KVM: s390: Updates for 5.13
- properly handle MVPG in nesting KVM (vsie) - allow to forward the yield_to hypercall (diagnose 9c) - fixes -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABAgAGBQJgdFvgAAoJEBF7vIC1phx8+IIP/0OdF4I5VqBJ1C9Roc3l4P+4 b95OZX4nBLQ0L1JnPMeJqNo3V6JH/5356dwpIplQXv5wraS3+sQGX2D1xW00QnLE M6L3368uT30JmEVWnnrulUdLWwUqExJ17BEX9p4rmJQAm+7rLOJsVsWIKwclupyR BacDMG2q5aG+/eaceimBdEPyfE6YHJzbtD9BEBe12/Y+B0PyCyinAOiGALcugDkY kSqdqBcHFqXJuF37DsQn2gSlBFGByfvWlaYa0dKhdGFp4ps3TDhmC+qyoBAjHJFu nzTNOFdjgMlatUe92OsgwqilV0OUgdNZ+deKSyGHdmht+RknuLsJU0LqCvN66cTA H58D5s3PrM8868e/bflX47Lt0fbJSA7ZXZqJuyP84tEqTgQmAH43VvQg8t9bybTp dY2UUx19ZHpktVjL+FIylUcxyLXFSX8KTI0a/JxlMUUjE+NAaB22iCyBMMIoogSj ozqKGq7VwPJftoxLiUaGEUL4NyXlo7+XivZNTHFIjh0sjDZooH9IZ9LK/17684ra GLCAnw2hhB4xegNPuJWawo/vNJ5dAtiKVQ6Hwgr6ORaCEBLGtIlyYhm1XYAwb7f4 vAfQ60lqbL1dpGtKnf4cMySrgNczotura4KPreXkDJ68eqNJCjbDUVnN+0XsBIC8 7+SaOJRmJRd0VzeEPBg3 =8wV0 -----END PGP SIGNATURE----- Merge tag 'kvm-s390-next-5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD KVM: s390: Updates for 5.13 - properly handle MVPG in nesting KVM (vsie) - allow to forward the yield_to hypercall (diagnose 9c) - fixes
This commit is contained in:
commit
6c377b02a8
|
@ -84,3 +84,36 @@ If the function code specifies 0x501, breakpoint functions may be performed.
|
|||
This function code is handled by userspace.
|
||||
|
||||
This diagnose function code has no subfunctions and uses no parameters.
|
||||
|
||||
|
||||
DIAGNOSE function code 'X'9C - Voluntary Time Slice Yield
|
||||
---------------------------------------------------------
|
||||
|
||||
General register 1 contains the target CPU address.
|
||||
|
||||
In a guest of a hypervisor like LPAR, KVM or z/VM using shared host CPUs,
|
||||
DIAGNOSE with function code 0x9c may improve system performance by
|
||||
yielding the host CPU on which the guest CPU is running to be assigned
|
||||
to another guest CPU, preferably the logical CPU containing the specified
|
||||
target CPU.
|
||||
|
||||
|
||||
DIAG 'X'9C forwarding
|
||||
+++++++++++++++++++++
|
||||
|
||||
The guest may send a DIAGNOSE 0x9c in order to yield to a certain
|
||||
other vcpu. An example is a Linux guest that tries to yield to the vcpu
|
||||
that is currently holding a spinlock, but not running.
|
||||
|
||||
However, on the host the real cpu backing the vcpu may itself not be
|
||||
running.
|
||||
Forwarding the DIAGNOSE 0x9c initially sent by the guest to yield to
|
||||
the backing cpu will hopefully cause that cpu, and thus subsequently
|
||||
the guest's vcpu, to be scheduled.
|
||||
|
||||
|
||||
diag9c_forwarding_hz
|
||||
KVM kernel parameter allowing to specify the maximum number of DIAGNOSE
|
||||
0x9c forwarding per second in the purpose of avoiding a DIAGNOSE 0x9c
|
||||
forwarding storm.
|
||||
A value of 0 turns the forwarding off.
|
||||
|
|
|
@ -454,6 +454,7 @@ struct kvm_vcpu_stat {
|
|||
u64 diagnose_44;
|
||||
u64 diagnose_9c;
|
||||
u64 diagnose_9c_ignored;
|
||||
u64 diagnose_9c_forward;
|
||||
u64 diagnose_258;
|
||||
u64 diagnose_308;
|
||||
u64 diagnose_500;
|
||||
|
|
|
@ -63,5 +63,6 @@ extern void __noreturn cpu_die(void);
|
|||
extern void __cpu_die(unsigned int cpu);
|
||||
extern int __cpu_disable(void);
|
||||
extern void schedule_mcck_handler(void);
|
||||
void notrace smp_yield_cpu(int cpu);
|
||||
|
||||
#endif /* __ASM_SMP_H */
|
||||
|
|
|
@ -429,6 +429,7 @@ void notrace smp_yield_cpu(int cpu)
|
|||
asm volatile("diag %0,0,0x9c"
|
||||
: : "d" (pcpu_devices[cpu].address));
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(smp_yield_cpu);
|
||||
|
||||
/*
|
||||
* Send cpus emergency shutdown signal. This gives the cpus the
|
||||
|
|
|
@ -150,6 +150,19 @@ static int __diag_time_slice_end(struct kvm_vcpu *vcpu)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int forward_cnt;
|
||||
static unsigned long cur_slice;
|
||||
|
||||
static int diag9c_forwarding_overrun(void)
|
||||
{
|
||||
/* Reset the count on a new slice */
|
||||
if (time_after(jiffies, cur_slice)) {
|
||||
cur_slice = jiffies;
|
||||
forward_cnt = diag9c_forwarding_hz / HZ;
|
||||
}
|
||||
return forward_cnt-- <= 0 ? 1 : 0;
|
||||
}
|
||||
|
||||
static int __diag_time_slice_end_directed(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct kvm_vcpu *tcpu;
|
||||
|
@ -167,9 +180,21 @@ static int __diag_time_slice_end_directed(struct kvm_vcpu *vcpu)
|
|||
if (!tcpu)
|
||||
goto no_yield;
|
||||
|
||||
/* target already running */
|
||||
if (READ_ONCE(tcpu->cpu) >= 0)
|
||||
goto no_yield;
|
||||
/* target guest VCPU already running */
|
||||
if (READ_ONCE(tcpu->cpu) >= 0) {
|
||||
if (!diag9c_forwarding_hz || diag9c_forwarding_overrun())
|
||||
goto no_yield;
|
||||
|
||||
/* target host CPU already running */
|
||||
if (!vcpu_is_preempted(tcpu->cpu))
|
||||
goto no_yield;
|
||||
smp_yield_cpu(tcpu->cpu);
|
||||
VCPU_EVENT(vcpu, 5,
|
||||
"diag time slice end directed to %d: yield forwarded",
|
||||
tid);
|
||||
vcpu->stat.diagnose_9c_forward++;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (kvm_vcpu_yield_to(tcpu) <= 0)
|
||||
goto no_yield;
|
||||
|
|
|
@ -976,7 +976,9 @@ int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
|
|||
* kvm_s390_shadow_tables - walk the guest page table and create shadow tables
|
||||
* @sg: pointer to the shadow guest address space structure
|
||||
* @saddr: faulting address in the shadow gmap
|
||||
* @pgt: pointer to the page table address result
|
||||
* @pgt: pointer to the beginning of the page table for the given address if
|
||||
* successful (return value 0), or to the first invalid DAT entry in
|
||||
* case of exceptions (return value > 0)
|
||||
* @fake: pgt references contiguous guest memory block, not a pgtable
|
||||
*/
|
||||
static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
|
||||
|
@ -1034,6 +1036,7 @@ static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
|
|||
rfte.val = ptr;
|
||||
goto shadow_r2t;
|
||||
}
|
||||
*pgt = ptr + vaddr.rfx * 8;
|
||||
rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
@ -1060,6 +1063,7 @@ shadow_r2t:
|
|||
rste.val = ptr;
|
||||
goto shadow_r3t;
|
||||
}
|
||||
*pgt = ptr + vaddr.rsx * 8;
|
||||
rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
@ -1087,6 +1091,7 @@ shadow_r3t:
|
|||
rtte.val = ptr;
|
||||
goto shadow_sgt;
|
||||
}
|
||||
*pgt = ptr + vaddr.rtx * 8;
|
||||
rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
@ -1123,6 +1128,7 @@ shadow_sgt:
|
|||
ste.val = ptr;
|
||||
goto shadow_pgt;
|
||||
}
|
||||
*pgt = ptr + vaddr.sx * 8;
|
||||
rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
@ -1157,6 +1163,8 @@ shadow_pgt:
|
|||
* @vcpu: virtual cpu
|
||||
* @sg: pointer to the shadow guest address space structure
|
||||
* @saddr: faulting address in the shadow gmap
|
||||
* @datptr: will contain the address of the faulting DAT table entry, or of
|
||||
* the valid leaf, plus some flags
|
||||
*
|
||||
* Returns: - 0 if the shadow fault was successfully resolved
|
||||
* - > 0 (pgm exception code) on exceptions while faulting
|
||||
|
@ -1165,11 +1173,11 @@ shadow_pgt:
|
|||
* - -ENOMEM if out of memory
|
||||
*/
|
||||
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
|
||||
unsigned long saddr)
|
||||
unsigned long saddr, unsigned long *datptr)
|
||||
{
|
||||
union vaddress vaddr;
|
||||
union page_table_entry pte;
|
||||
unsigned long pgt;
|
||||
unsigned long pgt = 0;
|
||||
int dat_protection, fake;
|
||||
int rc;
|
||||
|
||||
|
@ -1191,8 +1199,20 @@ int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
|
|||
pte.val = pgt + vaddr.px * PAGE_SIZE;
|
||||
goto shadow_page;
|
||||
}
|
||||
if (!rc)
|
||||
rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
|
||||
|
||||
switch (rc) {
|
||||
case PGM_SEGMENT_TRANSLATION:
|
||||
case PGM_REGION_THIRD_TRANS:
|
||||
case PGM_REGION_SECOND_TRANS:
|
||||
case PGM_REGION_FIRST_TRANS:
|
||||
pgt |= PEI_NOT_PTE;
|
||||
break;
|
||||
case 0:
|
||||
pgt += vaddr.px * 8;
|
||||
rc = gmap_read_table(sg->parent, pgt, &pte.val);
|
||||
}
|
||||
if (datptr)
|
||||
*datptr = pgt | dat_protection * PEI_DAT_PROT;
|
||||
if (!rc && pte.i)
|
||||
rc = PGM_PAGE_TRANSLATION;
|
||||
if (!rc && pte.z)
|
||||
|
|
|
@ -16,6 +16,23 @@
|
|||
#include <linux/ptrace.h>
|
||||
#include "kvm-s390.h"
|
||||
|
||||
/**
|
||||
* kvm_s390_real_to_abs - convert guest real address to guest absolute address
|
||||
* @prefix - guest prefix
|
||||
* @gra - guest real address
|
||||
*
|
||||
* Returns the guest absolute address that corresponds to the passed guest real
|
||||
* address @gra of by applying the given prefix.
|
||||
*/
|
||||
static inline unsigned long _kvm_s390_real_to_abs(u32 prefix, unsigned long gra)
|
||||
{
|
||||
if (gra < 2 * PAGE_SIZE)
|
||||
gra += prefix;
|
||||
else if (gra >= prefix && gra < prefix + 2 * PAGE_SIZE)
|
||||
gra -= prefix;
|
||||
return gra;
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_s390_real_to_abs - convert guest real address to guest absolute address
|
||||
* @vcpu - guest virtual cpu
|
||||
|
@ -27,13 +44,30 @@
|
|||
static inline unsigned long kvm_s390_real_to_abs(struct kvm_vcpu *vcpu,
|
||||
unsigned long gra)
|
||||
{
|
||||
unsigned long prefix = kvm_s390_get_prefix(vcpu);
|
||||
return _kvm_s390_real_to_abs(kvm_s390_get_prefix(vcpu), gra);
|
||||
}
|
||||
|
||||
if (gra < 2 * PAGE_SIZE)
|
||||
gra += prefix;
|
||||
else if (gra >= prefix && gra < prefix + 2 * PAGE_SIZE)
|
||||
gra -= prefix;
|
||||
return gra;
|
||||
/**
|
||||
* _kvm_s390_logical_to_effective - convert guest logical to effective address
|
||||
* @psw: psw of the guest
|
||||
* @ga: guest logical address
|
||||
*
|
||||
* Convert a guest logical address to an effective address by applying the
|
||||
* rules of the addressing mode defined by bits 31 and 32 of the given PSW
|
||||
* (extendended/basic addressing mode).
|
||||
*
|
||||
* Depending on the addressing mode, the upper 40 bits (24 bit addressing
|
||||
* mode), 33 bits (31 bit addressing mode) or no bits (64 bit addressing
|
||||
* mode) of @ga will be zeroed and the remaining bits will be returned.
|
||||
*/
|
||||
static inline unsigned long _kvm_s390_logical_to_effective(psw_t *psw,
|
||||
unsigned long ga)
|
||||
{
|
||||
if (psw_bits(*psw).eaba == PSW_BITS_AMODE_64BIT)
|
||||
return ga;
|
||||
if (psw_bits(*psw).eaba == PSW_BITS_AMODE_31BIT)
|
||||
return ga & ((1UL << 31) - 1);
|
||||
return ga & ((1UL << 24) - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -52,13 +86,7 @@ static inline unsigned long kvm_s390_real_to_abs(struct kvm_vcpu *vcpu,
|
|||
static inline unsigned long kvm_s390_logical_to_effective(struct kvm_vcpu *vcpu,
|
||||
unsigned long ga)
|
||||
{
|
||||
psw_t *psw = &vcpu->arch.sie_block->gpsw;
|
||||
|
||||
if (psw_bits(*psw).eaba == PSW_BITS_AMODE_64BIT)
|
||||
return ga;
|
||||
if (psw_bits(*psw).eaba == PSW_BITS_AMODE_31BIT)
|
||||
return ga & ((1UL << 31) - 1);
|
||||
return ga & ((1UL << 24) - 1);
|
||||
return _kvm_s390_logical_to_effective(&vcpu->arch.sie_block->gpsw, ga);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -359,7 +387,11 @@ void ipte_unlock(struct kvm_vcpu *vcpu);
|
|||
int ipte_lock_held(struct kvm_vcpu *vcpu);
|
||||
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra);
|
||||
|
||||
/* MVPG PEI indication bits */
|
||||
#define PEI_DAT_PROT 2
|
||||
#define PEI_NOT_PTE 4
|
||||
|
||||
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *shadow,
|
||||
unsigned long saddr);
|
||||
unsigned long saddr, unsigned long *datptr);
|
||||
|
||||
#endif /* __KVM_S390_GACCESS_H */
|
||||
|
|
|
@ -158,6 +158,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
|
|||
VCPU_STAT("instruction_diag_44", diagnose_44),
|
||||
VCPU_STAT("instruction_diag_9c", diagnose_9c),
|
||||
VCPU_STAT("diag_9c_ignored", diagnose_9c_ignored),
|
||||
VCPU_STAT("diag_9c_forward", diagnose_9c_forward),
|
||||
VCPU_STAT("instruction_diag_258", diagnose_258),
|
||||
VCPU_STAT("instruction_diag_308", diagnose_308),
|
||||
VCPU_STAT("instruction_diag_500", diagnose_500),
|
||||
|
@ -185,6 +186,11 @@ static bool use_gisa = true;
|
|||
module_param(use_gisa, bool, 0644);
|
||||
MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
|
||||
|
||||
/* maximum diag9c forwarding per second */
|
||||
unsigned int diag9c_forwarding_hz;
|
||||
module_param(diag9c_forwarding_hz, uint, 0644);
|
||||
MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
|
||||
|
||||
/*
|
||||
* For now we handle at most 16 double words as this is what the s390 base
|
||||
* kernel handles and stores in the prefix page. If we ever need to go beyond
|
||||
|
@ -4542,7 +4548,7 @@ int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
|
|||
/*
|
||||
* As we are starting a second VCPU, we have to disable
|
||||
* the IBS facility on all VCPUs to remove potentially
|
||||
* oustanding ENABLE requests.
|
||||
* outstanding ENABLE requests.
|
||||
*/
|
||||
__disable_ibs_on_all_vcpus(vcpu->kvm);
|
||||
}
|
||||
|
|
|
@ -471,4 +471,12 @@ void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
|
|||
* @kvm: the KVM guest
|
||||
*/
|
||||
void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm);
|
||||
|
||||
/**
|
||||
* diag9c_forwarding_hz
|
||||
*
|
||||
* Set the maximum number of diag9c forwarding per second
|
||||
*/
|
||||
extern unsigned int diag9c_forwarding_hz;
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,11 +417,6 @@ static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
|||
memcpy((void *)((u64)scb_o + 0xc0),
|
||||
(void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
|
||||
break;
|
||||
case ICPT_PARTEXEC:
|
||||
/* MVPG only */
|
||||
memcpy((void *)((u64)scb_o + 0xc0),
|
||||
(void *)((u64)scb_s + 0xc0), 0xd0 - 0xc0);
|
||||
break;
|
||||
}
|
||||
|
||||
if (scb_s->ihcpu != 0xffffU)
|
||||
|
@ -620,10 +615,10 @@ static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
|||
/* with mso/msl, the prefix lies at offset *mso* */
|
||||
prefix += scb_s->mso;
|
||||
|
||||
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix);
|
||||
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix, NULL);
|
||||
if (!rc && (scb_s->ecb & ECB_TE))
|
||||
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
|
||||
prefix + PAGE_SIZE);
|
||||
prefix + PAGE_SIZE, NULL);
|
||||
/*
|
||||
* We don't have to mprotect, we will be called for all unshadows.
|
||||
* SIE will detect if protection applies and trigger a validity.
|
||||
|
@ -914,7 +909,7 @@ static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
|||
current->thread.gmap_addr, 1);
|
||||
|
||||
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
|
||||
current->thread.gmap_addr);
|
||||
current->thread.gmap_addr, NULL);
|
||||
if (rc > 0) {
|
||||
rc = inject_fault(vcpu, rc,
|
||||
current->thread.gmap_addr,
|
||||
|
@ -936,7 +931,7 @@ static void handle_last_fault(struct kvm_vcpu *vcpu,
|
|||
{
|
||||
if (vsie_page->fault_addr)
|
||||
kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
|
||||
vsie_page->fault_addr);
|
||||
vsie_page->fault_addr, NULL);
|
||||
vsie_page->fault_addr = 0;
|
||||
}
|
||||
|
||||
|
@ -983,6 +978,98 @@ static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get a register for a nested guest.
|
||||
* @vcpu the vcpu of the guest
|
||||
* @vsie_page the vsie_page for the nested guest
|
||||
* @reg the register number, the upper 4 bits are ignored.
|
||||
* returns: the value of the register.
|
||||
*/
|
||||
static u64 vsie_get_register(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, u8 reg)
|
||||
{
|
||||
/* no need to validate the parameter and/or perform error handling */
|
||||
reg &= 0xf;
|
||||
switch (reg) {
|
||||
case 15:
|
||||
return vsie_page->scb_s.gg15;
|
||||
case 14:
|
||||
return vsie_page->scb_s.gg14;
|
||||
default:
|
||||
return vcpu->run->s.regs.gprs[reg];
|
||||
}
|
||||
}
|
||||
|
||||
static int vsie_handle_mvpg(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
||||
{
|
||||
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
|
||||
unsigned long pei_dest, pei_src, src, dest, mask, prefix;
|
||||
u64 *pei_block = &vsie_page->scb_o->mcic;
|
||||
int edat, rc_dest, rc_src;
|
||||
union ctlreg0 cr0;
|
||||
|
||||
cr0.val = vcpu->arch.sie_block->gcr[0];
|
||||
edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
|
||||
mask = _kvm_s390_logical_to_effective(&scb_s->gpsw, PAGE_MASK);
|
||||
prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
|
||||
|
||||
dest = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 20) & mask;
|
||||
dest = _kvm_s390_real_to_abs(prefix, dest) + scb_s->mso;
|
||||
src = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 16) & mask;
|
||||
src = _kvm_s390_real_to_abs(prefix, src) + scb_s->mso;
|
||||
|
||||
rc_dest = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, dest, &pei_dest);
|
||||
rc_src = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, src, &pei_src);
|
||||
/*
|
||||
* Either everything went well, or something non-critical went wrong
|
||||
* e.g. because of a race. In either case, simply retry.
|
||||
*/
|
||||
if (rc_dest == -EAGAIN || rc_src == -EAGAIN || (!rc_dest && !rc_src)) {
|
||||
retry_vsie_icpt(vsie_page);
|
||||
return -EAGAIN;
|
||||
}
|
||||
/* Something more serious went wrong, propagate the error */
|
||||
if (rc_dest < 0)
|
||||
return rc_dest;
|
||||
if (rc_src < 0)
|
||||
return rc_src;
|
||||
|
||||
/* The only possible suppressing exception: just deliver it */
|
||||
if (rc_dest == PGM_TRANSLATION_SPEC || rc_src == PGM_TRANSLATION_SPEC) {
|
||||
clear_vsie_icpt(vsie_page);
|
||||
rc_dest = kvm_s390_inject_program_int(vcpu, PGM_TRANSLATION_SPEC);
|
||||
WARN_ON_ONCE(rc_dest);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Forward the PEI intercept to the guest if it was a page fault, or
|
||||
* also for segment and region table faults if EDAT applies.
|
||||
*/
|
||||
if (edat) {
|
||||
rc_dest = rc_dest == PGM_ASCE_TYPE ? rc_dest : 0;
|
||||
rc_src = rc_src == PGM_ASCE_TYPE ? rc_src : 0;
|
||||
} else {
|
||||
rc_dest = rc_dest != PGM_PAGE_TRANSLATION ? rc_dest : 0;
|
||||
rc_src = rc_src != PGM_PAGE_TRANSLATION ? rc_src : 0;
|
||||
}
|
||||
if (!rc_dest && !rc_src) {
|
||||
pei_block[0] = pei_dest;
|
||||
pei_block[1] = pei_src;
|
||||
return 1;
|
||||
}
|
||||
|
||||
retry_vsie_icpt(vsie_page);
|
||||
|
||||
/*
|
||||
* The host has edat, and the guest does not, or it was an ASCE type
|
||||
* exception. The host needs to inject the appropriate DAT interrupts
|
||||
* into the guest.
|
||||
*/
|
||||
if (rc_dest)
|
||||
return inject_fault(vcpu, rc_dest, dest, 1);
|
||||
return inject_fault(vcpu, rc_src, src, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Run the vsie on a shadow scb and a shadow gmap, without any further
|
||||
* sanity checks, handling SIE faults.
|
||||
|
@ -1071,6 +1158,10 @@ static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
|
|||
if ((scb_s->ipa & 0xf000) != 0xf000)
|
||||
scb_s->ipa += 0x1000;
|
||||
break;
|
||||
case ICPT_PARTEXEC:
|
||||
if (scb_s->ipa == 0xb254)
|
||||
rc = vsie_handle_mvpg(vcpu, vsie_page);
|
||||
break;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue