staging: HCD files for the DWC2 driver
These files contain the HCD code, and implement the Linux hc_driver API. Support for both slave mode and buffer DMA mode of the controller is included. Signed-off-by: Paul Zimmerman <paulz@synopsys.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
56f5b1cff2
commit
7359d482eb
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,737 @@
|
|||
/*
|
||||
* hcd.h - DesignWare HS OTG Controller host-mode declarations
|
||||
*
|
||||
* Copyright (C) 2004-2013 Synopsys, Inc.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions, and the following disclaimer,
|
||||
* without modification.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. The names of the above-listed copyright holders may not be used
|
||||
* to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
*
|
||||
* ALTERNATIVELY, this software may be distributed under the terms of the
|
||||
* GNU General Public License ("GPL") as published by the Free Software
|
||||
* Foundation; either version 2 of the License, or (at your option) any
|
||||
* later version.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#ifndef __DWC2_HCD_H__
|
||||
#define __DWC2_HCD_H__
|
||||
|
||||
/*
|
||||
* This file contains the structures, constants, and interfaces for the
|
||||
* Host Contoller Driver (HCD)
|
||||
*
|
||||
* The Host Controller Driver (HCD) is responsible for translating requests
|
||||
* from the USB Driver into the appropriate actions on the DWC_otg controller.
|
||||
* It isolates the USBD from the specifics of the controller by providing an
|
||||
* API to the USBD.
|
||||
*/
|
||||
|
||||
struct dwc2_qh;
|
||||
|
||||
/**
|
||||
* struct dwc2_host_chan - Software host channel descriptor
|
||||
*
|
||||
* @hc_num: Host channel number, used for register address lookup
|
||||
* @dev_addr: Address of the device
|
||||
* @ep_num: Endpoint of the device
|
||||
* @ep_is_in: Endpoint direction
|
||||
* @speed: Device speed. One of the following values:
|
||||
* - USB_SPEED_LOW
|
||||
* - USB_SPEED_FULL
|
||||
* - USB_SPEED_HIGH
|
||||
* @ep_type: Endpoint type. One of the following values:
|
||||
* - USB_ENDPOINT_XFER_CONTROL: 0
|
||||
* - USB_ENDPOINT_XFER_ISOC: 1
|
||||
* - USB_ENDPOINT_XFER_BULK: 2
|
||||
* - USB_ENDPOINT_XFER_INTR: 3
|
||||
* @max_packet: Max packet size in bytes
|
||||
* @data_pid_start: PID for initial transaction.
|
||||
* 0: DATA0
|
||||
* 1: DATA2
|
||||
* 2: DATA1
|
||||
* 3: MDATA (non-Control EP),
|
||||
* SETUP (Control EP)
|
||||
* @multi_count: Number of additional periodic transactions per
|
||||
* (micro)frame
|
||||
* @xfer_buf: Pointer to current transfer buffer position
|
||||
* @xfer_dma: DMA address of xfer_buf
|
||||
* @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
|
||||
* DWORD aligned
|
||||
* @xfer_len: Total number of bytes to transfer
|
||||
* @xfer_count: Number of bytes transferred so far
|
||||
* @start_pkt_count: Packet count at start of transfer
|
||||
* @xfer_started: True if the transfer has been started
|
||||
* @ping: True if a PING request should be issued on this channel
|
||||
* @error_state: True if the error count for this transaction is non-zero
|
||||
* @halt_on_queue: True if this channel should be halted the next time a
|
||||
* request is queued for the channel. This is necessary in
|
||||
* slave mode if no request queue space is available when
|
||||
* an attempt is made to halt the channel.
|
||||
* @halt_pending: True if the host channel has been halted, but the core
|
||||
* is not finished flushing queued requests
|
||||
* @do_split: Enable split for the channel
|
||||
* @complete_split: Enable complete split
|
||||
* @hub_addr: Address of high speed hub for the split
|
||||
* @hub_port: Port of the low/full speed device for the split
|
||||
* @xact_pos: Split transaction position. One of the following values:
|
||||
* - DWC2_HCSPLT_XACTPOS_MID
|
||||
* - DWC2_HCSPLT_XACTPOS_BEGIN
|
||||
* - DWC2_HCSPLT_XACTPOS_END
|
||||
* - DWC2_HCSPLT_XACTPOS_ALL
|
||||
* @requests: Number of requests issued for this channel since it was
|
||||
* assigned to the current transfer (not counting PINGs)
|
||||
* @schinfo: Scheduling micro-frame bitmap
|
||||
* @ntd: Number of transfer descriptors for the transfer
|
||||
* @halt_status: Reason for halting the host channel
|
||||
* @hcint Contents of the HCINT register when the interrupt came
|
||||
* @qh: QH for the transfer being processed by this channel
|
||||
* @hc_list_entry: For linking to list of host channels
|
||||
* @desc_list_addr: Current QH's descriptor list DMA address
|
||||
*
|
||||
* This structure represents the state of a single host channel when acting in
|
||||
* host mode. It contains the data items needed to transfer packets to an
|
||||
* endpoint via a host channel.
|
||||
*/
|
||||
struct dwc2_host_chan {
|
||||
u8 hc_num;
|
||||
|
||||
unsigned dev_addr:7;
|
||||
unsigned ep_num:4;
|
||||
unsigned ep_is_in:1;
|
||||
unsigned speed:4;
|
||||
unsigned ep_type:2;
|
||||
unsigned max_packet:11;
|
||||
unsigned data_pid_start:2;
|
||||
#define DWC2_HC_PID_DATA0 (TSIZ_SC_MC_PID_DATA0 >> TSIZ_SC_MC_PID_SHIFT)
|
||||
#define DWC2_HC_PID_DATA2 (TSIZ_SC_MC_PID_DATA2 >> TSIZ_SC_MC_PID_SHIFT)
|
||||
#define DWC2_HC_PID_DATA1 (TSIZ_SC_MC_PID_DATA1 >> TSIZ_SC_MC_PID_SHIFT)
|
||||
#define DWC2_HC_PID_MDATA (TSIZ_SC_MC_PID_MDATA >> TSIZ_SC_MC_PID_SHIFT)
|
||||
#define DWC2_HC_PID_SETUP (TSIZ_SC_MC_PID_SETUP >> TSIZ_SC_MC_PID_SHIFT)
|
||||
|
||||
unsigned multi_count:2;
|
||||
|
||||
u8 *xfer_buf;
|
||||
dma_addr_t xfer_dma;
|
||||
dma_addr_t align_buf;
|
||||
u32 xfer_len;
|
||||
u32 xfer_count;
|
||||
u16 start_pkt_count;
|
||||
u8 xfer_started;
|
||||
u8 do_ping;
|
||||
u8 error_state;
|
||||
u8 halt_on_queue;
|
||||
u8 halt_pending;
|
||||
u8 do_split;
|
||||
u8 complete_split;
|
||||
u8 hub_addr;
|
||||
u8 hub_port;
|
||||
u8 xact_pos;
|
||||
#define DWC2_HCSPLT_XACTPOS_MID (HCSPLT_XACTPOS_MID >> HCSPLT_XACTPOS_SHIFT)
|
||||
#define DWC2_HCSPLT_XACTPOS_END (HCSPLT_XACTPOS_END >> HCSPLT_XACTPOS_SHIFT)
|
||||
#define DWC2_HCSPLT_XACTPOS_BEGIN (HCSPLT_XACTPOS_BEGIN >> HCSPLT_XACTPOS_SHIFT)
|
||||
#define DWC2_HCSPLT_XACTPOS_ALL (HCSPLT_XACTPOS_ALL >> HCSPLT_XACTPOS_SHIFT)
|
||||
|
||||
u8 requests;
|
||||
u8 schinfo;
|
||||
u16 ntd;
|
||||
enum dwc2_halt_status halt_status;
|
||||
u32 hcint;
|
||||
struct dwc2_qh *qh;
|
||||
struct list_head hc_list_entry;
|
||||
dma_addr_t desc_list_addr;
|
||||
};
|
||||
|
||||
struct dwc2_hcd_pipe_info {
|
||||
u8 dev_addr;
|
||||
u8 ep_num;
|
||||
u8 pipe_type;
|
||||
u8 pipe_dir;
|
||||
u16 mps;
|
||||
};
|
||||
|
||||
struct dwc2_hcd_iso_packet_desc {
|
||||
u32 offset;
|
||||
u32 length;
|
||||
u32 actual_length;
|
||||
u32 status;
|
||||
};
|
||||
|
||||
struct dwc2_qtd;
|
||||
|
||||
struct dwc2_hcd_urb {
|
||||
void *priv;
|
||||
struct dwc2_qtd *qtd;
|
||||
void *buf;
|
||||
dma_addr_t dma;
|
||||
void *setup_packet;
|
||||
dma_addr_t setup_dma;
|
||||
u32 length;
|
||||
u32 actual_length;
|
||||
u32 status;
|
||||
u32 error_count;
|
||||
u32 packet_count;
|
||||
u32 flags;
|
||||
u16 interval;
|
||||
struct dwc2_hcd_pipe_info pipe_info;
|
||||
struct dwc2_hcd_iso_packet_desc iso_descs[0];
|
||||
};
|
||||
|
||||
/* Phases for control transfers */
|
||||
enum dwc2_control_phase {
|
||||
DWC2_CONTROL_SETUP,
|
||||
DWC2_CONTROL_DATA,
|
||||
DWC2_CONTROL_STATUS,
|
||||
};
|
||||
|
||||
/* Transaction types */
|
||||
enum dwc2_transaction_type {
|
||||
DWC2_TRANSACTION_NONE,
|
||||
DWC2_TRANSACTION_PERIODIC,
|
||||
DWC2_TRANSACTION_NON_PERIODIC,
|
||||
DWC2_TRANSACTION_ALL,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct dwc2_qh - Software queue head structure
|
||||
*
|
||||
* @ep_type: Endpoint type. One of the following values:
|
||||
* - USB_ENDPOINT_XFER_CONTROL
|
||||
* - USB_ENDPOINT_XFER_BULK
|
||||
* - USB_ENDPOINT_XFER_INT
|
||||
* - USB_ENDPOINT_XFER_ISOC
|
||||
* @ep_is_in: Endpoint direction
|
||||
* @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
|
||||
* @dev_speed: Device speed. One of the following values:
|
||||
* - USB_SPEED_LOW
|
||||
* - USB_SPEED_FULL
|
||||
* - USB_SPEED_HIGH
|
||||
* @data_toggle: Determines the PID of the next data packet for
|
||||
* non-controltransfers. Ignored for control transfers.
|
||||
* One of the following values:
|
||||
* - DWC2_HC_PID_DATA0
|
||||
* - DWC2_HC_PID_DATA1
|
||||
* @ping_state: Ping state
|
||||
* @do_split: Full/low speed endpoint on high-speed hub requires split
|
||||
* @qtd_list: List of QTDs for this QH
|
||||
* @channel: Host channel currently processing transfers for this QH
|
||||
* @usecs: Bandwidth in microseconds per (micro)frame
|
||||
* @interval: Interval between transfers in (micro)frames
|
||||
* @sched_frame: (micro)frame to initialize a periodic transfer.
|
||||
* The transfer executes in the following (micro)frame.
|
||||
* @start_split_frame: (Micro)frame at which last start split was initialized
|
||||
* @dw_align_buf: Used instead of original buffer if its physical address
|
||||
* is not dword-aligned
|
||||
* @dw_align_buf_dma: DMA address for align_buf
|
||||
* @qh_list_entry: Entry for QH in either the periodic or non-periodic
|
||||
* schedule
|
||||
* @desc_list: List of transfer descriptors
|
||||
* @desc_list_dma: Physical address of desc_list
|
||||
* @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
|
||||
* descriptor and indicates original XferSize value for the
|
||||
* descriptor
|
||||
* @ntd: Actual number of transfer descriptors in a list
|
||||
* @td_first: Index of first activated isochronous transfer descriptor
|
||||
* @td_last: Index of last activated isochronous transfer descriptor
|
||||
* @tt_buffer_dirty True if clear_tt_buffer_complete is pending
|
||||
*
|
||||
* A Queue Head (QH) holds the static characteristics of an endpoint and
|
||||
* maintains a list of transfers (QTDs) for that endpoint. A QH structure may
|
||||
* be entered in either the non-periodic or periodic schedule.
|
||||
*/
|
||||
struct dwc2_qh {
|
||||
u8 ep_type;
|
||||
u8 ep_is_in;
|
||||
u16 maxp;
|
||||
u8 dev_speed;
|
||||
u8 data_toggle;
|
||||
u8 ping_state;
|
||||
u8 do_split;
|
||||
struct list_head qtd_list;
|
||||
struct dwc2_host_chan *channel;
|
||||
u16 usecs;
|
||||
u16 interval;
|
||||
u16 sched_frame;
|
||||
u16 start_split_frame;
|
||||
u8 *dw_align_buf;
|
||||
dma_addr_t dw_align_buf_dma;
|
||||
struct list_head qh_list_entry;
|
||||
struct dwc2_hcd_dma_desc *desc_list;
|
||||
dma_addr_t desc_list_dma;
|
||||
u32 *n_bytes;
|
||||
u16 ntd;
|
||||
u8 td_first;
|
||||
u8 td_last;
|
||||
unsigned tt_buffer_dirty:1;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct dwc2_qtd - Software queue transfer descriptor (QTD)
|
||||
*
|
||||
* @control_phase: Current phase for control transfers (Setup, Data, or
|
||||
* Status)
|
||||
* @in_process: Indicates if this QTD is currently processed by HW
|
||||
* @data_toggle: Determines the PID of the next data packet for the
|
||||
* data phase of control transfers. Ignored for other
|
||||
* transfer types. One of the following values:
|
||||
* - DWC2_HC_PID_DATA0
|
||||
* - DWC2_HC_PID_DATA1
|
||||
* @complete_split: Keeps track of the current split type for FS/LS
|
||||
* endpoints on a HS Hub
|
||||
* @isoc_split_pos: Position of the ISOC split in full/low speed
|
||||
* @isoc_frame_index: Index of the next frame descriptor for an isochronous
|
||||
* transfer. A frame descriptor describes the buffer
|
||||
* position and length of the data to be transferred in the
|
||||
* next scheduled (micro)frame of an isochronous transfer.
|
||||
* It also holds status for that transaction. The frame
|
||||
* index starts at 0.
|
||||
* @isoc_split_offset: Position of the ISOC split in the buffer for the
|
||||
* current frame
|
||||
* @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
|
||||
* @error_count: Holds the number of bus errors that have occurred for
|
||||
* a transaction within this transfer
|
||||
* @n_desc: Number of DMA descriptors for this QTD
|
||||
* @isoc_frame_index_last: Last activated frame (packet) index, used in
|
||||
* descriptor DMA mode only
|
||||
* @urb: URB for this transfer
|
||||
* @qh: Queue head for this QTD
|
||||
* @qtd_list_entry: For linking to the QH's list of QTDs
|
||||
*
|
||||
* A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
|
||||
* interrupt, or isochronous transfer. A single QTD is created for each URB
|
||||
* (of one of these types) submitted to the HCD. The transfer associated with
|
||||
* a QTD may require one or multiple transactions.
|
||||
*
|
||||
* A QTD is linked to a Queue Head, which is entered in either the
|
||||
* non-periodic or periodic schedule for execution. When a QTD is chosen for
|
||||
* execution, some or all of its transactions may be executed. After
|
||||
* execution, the state of the QTD is updated. The QTD may be retired if all
|
||||
* its transactions are complete or if an error occurred. Otherwise, it
|
||||
* remains in the schedule so more transactions can be executed later.
|
||||
*/
|
||||
struct dwc2_qtd {
|
||||
enum dwc2_control_phase control_phase;
|
||||
u8 in_process;
|
||||
u8 data_toggle;
|
||||
u8 complete_split;
|
||||
u8 isoc_split_pos;
|
||||
u16 isoc_frame_index;
|
||||
u16 isoc_split_offset;
|
||||
u32 ssplit_out_xfer_count;
|
||||
u8 error_count;
|
||||
u8 n_desc;
|
||||
u16 isoc_frame_index_last;
|
||||
struct dwc2_hcd_urb *urb;
|
||||
struct dwc2_qh *qh;
|
||||
struct list_head qtd_list_entry;
|
||||
};
|
||||
|
||||
#ifdef DEBUG
|
||||
struct hc_xfer_info {
|
||||
struct dwc2_hsotg *hsotg;
|
||||
struct dwc2_host_chan *chan;
|
||||
};
|
||||
#endif
|
||||
|
||||
/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
|
||||
static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
|
||||
{
|
||||
return (struct usb_hcd *)hsotg->priv;
|
||||
}
|
||||
|
||||
/*
|
||||
* Inline used to disable one channel interrupt. Channel interrupts are
|
||||
* disabled when the channel is halted or released by the interrupt handler.
|
||||
* There is no need to handle further interrupts of that type until the
|
||||
* channel is re-assigned. In fact, subsequent handling may cause crashes
|
||||
* because the channel structures are cleaned up when the channel is released.
|
||||
*/
|
||||
static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
|
||||
{
|
||||
u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
|
||||
|
||||
mask &= ~intr;
|
||||
writel(mask, hsotg->regs + HCINTMSK(chnum));
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the mode of operation, host or device
|
||||
*/
|
||||
static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
|
||||
{
|
||||
return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
|
||||
}
|
||||
static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
|
||||
{
|
||||
return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
|
||||
* are read as 1, they won't clear when written back.
|
||||
*/
|
||||
static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
|
||||
{
|
||||
u32 hprt0 = readl(hsotg->regs + HPRT0);
|
||||
|
||||
hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
|
||||
return hprt0;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->ep_num;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->pipe_type;
|
||||
}
|
||||
|
||||
static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->mps;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->dev_addr;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return pipe->pipe_dir == USB_DIR_IN;
|
||||
}
|
||||
|
||||
static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
|
||||
{
|
||||
return !dwc2_hcd_is_pipe_in(pipe);
|
||||
}
|
||||
|
||||
extern int dwc2_hcd_init(struct device *dev, struct dwc2_hsotg *hsotg,
|
||||
int irq, struct dwc2_core_params *params);
|
||||
extern void dwc2_hcd_remove(struct device *dev, struct dwc2_hsotg *hsotg);
|
||||
extern int dwc2_set_parameters(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_core_params *params);
|
||||
|
||||
/* Transaction Execution Functions */
|
||||
extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
|
||||
struct dwc2_hsotg *hsotg);
|
||||
extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
|
||||
enum dwc2_transaction_type tr_type);
|
||||
|
||||
/* Schedule Queue Functions */
|
||||
/* Implemented in hcd_queue.c */
|
||||
extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
||||
extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
||||
extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
||||
extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
|
||||
int sched_csplit);
|
||||
|
||||
extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
|
||||
extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
|
||||
struct dwc2_qh **qh, gfp_t mem_flags);
|
||||
|
||||
/* Unlinks and frees a QTD */
|
||||
static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_qtd *qtd,
|
||||
struct dwc2_qh *qh)
|
||||
{
|
||||
list_del(&qtd->qtd_list_entry);
|
||||
kfree(qtd);
|
||||
}
|
||||
|
||||
/* Descriptor DMA support functions */
|
||||
extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_qh *qh);
|
||||
extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_host_chan *chan, int chnum,
|
||||
enum dwc2_halt_status halt_status);
|
||||
|
||||
extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
|
||||
gfp_t mem_flags);
|
||||
extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
|
||||
|
||||
/* Check if QH is non-periodic */
|
||||
#define dwc2_qh_is_non_per(_qh_ptr_) \
|
||||
((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
|
||||
(_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
|
||||
|
||||
/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
|
||||
#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
|
||||
|
||||
/* Packet size for any kind of endpoint descriptor */
|
||||
#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
|
||||
|
||||
/*
|
||||
* Returns true if frame1 is less than or equal to frame2. The comparison is
|
||||
* done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
|
||||
* frame number when the max frame number is reached.
|
||||
*/
|
||||
static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
|
||||
{
|
||||
return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns true if frame1 is greater than frame2. The comparison is done
|
||||
* modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
|
||||
* number when the max frame number is reached.
|
||||
*/
|
||||
static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
|
||||
{
|
||||
return (frame1 != frame2) &&
|
||||
((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Increments frame by the amount specified by inc. The addition is done
|
||||
* modulo HFNUM_MAX_FRNUM. Returns the incremented value.
|
||||
*/
|
||||
static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
|
||||
{
|
||||
return (frame + inc) & HFNUM_MAX_FRNUM;
|
||||
}
|
||||
|
||||
static inline u16 dwc2_full_frame_num(u16 frame)
|
||||
{
|
||||
return (frame & HFNUM_MAX_FRNUM) >> 3;
|
||||
}
|
||||
|
||||
static inline u16 dwc2_micro_frame_num(u16 frame)
|
||||
{
|
||||
return frame & 0x7;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the Core Interrupt Status register contents, ANDed with the Core
|
||||
* Interrupt Mask register contents
|
||||
*/
|
||||
static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
|
||||
{
|
||||
return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
|
||||
}
|
||||
|
||||
static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
|
||||
{
|
||||
return dwc2_urb->status;
|
||||
}
|
||||
|
||||
static inline u32 dwc2_hcd_urb_get_actual_length(
|
||||
struct dwc2_hcd_urb *dwc2_urb)
|
||||
{
|
||||
return dwc2_urb->actual_length;
|
||||
}
|
||||
|
||||
static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
|
||||
{
|
||||
return dwc2_urb->error_count;
|
||||
}
|
||||
|
||||
static inline void dwc2_hcd_urb_set_iso_desc_params(
|
||||
struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
|
||||
u32 length)
|
||||
{
|
||||
dwc2_urb->iso_descs[desc_num].offset = offset;
|
||||
dwc2_urb->iso_descs[desc_num].length = length;
|
||||
}
|
||||
|
||||
static inline u32 dwc2_hcd_urb_get_iso_desc_status(
|
||||
struct dwc2_hcd_urb *dwc2_urb, int desc_num)
|
||||
{
|
||||
return dwc2_urb->iso_descs[desc_num].status;
|
||||
}
|
||||
|
||||
static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
|
||||
struct dwc2_hcd_urb *dwc2_urb, int desc_num)
|
||||
{
|
||||
return dwc2_urb->iso_descs[desc_num].actual_length;
|
||||
}
|
||||
|
||||
static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
|
||||
struct usb_host_endpoint *ep)
|
||||
{
|
||||
struct dwc2_qh *qh = ep->hcpriv;
|
||||
|
||||
if (qh && !list_empty(&qh->qh_list_entry))
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
|
||||
struct usb_host_endpoint *ep)
|
||||
{
|
||||
struct dwc2_qh *qh = ep->hcpriv;
|
||||
|
||||
if (!qh) {
|
||||
WARN_ON(1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return qh->usecs;
|
||||
}
|
||||
|
||||
extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_host_chan *chan, int chnum,
|
||||
struct dwc2_qtd *qtd);
|
||||
|
||||
/* HCD Core API */
|
||||
|
||||
/**
|
||||
* dwc2_hcd_intr() - Called on every hardware interrupt
|
||||
*
|
||||
* @hsotg: The DWC2 HCD
|
||||
*
|
||||
* Returns non zero if interrupt is handled
|
||||
* Return 0 if interrupt is not handled
|
||||
*/
|
||||
extern int dwc2_hcd_intr(struct dwc2_hsotg *hsotg);
|
||||
|
||||
/**
|
||||
* dwc2_hcd_stop() - Halts the DWC_otg host mode operation
|
||||
*
|
||||
* @hsotg: The DWC2 HCD
|
||||
*/
|
||||
extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
|
||||
|
||||
extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
|
||||
extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
|
||||
|
||||
/**
|
||||
* dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
|
||||
* and 0 otherwise
|
||||
*
|
||||
* @hsotg: The DWC2 HCD
|
||||
*/
|
||||
extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
|
||||
|
||||
/**
|
||||
* dwc2_hcd_get_frame_number() - Returns current frame number
|
||||
*
|
||||
* @hsotg: The DWC2 HCD
|
||||
*/
|
||||
extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
|
||||
|
||||
/**
|
||||
* dwc2_hcd_dump_state() - Dumps hsotg state
|
||||
*
|
||||
* @hsotg: The DWC2 HCD
|
||||
*
|
||||
* NOTE: This function will be removed once the peripheral controller code
|
||||
* is integrated and the driver is stable
|
||||
*/
|
||||
extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
|
||||
|
||||
/**
|
||||
* dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
|
||||
*
|
||||
* @hsotg: The DWC2 HCD
|
||||
*
|
||||
* This can be used to determine average interrupt latency. Frame remaining is
|
||||
* also shown for start transfer and two additional sample points.
|
||||
*
|
||||
* NOTE: This function will be removed once the peripheral controller code
|
||||
* is integrated and the driver is stable
|
||||
*/
|
||||
extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
|
||||
|
||||
/* URB interface */
|
||||
|
||||
/* Transfer flags */
|
||||
#define URB_GIVEBACK_ASAP 0x1
|
||||
#define URB_SEND_ZERO_PACKET 0x2
|
||||
|
||||
/* Host driver callbacks */
|
||||
|
||||
extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
|
||||
extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
|
||||
extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
|
||||
int *hub_addr, int *hub_port);
|
||||
extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
|
||||
extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, void *context,
|
||||
struct dwc2_hcd_urb *dwc2_urb, int status);
|
||||
|
||||
#ifdef DEBUG
|
||||
/*
|
||||
* Macro to sample the remaining PHY clocks left in the current frame. This
|
||||
* may be used during debugging to determine the average time it takes to
|
||||
* execute sections of code. There are two possible sample points, "a" and
|
||||
* "b", so the _letter_ argument must be one of these values.
|
||||
*
|
||||
* To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
|
||||
* example, "cat /sys/devices/lm0/hcd_frrem".
|
||||
*/
|
||||
#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
|
||||
do { \
|
||||
struct hfnum_data _hfnum_; \
|
||||
struct dwc2_qtd *_qtd_; \
|
||||
\
|
||||
_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
|
||||
qtd_list_entry); \
|
||||
if (usb_pipeint(_qtd_->urb->pipe) && \
|
||||
(_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
|
||||
_hfnum_.d32 = readl((_hcd_)->regs + HFNUM); \
|
||||
switch (_hfnum_.b.frnum & 0x7) { \
|
||||
case 7: \
|
||||
(_hcd_)->hfnum_7_samples_##_letter_++; \
|
||||
(_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
|
||||
_hfnum_.b.frrem; \
|
||||
break; \
|
||||
case 0: \
|
||||
(_hcd_)->hfnum_0_samples_##_letter_++; \
|
||||
(_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
|
||||
_hfnum_.b.frrem; \
|
||||
break; \
|
||||
default: \
|
||||
(_hcd_)->hfnum_other_samples_##_letter_++; \
|
||||
(_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
|
||||
_hfnum_.b.frrem; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
|
||||
#endif
|
||||
|
||||
#endif /* __DWC2_HCD_H__ */
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,675 @@
|
|||
/*
|
||||
* hcd_queue.c - DesignWare HS OTG Controller host queuing routines
|
||||
*
|
||||
* Copyright (C) 2004-2013 Synopsys, Inc.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions, and the following disclaimer,
|
||||
* without modification.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. The names of the above-listed copyright holders may not be used
|
||||
* to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
*
|
||||
* ALTERNATIVELY, this software may be distributed under the terms of the
|
||||
* GNU General Public License ("GPL") as published by the Free Software
|
||||
* Foundation; either version 2 of the License, or (at your option) any
|
||||
* later version.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file contains the functions to manage Queue Heads and Queue
|
||||
* Transfer Descriptors for Host mode
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/usb.h>
|
||||
|
||||
#include <linux/usb/hcd.h>
|
||||
#include <linux/usb/ch11.h>
|
||||
|
||||
#include "core.h"
|
||||
#include "hcd.h"
|
||||
|
||||
/**
|
||||
* dwc2_qh_init() - Initializes a QH structure
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @qh: The QH to init
|
||||
* @urb: Holds the information about the device/endpoint needed to initialize
|
||||
* the QH
|
||||
*/
|
||||
#define SCHEDULE_SLOP 10
|
||||
static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
|
||||
struct dwc2_hcd_urb *urb)
|
||||
{
|
||||
int dev_speed, hub_addr, hub_port;
|
||||
char *speed, *type;
|
||||
|
||||
dev_vdbg(hsotg->dev, "%s()\n", __func__);
|
||||
|
||||
/* Initialize QH */
|
||||
qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
|
||||
qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
|
||||
|
||||
qh->data_toggle = DWC2_HC_PID_DATA0;
|
||||
qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info);
|
||||
INIT_LIST_HEAD(&qh->qtd_list);
|
||||
INIT_LIST_HEAD(&qh->qh_list_entry);
|
||||
|
||||
/* FS/LS Endpoint on HS Hub, NOT virtual root hub */
|
||||
dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
|
||||
|
||||
dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
|
||||
|
||||
if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) &&
|
||||
hub_addr != 0 && hub_addr != 1) {
|
||||
dev_vdbg(hsotg->dev,
|
||||
"QH init: EP %d: TT found at hub addr %d, for port %d\n",
|
||||
dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr,
|
||||
hub_port);
|
||||
qh->do_split = 1;
|
||||
}
|
||||
|
||||
if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
|
||||
qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
|
||||
/* Compute scheduling parameters once and save them */
|
||||
u32 hprt, prtspd;
|
||||
|
||||
/* Todo: Account for split transfers in the bus time */
|
||||
int bytecount =
|
||||
dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
|
||||
|
||||
qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ?
|
||||
USB_SPEED_HIGH : dev_speed, qh->ep_is_in,
|
||||
qh->ep_type == USB_ENDPOINT_XFER_ISOC,
|
||||
bytecount));
|
||||
/* Start in a slightly future (micro)frame */
|
||||
qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number,
|
||||
SCHEDULE_SLOP);
|
||||
qh->interval = urb->interval;
|
||||
#if 0
|
||||
/* Increase interrupt polling rate for debugging */
|
||||
if (qh->ep_type == USB_ENDPOINT_XFER_INT)
|
||||
qh->interval = 8;
|
||||
#endif
|
||||
hprt = readl(hsotg->regs + HPRT0);
|
||||
prtspd = hprt & HPRT0_SPD_MASK;
|
||||
if (prtspd == HPRT0_SPD_HIGH_SPEED &&
|
||||
(dev_speed == USB_SPEED_LOW ||
|
||||
dev_speed == USB_SPEED_FULL)) {
|
||||
qh->interval *= 8;
|
||||
qh->sched_frame |= 0x7;
|
||||
qh->start_split_frame = qh->sched_frame;
|
||||
}
|
||||
dev_dbg(hsotg->dev, "interval=%d\n", qh->interval);
|
||||
}
|
||||
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n");
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh);
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n",
|
||||
dwc2_hcd_get_dev_addr(&urb->pipe_info));
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n",
|
||||
dwc2_hcd_get_ep_num(&urb->pipe_info),
|
||||
dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
|
||||
|
||||
qh->dev_speed = dev_speed;
|
||||
|
||||
switch (dev_speed) {
|
||||
case USB_SPEED_LOW:
|
||||
speed = "low";
|
||||
break;
|
||||
case USB_SPEED_FULL:
|
||||
speed = "full";
|
||||
break;
|
||||
case USB_SPEED_HIGH:
|
||||
speed = "high";
|
||||
break;
|
||||
default:
|
||||
speed = "?";
|
||||
break;
|
||||
}
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed);
|
||||
|
||||
switch (qh->ep_type) {
|
||||
case USB_ENDPOINT_XFER_ISOC:
|
||||
type = "isochronous";
|
||||
break;
|
||||
case USB_ENDPOINT_XFER_INT:
|
||||
type = "interrupt";
|
||||
break;
|
||||
case USB_ENDPOINT_XFER_CONTROL:
|
||||
type = "control";
|
||||
break;
|
||||
case USB_ENDPOINT_XFER_BULK:
|
||||
type = "bulk";
|
||||
break;
|
||||
default:
|
||||
type = "?";
|
||||
break;
|
||||
}
|
||||
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type);
|
||||
|
||||
if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n",
|
||||
qh->usecs);
|
||||
dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n",
|
||||
qh->interval);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_hcd_qh_create() - Allocates and initializes a QH
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @urb: Holds the information about the device/endpoint needed
|
||||
* to initialize the QH
|
||||
* @atomic_alloc: Flag to do atomic allocation if needed
|
||||
*
|
||||
* Return: Pointer to the newly allocated QH, or NULL on error
|
||||
*/
|
||||
static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_hcd_urb *urb,
|
||||
gfp_t mem_flags)
|
||||
{
|
||||
struct dwc2_qh *qh;
|
||||
|
||||
/* Allocate memory */
|
||||
qh = kzalloc(sizeof(*qh), mem_flags);
|
||||
if (!qh)
|
||||
return NULL;
|
||||
|
||||
dwc2_qh_init(hsotg, qh, urb);
|
||||
|
||||
if (hsotg->core_params->dma_desc_enable > 0 &&
|
||||
dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
|
||||
dwc2_hcd_qh_free(hsotg, qh);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return qh;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_hcd_qh_free() - Frees the QH
|
||||
*
|
||||
* @hsotg: HCD instance
|
||||
* @qh: The QH to free
|
||||
*
|
||||
* QH should already be removed from the list. QTD list should already be empty
|
||||
* if called from URB Dequeue.
|
||||
*
|
||||
* Must NOT be called with interrupt disabled or spinlock held
|
||||
*/
|
||||
void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
|
||||
{
|
||||
u32 buf_size;
|
||||
|
||||
if (hsotg->core_params->dma_desc_enable > 0) {
|
||||
dwc2_hcd_qh_free_ddma(hsotg, qh);
|
||||
} else if (qh->dw_align_buf) {
|
||||
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
|
||||
buf_size = 4096;
|
||||
else
|
||||
buf_size = hsotg->core_params->max_transfer_size;
|
||||
dma_free_coherent(hsotg->dev, buf_size, qh->dw_align_buf,
|
||||
qh->dw_align_buf_dma);
|
||||
}
|
||||
|
||||
kfree(qh);
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_periodic_channel_available() - Checks that a channel is available for a
|
||||
* periodic transfer
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
*
|
||||
* Return: 0 if successful, negative error code otherise
|
||||
*/
|
||||
static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
|
||||
{
|
||||
/*
|
||||
* Currently assuming that there is a dedicated host channnel for
|
||||
* each periodic transaction plus at least one host channel for
|
||||
* non-periodic transactions
|
||||
*/
|
||||
int status;
|
||||
int num_channels;
|
||||
|
||||
num_channels = hsotg->core_params->host_channels;
|
||||
if (hsotg->periodic_channels + hsotg->non_periodic_channels <
|
||||
num_channels
|
||||
&& hsotg->periodic_channels < num_channels - 1) {
|
||||
status = 0;
|
||||
} else {
|
||||
dev_dbg(hsotg->dev,
|
||||
"%s: Total channels: %d, Periodic: %d, "
|
||||
"Non-periodic: %d\n", __func__, num_channels,
|
||||
hsotg->periodic_channels, hsotg->non_periodic_channels);
|
||||
status = -ENOSPC;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
|
||||
* for the specified QH in the periodic schedule
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @qh: QH containing periodic bandwidth required
|
||||
*
|
||||
* Return: 0 if successful, negative error code otherwise
|
||||
*
|
||||
* For simplicity, this calculation assumes that all the transfers in the
|
||||
* periodic schedule may occur in the same (micro)frame
|
||||
*/
|
||||
static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_qh *qh)
|
||||
{
|
||||
int status;
|
||||
s16 max_claimed_usecs;
|
||||
|
||||
status = 0;
|
||||
|
||||
if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
|
||||
/*
|
||||
* High speed mode
|
||||
* Max periodic usecs is 80% x 125 usec = 100 usec
|
||||
*/
|
||||
max_claimed_usecs = 100 - qh->usecs;
|
||||
} else {
|
||||
/*
|
||||
* Full speed mode
|
||||
* Max periodic usecs is 90% x 1000 usec = 900 usec
|
||||
*/
|
||||
max_claimed_usecs = 900 - qh->usecs;
|
||||
}
|
||||
|
||||
if (hsotg->periodic_usecs > max_claimed_usecs) {
|
||||
dev_err(hsotg->dev,
|
||||
"%s: already claimed usecs %d, required usecs %d\n",
|
||||
__func__, hsotg->periodic_usecs, qh->usecs);
|
||||
status = -ENOSPC;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
|
||||
* host channel is large enough to handle the maximum data transfer in a single
|
||||
* (micro)frame for a periodic transfer
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @qh: QH for a periodic endpoint
|
||||
*
|
||||
* Return: 0 if successful, negative error code otherwise
|
||||
*/
|
||||
static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_qh *qh)
|
||||
{
|
||||
u32 max_xfer_size;
|
||||
u32 max_channel_xfer_size;
|
||||
int status = 0;
|
||||
|
||||
max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
|
||||
max_channel_xfer_size = hsotg->core_params->max_transfer_size;
|
||||
|
||||
if (max_xfer_size > max_channel_xfer_size) {
|
||||
dev_err(hsotg->dev,
|
||||
"%s: Periodic xfer length %d > max xfer length for channel %d\n",
|
||||
__func__, max_xfer_size, max_channel_xfer_size);
|
||||
status = -ENOSPC;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
|
||||
* the periodic schedule
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @qh: QH for the periodic transfer. The QH should already contain the
|
||||
* scheduling information.
|
||||
*
|
||||
* Return: 0 if successful, negative error code otherwise
|
||||
*/
|
||||
static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
|
||||
{
|
||||
int status;
|
||||
|
||||
status = dwc2_periodic_channel_available(hsotg);
|
||||
if (status) {
|
||||
dev_dbg(hsotg->dev,
|
||||
"%s: No host channel available for periodic transfer\n",
|
||||
__func__);
|
||||
return status;
|
||||
}
|
||||
|
||||
status = dwc2_check_periodic_bandwidth(hsotg, qh);
|
||||
if (status) {
|
||||
dev_dbg(hsotg->dev,
|
||||
"%s: Insufficient periodic bandwidth for periodic transfer\n",
|
||||
__func__);
|
||||
return status;
|
||||
}
|
||||
|
||||
status = dwc2_check_max_xfer_size(hsotg, qh);
|
||||
if (status) {
|
||||
dev_dbg(hsotg->dev,
|
||||
"%s: Channel max transfer size too small for periodic transfer\n",
|
||||
__func__);
|
||||
return status;
|
||||
}
|
||||
|
||||
if (hsotg->core_params->dma_desc_enable > 0)
|
||||
/* Don't rely on SOF and start in ready schedule */
|
||||
list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
|
||||
else
|
||||
/* Always start in inactive schedule */
|
||||
list_add_tail(&qh->qh_list_entry,
|
||||
&hsotg->periodic_sched_inactive);
|
||||
|
||||
/* Reserve periodic channel */
|
||||
hsotg->periodic_channels++;
|
||||
|
||||
/* Update claimed usecs per (micro)frame */
|
||||
hsotg->periodic_usecs += qh->usecs;
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
|
||||
* from the periodic schedule
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @qh: QH for the periodic transfer
|
||||
*/
|
||||
static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_qh *qh)
|
||||
{
|
||||
list_del_init(&qh->qh_list_entry);
|
||||
|
||||
/* Release periodic channel reservation */
|
||||
hsotg->periodic_channels--;
|
||||
|
||||
/* Update claimed usecs per (micro)frame */
|
||||
hsotg->periodic_usecs -= qh->usecs;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
|
||||
* schedule if it is not already in the schedule. If the QH is already in
|
||||
* the schedule, no action is taken.
|
||||
*
|
||||
* @hsotg: The HCD state structure for the DWC OTG controller
|
||||
* @qh: The QH to add
|
||||
*
|
||||
* Return: 0 if successful, negative error code otherwise
|
||||
*/
|
||||
int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
|
||||
{
|
||||
int status = 0;
|
||||
u32 intr_mask;
|
||||
|
||||
dev_vdbg(hsotg->dev, "%s()\n", __func__);
|
||||
|
||||
if (!list_empty(&qh->qh_list_entry))
|
||||
/* QH already in a schedule */
|
||||
return status;
|
||||
|
||||
/* Add the new QH to the appropriate schedule */
|
||||
if (dwc2_qh_is_non_per(qh)) {
|
||||
/* Always start in inactive schedule */
|
||||
list_add_tail(&qh->qh_list_entry,
|
||||
&hsotg->non_periodic_sched_inactive);
|
||||
} else {
|
||||
status = dwc2_schedule_periodic(hsotg, qh);
|
||||
if (status == 0) {
|
||||
if (!hsotg->periodic_qh_count) {
|
||||
intr_mask = readl(hsotg->regs + GINTMSK);
|
||||
intr_mask |= GINTSTS_SOF;
|
||||
writel(intr_mask, hsotg->regs + GINTMSK);
|
||||
}
|
||||
hsotg->periodic_qh_count++;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
|
||||
* schedule. Memory is not freed.
|
||||
*
|
||||
* @hsotg: The HCD state structure
|
||||
* @qh: QH to remove from schedule
|
||||
*/
|
||||
void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
|
||||
{
|
||||
u32 intr_mask;
|
||||
|
||||
dev_vdbg(hsotg->dev, "%s()\n", __func__);
|
||||
|
||||
if (list_empty(&qh->qh_list_entry))
|
||||
/* QH is not in a schedule */
|
||||
return;
|
||||
|
||||
if (dwc2_qh_is_non_per(qh)) {
|
||||
if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
|
||||
hsotg->non_periodic_qh_ptr =
|
||||
hsotg->non_periodic_qh_ptr->next;
|
||||
list_del_init(&qh->qh_list_entry);
|
||||
} else {
|
||||
dwc2_deschedule_periodic(hsotg, qh);
|
||||
hsotg->periodic_qh_count--;
|
||||
if (!hsotg->periodic_qh_count) {
|
||||
intr_mask = readl(hsotg->regs + GINTMSK);
|
||||
intr_mask &= ~GINTSTS_SOF;
|
||||
writel(intr_mask, hsotg->regs + GINTMSK);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Schedule the next continuing periodic split transfer
|
||||
*/
|
||||
static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg,
|
||||
struct dwc2_qh *qh, u16 frame_number,
|
||||
int sched_next_periodic_split)
|
||||
{
|
||||
u16 incr;
|
||||
|
||||
if (sched_next_periodic_split) {
|
||||
qh->sched_frame = frame_number;
|
||||
incr = dwc2_frame_num_inc(qh->start_split_frame, 1);
|
||||
if (dwc2_frame_num_le(frame_number, incr)) {
|
||||
/*
|
||||
* Allow one frame to elapse after start split
|
||||
* microframe before scheduling complete split, but
|
||||
* DON'T if we are doing the next start split in the
|
||||
* same frame for an ISOC out
|
||||
*/
|
||||
if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
|
||||
qh->ep_is_in != 0) {
|
||||
qh->sched_frame =
|
||||
dwc2_frame_num_inc(qh->sched_frame, 1);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame,
|
||||
qh->interval);
|
||||
if (dwc2_frame_num_le(qh->sched_frame, frame_number))
|
||||
qh->sched_frame = frame_number;
|
||||
qh->sched_frame |= 0x7;
|
||||
qh->start_split_frame = qh->sched_frame;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Deactivates a QH. For non-periodic QHs, removes the QH from the active
|
||||
* non-periodic schedule. The QH is added to the inactive non-periodic
|
||||
* schedule if any QTDs are still attached to the QH.
|
||||
*
|
||||
* For periodic QHs, the QH is removed from the periodic queued schedule. If
|
||||
* there are any QTDs still attached to the QH, the QH is added to either the
|
||||
* periodic inactive schedule or the periodic ready schedule and its next
|
||||
* scheduled frame is calculated. The QH is placed in the ready schedule if
|
||||
* the scheduled frame has been reached already. Otherwise it's placed in the
|
||||
* inactive schedule. If there are no QTDs attached to the QH, the QH is
|
||||
* completely removed from the periodic schedule.
|
||||
*/
|
||||
void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
|
||||
int sched_next_periodic_split)
|
||||
{
|
||||
dev_vdbg(hsotg->dev, "%s()\n", __func__);
|
||||
|
||||
if (dwc2_qh_is_non_per(qh)) {
|
||||
dwc2_hcd_qh_unlink(hsotg, qh);
|
||||
if (!list_empty(&qh->qtd_list))
|
||||
/* Add back to inactive non-periodic schedule */
|
||||
dwc2_hcd_qh_add(hsotg, qh);
|
||||
} else {
|
||||
u16 frame_number = dwc2_hcd_get_frame_number(hsotg);
|
||||
|
||||
if (qh->do_split) {
|
||||
dwc2_sched_periodic_split(hsotg, qh, frame_number,
|
||||
sched_next_periodic_split);
|
||||
} else {
|
||||
qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame,
|
||||
qh->interval);
|
||||
if (dwc2_frame_num_le(qh->sched_frame, frame_number))
|
||||
qh->sched_frame = frame_number;
|
||||
}
|
||||
|
||||
if (list_empty(&qh->qtd_list)) {
|
||||
dwc2_hcd_qh_unlink(hsotg, qh);
|
||||
} else {
|
||||
/*
|
||||
* Remove from periodic_sched_queued and move to
|
||||
* appropriate queue
|
||||
*/
|
||||
if (qh->sched_frame == frame_number)
|
||||
list_move(&qh->qh_list_entry,
|
||||
&hsotg->periodic_sched_ready);
|
||||
else
|
||||
list_move(&qh->qh_list_entry,
|
||||
&hsotg->periodic_sched_inactive);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_hcd_qtd_init() - Initializes a QTD structure
|
||||
*
|
||||
* @qtd: The QTD to initialize
|
||||
* @urb: The associated URB
|
||||
*/
|
||||
void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
|
||||
{
|
||||
qtd->urb = urb;
|
||||
if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
|
||||
USB_ENDPOINT_XFER_CONTROL) {
|
||||
/*
|
||||
* The only time the QTD data toggle is used is on the data
|
||||
* phase of control transfers. This phase always starts with
|
||||
* DATA1.
|
||||
*/
|
||||
qtd->data_toggle = DWC2_HC_PID_DATA1;
|
||||
qtd->control_phase = DWC2_CONTROL_SETUP;
|
||||
}
|
||||
|
||||
/* Start split */
|
||||
qtd->complete_split = 0;
|
||||
qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
|
||||
qtd->isoc_split_offset = 0;
|
||||
qtd->in_process = 0;
|
||||
|
||||
/* Store the qtd ptr in the urb to reference the QTD */
|
||||
urb->qtd = qtd;
|
||||
}
|
||||
|
||||
/**
|
||||
* dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
|
||||
*
|
||||
* @hsotg: The DWC HCD structure
|
||||
* @qtd: The QTD to add
|
||||
* @qh: Out parameter to return queue head
|
||||
* @atomic_alloc: Flag to do atomic alloc if needed
|
||||
*
|
||||
* Return: 0 if successful, negative error code otherwise
|
||||
*
|
||||
* Finds the correct QH to place the QTD into. If it does not find a QH, it
|
||||
* will create a new QH. If the QH to which the QTD is added is not currently
|
||||
* scheduled, it is placed into the proper schedule based on its EP type.
|
||||
*/
|
||||
int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
|
||||
struct dwc2_qh **qh, gfp_t mem_flags)
|
||||
{
|
||||
struct dwc2_hcd_urb *urb = qtd->urb;
|
||||
unsigned long flags;
|
||||
int allocated = 0;
|
||||
int retval = 0;
|
||||
|
||||
/*
|
||||
* Get the QH which holds the QTD-list to insert to. Create QH if it
|
||||
* doesn't exist.
|
||||
*/
|
||||
if (*qh == NULL) {
|
||||
*qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags);
|
||||
if (*qh == NULL)
|
||||
return -ENOMEM;
|
||||
allocated = 1;
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&hsotg->lock, flags);
|
||||
retval = dwc2_hcd_qh_add(hsotg, *qh);
|
||||
if (retval && allocated) {
|
||||
struct dwc2_qtd *qtd2, *qtd2_tmp;
|
||||
struct dwc2_qh *qh_tmp = *qh;
|
||||
|
||||
*qh = NULL;
|
||||
dwc2_hcd_qh_unlink(hsotg, qh_tmp);
|
||||
|
||||
/* Free each QTD in the QH's QTD list */
|
||||
list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list,
|
||||
qtd_list_entry)
|
||||
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp);
|
||||
|
||||
spin_unlock_irqrestore(&hsotg->lock, flags);
|
||||
dwc2_hcd_qh_free(hsotg, qh_tmp);
|
||||
} else {
|
||||
qtd->qh = *qh;
|
||||
list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list);
|
||||
spin_unlock_irqrestore(&hsotg->lock, flags);
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
Loading…
Reference in New Issue