diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 0a840d5d75ae..4a3c6759492b 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -321,4 +321,13 @@ config MTD_NAND_ORION No board specific support is done by this driver, each board must advertise a platform_device for the driver to attach. +config MTD_NAND_FSL_ELBC + tristate "NAND support for Freescale eLBC controllers" + depends on MTD_NAND && PPC_OF + help + Various Freescale chips, including the 8313, include a NAND Flash + Controller Module with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index e35f5ea3a7a9..80d575eeee96 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -31,5 +31,6 @@ obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o obj-$(CONFIG_MTD_ALAUDA) += alauda.o obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o +obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o nand-objs := nand_base.o nand_bbt.o diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c new file mode 100644 index 000000000000..b025dfe0b274 --- /dev/null +++ b/drivers/mtd/nand/fsl_elbc_nand.c @@ -0,0 +1,1244 @@ +/* Freescale Enhanced Local Bus Controller NAND driver + * + * Copyright (c) 2006-2007 Freescale Semiconductor + * + * Authors: Nick Spence , + * Scott Wood + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include + + +#define MAX_BANKS 8 +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ +#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ + +struct elbc_bank { + __be32 br; /**< Base Register */ +#define BR_BA 0xFFFF8000 +#define BR_BA_SHIFT 15 +#define BR_PS 0x00001800 +#define BR_PS_SHIFT 11 +#define BR_PS_8 0x00000800 /* Port Size 8 bit */ +#define BR_PS_16 0x00001000 /* Port Size 16 bit */ +#define BR_PS_32 0x00001800 /* Port Size 32 bit */ +#define BR_DECC 0x00000600 +#define BR_DECC_SHIFT 9 +#define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */ +#define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */ +#define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */ +#define BR_WP 0x00000100 +#define BR_WP_SHIFT 8 +#define BR_MSEL 0x000000E0 +#define BR_MSEL_SHIFT 5 +#define BR_MS_GPCM 0x00000000 /* GPCM */ +#define BR_MS_FCM 0x00000020 /* FCM */ +#define BR_MS_SDRAM 0x00000060 /* SDRAM */ +#define BR_MS_UPMA 0x00000080 /* UPMA */ +#define BR_MS_UPMB 0x000000A0 /* UPMB */ +#define BR_MS_UPMC 0x000000C0 /* UPMC */ +#define BR_V 0x00000001 +#define BR_V_SHIFT 0 +#define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V) + + __be32 or; /**< Base Register */ +#define OR0 0x5004 +#define OR1 0x500C +#define OR2 0x5014 +#define OR3 0x501C +#define OR4 0x5024 +#define OR5 0x502C +#define OR6 0x5034 +#define OR7 0x503C + +#define OR_FCM_AM 0xFFFF8000 +#define OR_FCM_AM_SHIFT 15 +#define OR_FCM_BCTLD 0x00001000 +#define OR_FCM_BCTLD_SHIFT 12 +#define OR_FCM_PGS 0x00000400 +#define OR_FCM_PGS_SHIFT 10 +#define OR_FCM_CSCT 0x00000200 +#define OR_FCM_CSCT_SHIFT 9 +#define OR_FCM_CST 0x00000100 +#define OR_FCM_CST_SHIFT 8 +#define OR_FCM_CHT 0x00000080 +#define OR_FCM_CHT_SHIFT 7 +#define OR_FCM_SCY 0x00000070 +#define OR_FCM_SCY_SHIFT 4 +#define OR_FCM_SCY_1 0x00000010 +#define OR_FCM_SCY_2 0x00000020 +#define OR_FCM_SCY_3 0x00000030 +#define OR_FCM_SCY_4 0x00000040 +#define OR_FCM_SCY_5 0x00000050 +#define OR_FCM_SCY_6 0x00000060 +#define OR_FCM_SCY_7 0x00000070 +#define OR_FCM_RST 0x00000008 +#define OR_FCM_RST_SHIFT 3 +#define OR_FCM_TRLX 0x00000004 +#define OR_FCM_TRLX_SHIFT 2 +#define OR_FCM_EHTR 0x00000002 +#define OR_FCM_EHTR_SHIFT 1 +}; + +struct elbc_regs { + struct elbc_bank bank[8]; + u8 res0[0x28]; + __be32 mar; /**< UPM Address Register */ + u8 res1[0x4]; + __be32 mamr; /**< UPMA Mode Register */ + __be32 mbmr; /**< UPMB Mode Register */ + __be32 mcmr; /**< UPMC Mode Register */ + u8 res2[0x8]; + __be32 mrtpr; /**< Memory Refresh Timer Prescaler Register */ + __be32 mdr; /**< UPM Data Register */ + u8 res3[0x4]; + __be32 lsor; /**< Special Operation Initiation Register */ + __be32 lsdmr; /**< SDRAM Mode Register */ + u8 res4[0x8]; + __be32 lurt; /**< UPM Refresh Timer */ + __be32 lsrt; /**< SDRAM Refresh Timer */ + u8 res5[0x8]; + __be32 ltesr; /**< Transfer Error Status Register */ +#define LTESR_BM 0x80000000 +#define LTESR_FCT 0x40000000 +#define LTESR_PAR 0x20000000 +#define LTESR_WP 0x04000000 +#define LTESR_ATMW 0x00800000 +#define LTESR_ATMR 0x00400000 +#define LTESR_CS 0x00080000 +#define LTESR_CC 0x00000001 +#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC) + __be32 ltedr; /**< Transfer Error Disable Register */ + __be32 lteir; /**< Transfer Error Interrupt Register */ + __be32 lteatr; /**< Transfer Error Attributes Register */ + __be32 ltear; /**< Transfer Error Address Register */ + u8 res6[0xC]; + __be32 lbcr; /**< Configuration Register */ +#define LBCR_LDIS 0x80000000 +#define LBCR_LDIS_SHIFT 31 +#define LBCR_BCTLC 0x00C00000 +#define LBCR_BCTLC_SHIFT 22 +#define LBCR_AHD 0x00200000 +#define LBCR_LPBSE 0x00020000 +#define LBCR_LPBSE_SHIFT 17 +#define LBCR_EPAR 0x00010000 +#define LBCR_EPAR_SHIFT 16 +#define LBCR_BMT 0x0000FF00 +#define LBCR_BMT_SHIFT 8 +#define LBCR_INIT 0x00040000 + __be32 lcrr; /**< Clock Ratio Register */ +#define LCRR_DBYP 0x80000000 +#define LCRR_DBYP_SHIFT 31 +#define LCRR_BUFCMDC 0x30000000 +#define LCRR_BUFCMDC_SHIFT 28 +#define LCRR_ECL 0x03000000 +#define LCRR_ECL_SHIFT 24 +#define LCRR_EADC 0x00030000 +#define LCRR_EADC_SHIFT 16 +#define LCRR_CLKDIV 0x0000000F +#define LCRR_CLKDIV_SHIFT 0 + u8 res7[0x8]; + __be32 fmr; /**< Flash Mode Register */ +#define FMR_CWTO 0x0000F000 +#define FMR_CWTO_SHIFT 12 +#define FMR_BOOT 0x00000800 +#define FMR_ECCM 0x00000100 +#define FMR_AL 0x00000030 +#define FMR_AL_SHIFT 4 +#define FMR_OP 0x00000003 +#define FMR_OP_SHIFT 0 + __be32 fir; /**< Flash Instruction Register */ +#define FIR_OP0 0xF0000000 +#define FIR_OP0_SHIFT 28 +#define FIR_OP1 0x0F000000 +#define FIR_OP1_SHIFT 24 +#define FIR_OP2 0x00F00000 +#define FIR_OP2_SHIFT 20 +#define FIR_OP3 0x000F0000 +#define FIR_OP3_SHIFT 16 +#define FIR_OP4 0x0000F000 +#define FIR_OP4_SHIFT 12 +#define FIR_OP5 0x00000F00 +#define FIR_OP5_SHIFT 8 +#define FIR_OP6 0x000000F0 +#define FIR_OP6_SHIFT 4 +#define FIR_OP7 0x0000000F +#define FIR_OP7_SHIFT 0 +#define FIR_OP_NOP 0x0 /* No operation and end of sequence */ +#define FIR_OP_CA 0x1 /* Issue current column address */ +#define FIR_OP_PA 0x2 /* Issue current block+page address */ +#define FIR_OP_UA 0x3 /* Issue user defined address */ +#define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */ +#define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */ +#define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */ +#define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */ +#define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */ +#define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */ +#define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */ +#define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */ +#define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */ +#define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */ +#define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */ +#define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */ + __be32 fcr; /**< Flash Command Register */ +#define FCR_CMD0 0xFF000000 +#define FCR_CMD0_SHIFT 24 +#define FCR_CMD1 0x00FF0000 +#define FCR_CMD1_SHIFT 16 +#define FCR_CMD2 0x0000FF00 +#define FCR_CMD2_SHIFT 8 +#define FCR_CMD3 0x000000FF +#define FCR_CMD3_SHIFT 0 + __be32 fbar; /**< Flash Block Address Register */ +#define FBAR_BLK 0x00FFFFFF + __be32 fpar; /**< Flash Page Address Register */ +#define FPAR_SP_PI 0x00007C00 +#define FPAR_SP_PI_SHIFT 10 +#define FPAR_SP_MS 0x00000200 +#define FPAR_SP_CI 0x000001FF +#define FPAR_SP_CI_SHIFT 0 +#define FPAR_LP_PI 0x0003F000 +#define FPAR_LP_PI_SHIFT 12 +#define FPAR_LP_MS 0x00000800 +#define FPAR_LP_CI 0x000007FF +#define FPAR_LP_CI_SHIFT 0 + __be32 fbcr; /**< Flash Byte Count Register */ +#define FBCR_BC 0x00000FFF + u8 res11[0x8]; + u8 res8[0xF00]; +}; + +struct fsl_elbc_ctrl; + +/* mtd information per set */ + +struct fsl_elbc_mtd { + struct mtd_info mtd; + struct nand_chip chip; + struct fsl_elbc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + u8 __iomem *vbase; /* Chip select base virtual address */ + int page_size; /* NAND page size (0=512, 1=2048) */ + unsigned int fmr; /* FCM Flash Mode Register value */ +}; + +/* overview of the fsl elbc controller */ + +struct fsl_elbc_ctrl { + struct nand_hw_control controller; + struct fsl_elbc_mtd *chips[MAX_BANKS]; + + /* device info */ + struct device *dev; + struct elbc_regs __iomem *regs; + int irq; + wait_queue_head_t irq_wait; + unsigned int irq_status; /* status read from LTESR by irq handler */ + u8 __iomem *addr; /* Address of assigned FCM buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes; /* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int status; /* status read from LTESR after last op */ + unsigned int mdr; /* UPM/FCM Data Register value */ + unsigned int use_mdr; /* Non zero if the MDR is to be set */ + unsigned int oob; /* Non zero if operating on OOB data */ + char *oob_poi; /* Place to write ECC after read back */ +}; + +/* These map to the positions used by the FCM hardware ECC generator */ + +/* Small Page FLASH with FMR[ECCM] = 0 */ +static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = { + .eccbytes = 3, + .eccpos = {6, 7, 8}, + .oobfree = { {0, 5}, {9, 7} }, + .oobavail = 12, +}; + +/* Small Page FLASH with FMR[ECCM] = 1 */ +static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = { + .eccbytes = 3, + .eccpos = {8, 9, 10}, + .oobfree = { {0, 5}, {6, 2}, {11, 5} }, + .oobavail = 12, +}; + +/* Large Page FLASH with FMR[ECCM] = 0 */ +static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = { + .eccbytes = 12, + .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56}, + .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} }, + .oobavail = 48, +}; + +/* Large Page FLASH with FMR[ECCM] = 1 */ +static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { + .eccbytes = 12, + .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, + .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} }, + .oobavail = 48, +}; + +/*=================================*/ + +/* + * Set up the FCM hardware block and page address fields, and the fcm + * structure addr field to point to the correct FCM buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + int buf_num; + + ctrl->page = page_addr; + + out_be32(&lbc->fbar, + page_addr >> (chip->phys_erase_shift - chip->page_shift)); + + if (priv->page_size) { + out_be32(&lbc->fpar, + ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | + (oob ? FPAR_LP_MS : 0) | column); + buf_num = (page_addr & 1) << 2; + } else { + out_be32(&lbc->fpar, + ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | + (oob ? FPAR_SP_MS : 0) | column); + buf_num = page_addr & 7; + } + + ctrl->addr = priv->vbase + buf_num * 1024; + ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ctrl->index += priv->page_size ? 2048 : 512; + + dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), " + "index %x, pes %d ps %d\n", + buf_num, ctrl->addr, priv->vbase, ctrl->index, + chip->phys_erase_shift, chip->page_shift); +} + +/* + * execute FCM command and wait for it to complete + */ +static int fsl_elbc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + + /* Setup the FMR[OP] to execute without write protection */ + out_be32(&lbc->fmr, priv->fmr | 3); + if (ctrl->use_mdr) + out_be32(&lbc->mdr, ctrl->mdr); + + dev_vdbg(ctrl->dev, + "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", + in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); + dev_vdbg(ctrl->dev, + "fsl_elbc_run_command: fbar=%08x fpar=%08x " + "fbcr=%08x bank=%d\n", + in_be32(&lbc->fbar), in_be32(&lbc->fpar), + in_be32(&lbc->fbcr), priv->bank); + + /* execute special operation */ + out_be32(&lbc->lsor, priv->bank); + + /* wait for FCM complete flag or timeout */ + ctrl->irq_status = 0; + wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, + FCM_TIMEOUT_MSECS * HZ/1000); + ctrl->status = ctrl->irq_status; + + /* store mdr value in case it was needed */ + if (ctrl->use_mdr) + ctrl->mdr = in_be32(&lbc->mdr); + + ctrl->use_mdr = 0; + + dev_vdbg(ctrl->dev, + "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n", + ctrl->status, ctrl->mdr, in_be32(&lbc->fmr)); + + /* returns 0 on success otherwise non-zero) */ + return ctrl->status == LTESR_CC ? 0 : -EIO; +} + +static void fsl_elbc_do_read(struct nand_chip *chip, int oob) +{ + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_CW1 << FIR_OP3_SHIFT) | + (FIR_OP_RBW << FIR_OP4_SHIFT)); + + out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | + (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); + } else { + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_RBW << FIR_OP3_SHIFT)); + + if (oob) + out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); + else + out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); + } +} + +/* cmdfunc send commands to the FCM */ +static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + + ctrl->use_mdr = 0; + + /* clear the read buffer */ + ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ctrl->index = 0; + + switch (command) { + /* READ0 and READ1 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ1: + column += 256; + + /* fall-through */ + case NAND_CMD_READ0: + dev_dbg(ctrl->dev, + "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + + out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ + set_addr(mtd, 0, page_addr, 0); + + ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ctrl->index += column; + + fsl_elbc_do_read(chip, 0); + fsl_elbc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + dev_vdbg(ctrl->dev, + "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + out_be32(&lbc->fbcr, mtd->oobsize - column); + set_addr(mtd, column, page_addr, 1); + + ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_elbc_do_read(chip, 1); + fsl_elbc_run_command(mtd); + return; + + /* READID must read all 5 possible bytes while CEB is active */ + case NAND_CMD_READID: + dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n"); + + out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_UA << FIR_OP1_SHIFT) | + (FIR_OP_RBW << FIR_OP2_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT); + /* 5 bytes for manuf, device and exts */ + out_be32(&lbc->fbcr, 5); + ctrl->read_bytes = 5; + ctrl->use_mdr = 1; + ctrl->mdr = 0; + + set_addr(mtd, 0, 0, 0); + fsl_elbc_run_command(mtd); + return; + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + dev_vdbg(ctrl->dev, + "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " + "page_addr: 0x%x.\n", page_addr); + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); + + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_PA << FIR_OP1_SHIFT) | + (FIR_OP_CM1 << FIR_OP2_SHIFT)); + + out_be32(&lbc->fcr, + (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT)); + + out_be32(&lbc->fbcr, 0); + ctrl->read_bytes = 0; + + fsl_elbc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + __be32 fcr; + dev_vdbg(ctrl->dev, + "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " + "page_addr: 0x%x, column: 0x%x.\n", + page_addr, column); + + ctrl->column = column; + ctrl->oob = 0; + + fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) | + (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_WB << FIR_OP3_SHIFT) | + (FIR_OP_CW1 << FIR_OP4_SHIFT)); + + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; + } else { + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_CM2 << FIR_OP1_SHIFT) | + (FIR_OP_CA << FIR_OP2_SHIFT) | + (FIR_OP_PA << FIR_OP3_SHIFT) | + (FIR_OP_WB << FIR_OP4_SHIFT) | + (FIR_OP_CW1 << FIR_OP5_SHIFT)); + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; + ctrl->oob = 1; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; + } else { + /* Second 256 bytes --> READ1 */ + fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; + } + } + + out_be32(&lbc->fcr, fcr); + set_addr(mtd, column, page_addr, ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + int full_page; + dev_vdbg(ctrl->dev, + "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " + "writing %d bytes.\n", ctrl->index); + + /* if the write did not start at 0 or is not a full page + * then set the exact length, otherwise use a full page + * write so the HW generates the ECC. + */ + if (ctrl->oob || ctrl->column != 0 || + ctrl->index != mtd->writesize + mtd->oobsize) { + out_be32(&lbc->fbcr, ctrl->index); + full_page = 0; + } else { + out_be32(&lbc->fbcr, 0); + full_page = 1; + } + + fsl_elbc_run_command(mtd); + + /* Read back the page in order to fill in the ECC for the + * caller. Is this really needed? + */ + if (full_page && ctrl->oob_poi) { + out_be32(&lbc->fbcr, 3); + set_addr(mtd, 6, page_addr, 1); + + ctrl->read_bytes = mtd->writesize + 9; + + fsl_elbc_do_read(chip, 1); + fsl_elbc_run_command(mtd); + + memcpy_fromio(ctrl->oob_poi + 6, + &ctrl->addr[ctrl->index], 3); + ctrl->index += 3; + } + + ctrl->oob_poi = NULL; + return; + } + + /* CMD_STATUS must read the status byte while CEB is active */ + /* Note - it does not wait for the ready line */ + case NAND_CMD_STATUS: + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_RBW << FIR_OP1_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); + out_be32(&lbc->fbcr, 1); + set_addr(mtd, 0, 0, 0); + ctrl->read_bytes = 1; + + fsl_elbc_run_command(mtd); + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + setbits8(ctrl->addr, NAND_STATUS_WP); + return; + + /* RESET without waiting for the ready line */ + case NAND_CMD_RESET: + dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); + out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); + out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); + fsl_elbc_run_command(mtd); + return; + + default: + dev_err(ctrl->dev, + "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", + command); + } +} + +static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the FCM Controller Data Buffer + */ +static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len < 0) { + dev_err(ctrl->dev, "write_buf of %d bytes", len); + ctrl->status = 0; + return; + } + + if ((unsigned int)len > bufsize - ctrl->index) { + dev_err(ctrl->dev, + "write_buf beyond end of buffer " + "(%d requested, %u available)\n", + len, bufsize - ctrl->index); + len = bufsize - ctrl->index; + } + + memcpy_toio(&ctrl->addr[ctrl->index], buf, len); + ctrl->index += len; +} + +/* + * read a byte from either the FCM hardware buffer if it has any data left + * otherwise issue a command to read a single byte. + */ +static u8 fsl_elbc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + + /* If there are still bytes in the FCM, then use the next byte. */ + if (ctrl->index < ctrl->read_bytes) + return in_8(&ctrl->addr[ctrl->index++]); + + dev_err(ctrl->dev, "read_byte beyond end of buffer\n"); + return ERR_BYTE; +} + +/* + * Read from the FCM Controller Data Buffer + */ +static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + int avail; + + if (len < 0) + return; + + avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); + memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); + ctrl->index += avail; + + if (len > avail) + dev_err(ctrl->dev, + "read_buf beyond end of buffer " + "(%d requested, %d available)\n", + len, avail); +} + +/* + * Verify buffer against the FCM Controller Data Buffer + */ +static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + int i; + + if (len < 0) { + dev_err(ctrl->dev, "write_buf of %d bytes", len); + return -EINVAL; + } + + if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { + dev_err(ctrl->dev, + "verify_buf beyond end of buffer " + "(%d requested, %u available)\n", + len, ctrl->read_bytes - ctrl->index); + + ctrl->index = ctrl->read_bytes; + return -EINVAL; + } + + for (i = 0; i < len; i++) + if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) + break; + + ctrl->index += len; + return i == len && ctrl->status == LTESR_CC ? 0 : -EIO; +} + +/* This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + + if (ctrl->status != LTESR_CC) + return NAND_STATUS_FAIL; + + /* Use READ_STATUS command, but wait for the device to be ready */ + ctrl->use_mdr = 0; + out_be32(&lbc->fir, + (FIR_OP_CW0 << FIR_OP0_SHIFT) | + (FIR_OP_RBW << FIR_OP1_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); + out_be32(&lbc->fbcr, 1); + set_addr(mtd, 0, 0, 0); + ctrl->read_bytes = 1; + + fsl_elbc_run_command(mtd); + + if (ctrl->status != LTESR_CC) + return NAND_STATUS_FAIL; + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + setbits8(ctrl->addr, NAND_STATUS_WP); + return fsl_elbc_read_byte(mtd); +} + +static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + unsigned int al; + + /* calculate FMR Address Length field */ + al = 0; + if (chip->pagemask & 0xffff0000) + al++; + if (chip->pagemask & 0xff000000) + al++; + + /* add to ECCM mode set in fsl_elbc_init */ + priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */ + (al << FMR_AL_SHIFT); + + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n", + chip->numchips); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n", + chip->chipsize); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n", + chip->pagemask); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n", + chip->chip_delay); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n", + chip->badblockpos); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n", + chip->chip_shift); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n", + chip->page_shift); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", + chip->phys_erase_shift); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n", + chip->ecclayout); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", + chip->ecc.mode); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", + chip->ecc.steps); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", + chip->ecc.bytes); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n", + chip->ecc.total); + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n", + chip->ecc.layout); + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size); + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n", + mtd->erasesize); + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n", + mtd->writesize); + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n", + mtd->oobsize); + + /* adjust Option Register and ECC to match Flash page size */ + if (mtd->writesize == 512) { + priv->page_size = 0; + clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS); + } else if (mtd->writesize == 2048) { + priv->page_size = 1; + setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); + /* adjust ecc setup if needed */ + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == + BR_DECC_CHK_GEN) { + chip->ecc.size = 512; + chip->ecc.layout = (priv->fmr & FMR_ECCM) ? + &fsl_elbc_oob_lp_eccm1 : + &fsl_elbc_oob_lp_eccm0; + mtd->ecclayout = chip->ecc.layout; + mtd->oobavail = chip->ecc.layout->oobavail; + } + } else { + dev_err(ctrl->dev, + "fsl_elbc_init: page size %d is not supported\n", + mtd->writesize); + return -1; + } + + /* The default u-boot configuration on MPC8313ERDB causes errors; + * more delay is needed. This should be safe for other boards + * as well. + */ + setbits32(&lbc->bank[priv->bank].or, 0x70); + return 0; +} + +static int fsl_elbc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf) +{ + fsl_elbc_read_buf(mtd, buf, mtd->writesize); + fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) + mtd->ecc_stats.failed++; + + return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static void fsl_elbc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf) +{ + struct fsl_elbc_mtd *priv = chip->priv; + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + + fsl_elbc_write_buf(mtd, buf, mtd->writesize); + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + ctrl->oob_poi = chip->oob_poi; +} + +static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) +{ + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + struct elbc_regs __iomem *lbc = ctrl->regs; + struct nand_chip *chip = &priv->chip; + + dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); + + /* Fill in fsl_elbc_mtd structure */ + priv->mtd.priv = chip; + priv->mtd.owner = THIS_MODULE; + priv->fmr = 0; /* rest filled in later */ + + /* fill in nand_chip structure */ + /* set up function call table */ + chip->read_byte = fsl_elbc_read_byte; + chip->write_buf = fsl_elbc_write_buf; + chip->read_buf = fsl_elbc_read_buf; + chip->verify_buf = fsl_elbc_verify_buf; + chip->select_chip = fsl_elbc_select_chip; + chip->cmdfunc = fsl_elbc_cmdfunc; + chip->waitfunc = fsl_elbc_wait; + + /* set up nand options */ + chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR; + + chip->controller = &ctrl->controller; + chip->priv = priv; + + chip->ecc.read_page = fsl_elbc_read_page; + chip->ecc.write_page = fsl_elbc_write_page; + + /* If CS Base Register selects full hardware ECC then use it */ + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == + BR_DECC_CHK_GEN) { + chip->ecc.mode = NAND_ECC_HW; + /* put in small page settings and adjust later if needed */ + chip->ecc.layout = (priv->fmr & FMR_ECCM) ? + &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; + chip->ecc.size = 512; + chip->ecc.bytes = 3; + } else { + /* otherwise fall back to default software ECC */ + chip->ecc.mode = NAND_ECC_SOFT; + } + + return 0; +} + +static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) +{ + struct fsl_elbc_ctrl *ctrl = priv->ctrl; + + nand_release(&priv->mtd); + + if (priv->vbase) + iounmap(priv->vbase); + + ctrl->chips[priv->bank] = NULL; + kfree(priv); + + return 0; +} + +static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, + struct device_node *node) +{ + struct elbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_mtd *priv; + struct resource res; +#ifdef CONFIG_MTD_PARTITIONS + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", NULL }; + struct mtd_partition *parts; +#endif + int ret; + int bank; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(ctrl->dev, "failed to get resource\n"); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < MAX_BANKS; bank++) + if ((in_be32(&lbc->bank[bank].br) & BR_V) && + (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && + (in_be32(&lbc->bank[bank].br) & + in_be32(&lbc->bank[bank].or) & BR_BA) + == res.start) + break; + + if (bank >= MAX_BANKS) { + dev_err(ctrl->dev, "address did not match any chip selects\n"); + return -ENODEV; + } + + priv = kzalloc(sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = ctrl; + priv->dev = ctrl->dev; + + priv->vbase = ioremap(res.start, res.end - res.start + 1); + if (!priv->vbase) { + dev_err(ctrl->dev, "failed to map chip region\n"); + ret = -ENOMEM; + goto err; + } + + ret = fsl_elbc_chip_init(priv); + if (ret) + goto err; + + ret = nand_scan_ident(&priv->mtd, 1); + if (ret) + goto err; + + ret = fsl_elbc_chip_init_tail(&priv->mtd); + if (ret) + goto err; + + ret = nand_scan_tail(&priv->mtd); + if (ret) + goto err; + +#ifdef CONFIG_MTD_PARTITIONS + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0); + if (ret < 0) + goto err; + +#ifdef CONFIG_MTD_OF_PARTS + if (ret == 0) { + ret = of_mtd_parse_partitions(priv->dev, &priv->mtd, + node, &parts); + if (ret < 0) + goto err; + } +#endif + + if (ret > 0) + add_mtd_partitions(&priv->mtd, parts, ret); + else +#endif + add_mtd_device(&priv->mtd); + + printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n", + res.start, priv->bank); + return 0; + +err: + fsl_elbc_chip_remove(priv); + return ret; +} + +static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl) +{ + struct elbc_regs __iomem *lbc = ctrl->regs; + + /* clear event registers */ + setbits32(&lbc->ltesr, LTESR_NAND_MASK); + out_be32(&lbc->lteatr, 0); + + /* Enable interrupts for any detected events */ + out_be32(&lbc->lteir, LTESR_NAND_MASK); + + ctrl->read_bytes = 0; + ctrl->index = 0; + ctrl->addr = NULL; + + return 0; +} + +static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev) +{ + struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev); + int i; + + for (i = 0; i < MAX_BANKS; i++) + if (ctrl->chips[i]) + fsl_elbc_chip_remove(ctrl->chips[i]); + + if (ctrl->irq) + free_irq(ctrl->irq, ctrl); + + if (ctrl->regs) + iounmap(ctrl->regs); + + dev_set_drvdata(&ofdev->dev, NULL); + kfree(ctrl); + return 0; +} + +/* NOTE: This interrupt is also used to report other localbus events, + * such as transaction errors on other chipselects. If we want to + * capture those, we'll need to move the IRQ code into a shared + * LBC driver. + */ + +static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data) +{ + struct fsl_elbc_ctrl *ctrl = data; + struct elbc_regs __iomem *lbc = ctrl->regs; + __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK; + + if (status) { + out_be32(&lbc->ltesr, status); + out_be32(&lbc->lteatr, 0); + + ctrl->irq_status = status; + smp_wmb(); + wake_up(&ctrl->irq_wait); + + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +/* fsl_elbc_ctrl_probe + * + * called by device layer when it finds a device matching + * one our driver can handled. This code allocates all of + * the resources needed for the controller only. The + * resources for the NAND banks themselves are allocated + * in the chip probe function. +*/ + +static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct device_node *child; + struct fsl_elbc_ctrl *ctrl; + int ret; + + ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); + if (!ctrl) + return -ENOMEM; + + dev_set_drvdata(&ofdev->dev, ctrl); + + spin_lock_init(&ctrl->controller.lock); + init_waitqueue_head(&ctrl->controller.wq); + init_waitqueue_head(&ctrl->irq_wait); + + ctrl->regs = of_iomap(ofdev->node, 0); + if (!ctrl->regs) { + dev_err(&ofdev->dev, "failed to get memory region\n"); + ret = -ENODEV; + goto err; + } + + ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL); + if (ctrl->irq == NO_IRQ) { + dev_err(&ofdev->dev, "failed to get irq resource\n"); + ret = -ENODEV; + goto err; + } + + ctrl->dev = &ofdev->dev; + + ret = fsl_elbc_ctrl_init(ctrl); + if (ret < 0) + goto err; + + ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl); + if (ret != 0) { + dev_err(&ofdev->dev, "failed to install irq (%d)\n", + ctrl->irq); + ret = ctrl->irq; + goto err; + } + + for_each_child_of_node(ofdev->node, child) + if (of_device_is_compatible(child, "fsl,elbc-fcm-nand")) + fsl_elbc_chip_probe(ctrl, child); + + return 0; + +err: + fsl_elbc_ctrl_remove(ofdev); + return ret; +} + +static const struct of_device_id fsl_elbc_match[] = { + { + .compatible = "fsl,elbc", + }, + {} +}; + +static struct of_platform_driver fsl_elbc_ctrl_driver = { + .driver = { + .name = "fsl-elbc", + }, + .match_table = fsl_elbc_match, + .probe = fsl_elbc_ctrl_probe, + .remove = __devexit_p(fsl_elbc_ctrl_remove), +}; + +static int __init fsl_elbc_init(void) +{ + return of_register_platform_driver(&fsl_elbc_ctrl_driver); +} + +static void __exit fsl_elbc_exit(void) +{ + of_unregister_platform_driver(&fsl_elbc_ctrl_driver); +} + +module_init(fsl_elbc_init); +module_exit(fsl_elbc_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");