mips: convert to clocksource_register_hz/khz
This converts the mips clocksources to use clocksource_register_hz/khz CC: Ralf Baechle <ralf@linux-mips.org> CC: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <johnstul@us.ibm.com>
This commit is contained in:
parent
39280742ef
commit
75c4fd8c78
|
@ -141,8 +141,7 @@ static int __init alchemy_time_init(unsigned int m2int)
|
|||
goto cntr_err;
|
||||
|
||||
/* register counter1 clocksource and event device */
|
||||
clocksource_set_clock(&au1x_counter1_clocksource, 32768);
|
||||
clocksource_register(&au1x_counter1_clocksource);
|
||||
clocksource_register_hz(&au1x_counter1_clocksource, 32768);
|
||||
|
||||
cd->shift = 32;
|
||||
cd->mult = div_sc(32768, NSEC_PER_SEC, cd->shift);
|
||||
|
|
|
@ -105,8 +105,7 @@ unsigned long long notrace sched_clock(void)
|
|||
void __init plat_time_init(void)
|
||||
{
|
||||
clocksource_mips.rating = 300;
|
||||
clocksource_set_clock(&clocksource_mips, octeon_get_clock_rate());
|
||||
clocksource_register(&clocksource_mips);
|
||||
clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
|
||||
}
|
||||
|
||||
static u64 octeon_udelay_factor;
|
||||
|
|
|
@ -84,12 +84,6 @@ static inline int init_mips_clocksource(void)
|
|||
#endif
|
||||
}
|
||||
|
||||
static inline void clocksource_set_clock(struct clocksource *cs,
|
||||
unsigned int clock)
|
||||
{
|
||||
clocksource_calc_mult_shift(cs, clock, 4);
|
||||
}
|
||||
|
||||
static inline void clockevent_set_clock(struct clock_event_device *cd,
|
||||
unsigned int clock)
|
||||
{
|
||||
|
|
|
@ -121,8 +121,7 @@ void __init plat_time_init(void)
|
|||
|
||||
clockevents_register_device(&jz4740_clockevent);
|
||||
|
||||
clocksource_set_clock(&jz4740_clocksource, clk_rate);
|
||||
ret = clocksource_register(&jz4740_clocksource);
|
||||
ret = clocksource_register_hz(&jz4740_clocksource, clk_rate);
|
||||
|
||||
if (ret)
|
||||
printk(KERN_ERR "Failed to register clocksource: %d\n", ret);
|
||||
|
|
|
@ -51,8 +51,7 @@ void __init txx9_clocksource_init(unsigned long baseaddr,
|
|||
{
|
||||
struct txx9_tmr_reg __iomem *tmrptr;
|
||||
|
||||
clocksource_set_clock(&txx9_clocksource.cs, TIMER_CLK(imbusclk));
|
||||
clocksource_register(&txx9_clocksource.cs);
|
||||
clocksource_register_hz(&txx9_clocksource.cs, TIMER_CLK(imbusclk));
|
||||
|
||||
tmrptr = ioremap(baseaddr, sizeof(struct txx9_tmr_reg));
|
||||
__raw_writel(TCR_BASE, &tmrptr->tcr);
|
||||
|
|
|
@ -49,6 +49,5 @@ void __init sb1480_clocksource_init(void)
|
|||
|
||||
plldiv = G_BCM1480_SYS_PLL_DIV(__raw_readq(IOADDR(A_SCD_SYSTEM_CFG)));
|
||||
zbbus = ((plldiv >> 1) * 50000000) + ((plldiv & 1) * 25000000);
|
||||
clocksource_set_clock(cs, zbbus);
|
||||
clocksource_register(cs);
|
||||
clocksource_register_hz(cs, zbbus);
|
||||
}
|
||||
|
|
|
@ -59,7 +59,5 @@ void __init dec_ioasic_clocksource_init(void)
|
|||
printk(KERN_INFO "I/O ASIC clock frequency %dHz\n", freq);
|
||||
|
||||
clocksource_dec.rating = 200 + freq / 10000000;
|
||||
clocksource_set_clock(&clocksource_dec, freq);
|
||||
|
||||
clocksource_register(&clocksource_dec);
|
||||
clocksource_register_hz(&clocksource_dec, freq);
|
||||
}
|
||||
|
|
|
@ -78,9 +78,7 @@ static void __init powertv_c0_hpt_clocksource_init(void)
|
|||
|
||||
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
|
||||
|
||||
clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
|
||||
|
||||
clocksource_register(&clocksource_mips);
|
||||
clocksource_register_hz(&clocksource_mips, mips_hpt_frequency);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -130,43 +128,16 @@ static struct clocksource clocksource_tim_c = {
|
|||
/**
|
||||
* powertv_tim_c_clocksource_init - set up a clock source for the TIM_C clock
|
||||
*
|
||||
* The hard part here is coming up with a constant k and shift s such that
|
||||
* the 48-bit TIM_C value multiplied by k doesn't overflow and that value,
|
||||
* when shifted right by s, yields the corresponding number of nanoseconds.
|
||||
* We know that TIM_C counts at 27 MHz/8, so each cycle corresponds to
|
||||
* 1 / (27,000,000/8) seconds. Multiply that by a billion and you get the
|
||||
* number of nanoseconds. Since the TIM_C value has 48 bits and the math is
|
||||
* done in 64 bits, avoiding an overflow means that k must be less than
|
||||
* 64 - 48 = 16 bits.
|
||||
* 1 / (27,000,000/8) seconds.
|
||||
*/
|
||||
static void __init powertv_tim_c_clocksource_init(void)
|
||||
{
|
||||
int prescale;
|
||||
unsigned long dividend;
|
||||
unsigned long k;
|
||||
int s;
|
||||
const int max_k_bits = (64 - 48) - 1;
|
||||
const unsigned long billion = 1000000000;
|
||||
const unsigned long counts_per_second = 27000000 / 8;
|
||||
|
||||
prescale = BITS_PER_LONG - ilog2(billion) - 1;
|
||||
dividend = billion << prescale;
|
||||
k = dividend / counts_per_second;
|
||||
s = ilog2(k) - max_k_bits;
|
||||
|
||||
if (s < 0)
|
||||
s = prescale;
|
||||
|
||||
else {
|
||||
k >>= s;
|
||||
s += prescale;
|
||||
}
|
||||
|
||||
clocksource_tim_c.mult = k;
|
||||
clocksource_tim_c.shift = s;
|
||||
clocksource_tim_c.rating = 200;
|
||||
|
||||
clocksource_register(&clocksource_tim_c);
|
||||
clocksource_register_hz(&clocksource_tim_c, counts_per_second);
|
||||
tim_c = (struct tim_c *) asic_reg_addr(tim_ch);
|
||||
}
|
||||
|
||||
|
|
|
@ -30,9 +30,7 @@ int __init init_r4k_clocksource(void)
|
|||
/* Calculate a somewhat reasonable rating value */
|
||||
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
|
||||
|
||||
clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
|
||||
|
||||
clocksource_register(&clocksource_mips);
|
||||
clocksource_register_hz(&clocksource_mips, mips_hpt_frequency);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -65,6 +65,5 @@ void __init sb1250_clocksource_init(void)
|
|||
IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM,
|
||||
R_SCD_TIMER_CFG)));
|
||||
|
||||
clocksource_set_clock(cs, V_SCD_TIMER_FREQ);
|
||||
clocksource_register(cs);
|
||||
clocksource_register_hz(cs, V_SCD_TIMER_FREQ);
|
||||
}
|
||||
|
|
|
@ -196,8 +196,6 @@ static struct clocksource clocksource_pit = {
|
|||
.rating = 110,
|
||||
.read = pit_read,
|
||||
.mask = CLOCKSOURCE_MASK(32),
|
||||
.mult = 0,
|
||||
.shift = 20,
|
||||
};
|
||||
|
||||
static int __init init_pit_clocksource(void)
|
||||
|
@ -205,7 +203,6 @@ static int __init init_pit_clocksource(void)
|
|||
if (num_possible_cpus() > 1) /* PIT does not scale! */
|
||||
return 0;
|
||||
|
||||
clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
|
||||
return clocksource_register(&clocksource_pit);
|
||||
return clocksource_register_hz(&clocksource_pit, CLOCK_TICK_RATE);
|
||||
}
|
||||
arch_initcall(init_pit_clocksource);
|
||||
|
|
|
@ -201,8 +201,6 @@ static struct clocksource clocksource_mfgpt = {
|
|||
.rating = 120, /* Functional for real use, but not desired */
|
||||
.read = mfgpt_read,
|
||||
.mask = CLOCKSOURCE_MASK(32),
|
||||
.mult = 0,
|
||||
.shift = 22,
|
||||
};
|
||||
|
||||
int __init init_mfgpt_clocksource(void)
|
||||
|
@ -210,8 +208,7 @@ int __init init_mfgpt_clocksource(void)
|
|||
if (num_possible_cpus() > 1) /* MFGPT does not scale! */
|
||||
return 0;
|
||||
|
||||
clocksource_mfgpt.mult = clocksource_hz2mult(MFGPT_TICK_RATE, 22);
|
||||
return clocksource_register(&clocksource_mfgpt);
|
||||
return clocksource_register_hz(&clocksource_mfgpt, MFGPT_TICK_RATE);
|
||||
}
|
||||
|
||||
arch_initcall(init_mfgpt_clocksource);
|
||||
|
|
|
@ -177,8 +177,7 @@ static void __init hub_rt_clocksource_init(void)
|
|||
{
|
||||
struct clocksource *cs = &hub_rt_clocksource;
|
||||
|
||||
clocksource_set_clock(cs, CYCLES_PER_SEC);
|
||||
clocksource_register(cs);
|
||||
clocksource_register_hz(cs, CYCLES_PER_SEC);
|
||||
}
|
||||
|
||||
void __init plat_time_init(void)
|
||||
|
|
Loading…
Reference in New Issue