction.
This is a short duration placeholder that causes any attempt at re-requesting This is a short duration placeholder that causes any attempt at re-requesting
the key whilst it exists to fail with error ENOKEY if negated or the specified the key while it exists to fail with error ENOKEY if negated or the specified
error if rejected. error if rejected.
This is provided to prevent excessive repeated spawning of /sbin/request-key This is provided to prevent excessive repeated spawning of /sbin/request-key

View File

@ -75,7 +75,7 @@
/* Set rts delay after send, if needed: */ /* Set rts delay after send, if needed: */
rs485conf.delay_rts_after_send = ...; rs485conf.delay_rts_after_send = ...;
/* Set this flag if you want to receive data even whilst sending data */ /* Set this flag if you want to receive data even while sending data */
rs485conf.flags |= SER_RS485_RX_DURING_TX; rs485conf.flags |= SER_RS485_RX_DURING_TX;
if (ioctl (fd, TIOCSRS485, &rs485conf) < 0) { if (ioctl (fd, TIOCSRS485, &rs485conf) < 0) {

View File

@ -24,7 +24,7 @@ I2S
=== ===
I2S is a common 4 wire DAI used in HiFi, STB and portable devices. The Tx and I2S is a common 4 wire DAI used in HiFi, STB and portable devices. The Tx and
Rx lines are used for audio transmission, whilst the bit clock (BCLK) and Rx lines are used for audio transmission, while the bit clock (BCLK) and
left/right clock (LRC) synchronise the link. I2S is flexible in that either the left/right clock (LRC) synchronise the link. I2S is flexible in that either the
controller or CODEC can drive (master) the BCLK and LRC clock lines. Bit clock controller or CODEC can drive (master) the BCLK and LRC clock lines. Bit clock
usually varies depending on the sample rate and the master system clock usually varies depending on the sample rate and the master system clock
@ -49,9 +49,9 @@ PCM
PCM is another 4 wire interface, very similar to I2S, which can support a more PCM is another 4 wire interface, very similar to I2S, which can support a more
flexible protocol. It has bit clock (BCLK) and sync (SYNC) lines that are used flexible protocol. It has bit clock (BCLK) and sync (SYNC) lines that are used
to synchronise the link whilst the Tx and Rx lines are used to transmit and to synchronise the link while the Tx and Rx lines are used to transmit and
receive the audio data. Bit clock usually varies depending on sample rate receive the audio data. Bit clock usually varies depending on sample rate
whilst sync runs at the sample rate. PCM also supports Time Division while sync runs at the sample rate. PCM also supports Time Division
Multiplexing (TDM) in that several devices can use the bus simultaneously (this Multiplexing (TDM) in that several devices can use the bus simultaneously (this
is sometimes referred to as network mode). is sometimes referred to as network mode).

View File

@ -218,7 +218,7 @@ like a BT phone call :-
* * <----DAI5-----> FM * * <----DAI5-----> FM
************* *************
This allows the host CPU to sleep whilst the DSP, MODEM DAI and the BT DAI are This allows the host CPU to sleep while the DSP, MODEM DAI and the BT DAI are
still in operation. still in operation.
A BE DAI link can also set the codec to a dummy device if the code is a device A BE DAI link can also set the codec to a dummy device if the code is a device

View File

@ -156,7 +156,7 @@ or increment/decrement function.
Note that switching branches results in some locks being taken, Note that switching branches results in some locks being taken,
particularly the CPU hotplug lock (in order to avoid races against particularly the CPU hotplug lock (in order to avoid races against
CPUs being brought in the kernel whilst the kernel is getting CPUs being brought in the kernel while the kernel is getting
patched). Calling the static key API from within a hotplug notifier is patched). Calling the static key API from within a hotplug notifier is
thus a sure deadlock recipe. In order to still allow use of the thus a sure deadlock recipe. In order to still allow use of the
functionnality, the following functions are provided: functionnality, the following functions are provided:

View File

@ -110,7 +110,7 @@ the permitted thermal "ramp" of the system. For instance, a lower
`k_pu` value will provide a slower ramp, at the cost of capping `k_pu` value will provide a slower ramp, at the cost of capping
available capacity at a low temperature. On the other hand, a high available capacity at a low temperature. On the other hand, a high
value of `k_pu` will result in the governor granting very high power value of `k_pu` will result in the governor granting very high power
whilst temperature is low, and may lead to temperature overshooting. while temperature is low, and may lead to temperature overshooting.
The default value for `k_pu` is: The default value for `k_pu` is: