remoteproc/mediatek: add SCP support for mt8183

Provide a basic driver to control Cortex M4 co-processor

Signed-off-by: Erin Lo <erin.lo@mediatek.com>
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Signed-off-by: Pi-Hsun Shih <pihsun@chromium.org>
Link: https://lore.kernel.org/r/20191112110330.179649-3-pihsun@chromium.org
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
This commit is contained in:
Erin Lo 2019-11-12 19:03:25 +08:00 committed by Bjorn Andersson
parent e47e98877b
commit 63c13d61ea
6 changed files with 995 additions and 0 deletions

View File

@ -23,6 +23,15 @@ config IMX_REMOTEPROC
It's safe to say N here.
config MTK_SCP
tristate "Mediatek SCP support"
depends on ARCH_MEDIATEK
help
Say y here to support Mediatek's System Companion Processor (SCP) via
the remote processor framework.
It's safe to say N here.
config OMAP_REMOTEPROC
tristate "OMAP remoteproc support"
depends on ARCH_OMAP4 || SOC_OMAP5

View File

@ -10,6 +10,7 @@ remoteproc-y += remoteproc_sysfs.o
remoteproc-y += remoteproc_virtio.o
remoteproc-y += remoteproc_elf_loader.o
obj-$(CONFIG_IMX_REMOTEPROC) += imx_rproc.o
obj-$(CONFIG_MTK_SCP) += mtk_scp.o mtk_scp_ipi.o
obj-$(CONFIG_OMAP_REMOTEPROC) += omap_remoteproc.o
obj-$(CONFIG_WKUP_M3_RPROC) += wkup_m3_rproc.o
obj-$(CONFIG_DA8XX_REMOTEPROC) += da8xx_remoteproc.o

View File

@ -0,0 +1,92 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#ifndef __RPROC_MTK_COMMON_H
#define __RPROC_MTK_COMMON_H
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/remoteproc/mtk_scp.h>
#define MT8183_SW_RSTN 0x0
#define MT8183_SW_RSTN_BIT BIT(0)
#define MT8183_SCP_TO_HOST 0x1C
#define MT8183_SCP_IPC_INT_BIT BIT(0)
#define MT8183_SCP_WDT_INT_BIT BIT(8)
#define MT8183_HOST_TO_SCP 0x28
#define MT8183_HOST_IPC_INT_BIT BIT(0)
#define MT8183_WDT_CFG 0x84
#define MT8183_SCP_CLK_SW_SEL 0x4000
#define MT8183_SCP_CLK_DIV_SEL 0x4024
#define MT8183_SCP_SRAM_PDN 0x402C
#define MT8183_SCP_L1_SRAM_PD 0x4080
#define MT8183_SCP_TCM_TAIL_SRAM_PD 0x4094
#define MT8183_SCP_CACHE_SEL(x) (0x14000 + (x) * 0x3000)
#define MT8183_SCP_CACHE_CON MT8183_SCP_CACHE_SEL(0)
#define MT8183_SCP_DCACHE_CON MT8183_SCP_CACHE_SEL(1)
#define MT8183_SCP_CACHESIZE_8KB BIT(8)
#define MT8183_SCP_CACHE_CON_WAYEN BIT(10)
#define SCP_FW_VER_LEN 32
#define SCP_SHARE_BUFFER_SIZE 288
struct scp_run {
u32 signaled;
s8 fw_ver[SCP_FW_VER_LEN];
u32 dec_capability;
u32 enc_capability;
wait_queue_head_t wq;
};
struct scp_ipi_desc {
/* For protecting handler. */
struct mutex lock;
scp_ipi_handler_t handler;
void *priv;
};
struct mtk_scp {
struct device *dev;
struct rproc *rproc;
struct clk *clk;
void __iomem *reg_base;
void __iomem *sram_base;
size_t sram_size;
struct mtk_share_obj __iomem *recv_buf;
struct mtk_share_obj __iomem *send_buf;
struct scp_run run;
/* To prevent multiple ipi_send run concurrently. */
struct mutex send_lock;
struct scp_ipi_desc ipi_desc[SCP_IPI_MAX];
bool ipi_id_ack[SCP_IPI_MAX];
wait_queue_head_t ack_wq;
void __iomem *cpu_addr;
phys_addr_t phys_addr;
size_t dram_size;
};
/**
* struct mtk_share_obj - SRAM buffer shared with AP and SCP
*
* @id: IPI id
* @len: share buffer length
* @share_buf: share buffer data
*/
struct mtk_share_obj {
u32 id;
u32 len;
u8 share_buf[SCP_SHARE_BUFFER_SIZE];
};
void scp_memcpy_aligned(void __iomem *dst, const void *src, unsigned int len);
void scp_ipi_lock(struct mtk_scp *scp, u32 id);
void scp_ipi_unlock(struct mtk_scp *scp, u32 id);
#endif

View File

@ -0,0 +1,610 @@
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (c) 2019 MediaTek Inc.
#include <asm/barrier.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/remoteproc/mtk_scp.h>
#include "mtk_common.h"
#include "remoteproc_internal.h"
#define MAX_CODE_SIZE 0x500000
#define SCP_FW_END 0x7C000
/**
* scp_get() - get a reference to SCP.
*
* @pdev: the platform device of the module requesting SCP platform
* device for using SCP API.
*
* Return: Return NULL if failed. otherwise reference to SCP.
**/
struct mtk_scp *scp_get(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *scp_node;
struct platform_device *scp_pdev;
scp_node = of_parse_phandle(dev->of_node, "mediatek,scp", 0);
if (!scp_node) {
dev_err(dev, "can't get SCP node\n");
return NULL;
}
scp_pdev = of_find_device_by_node(scp_node);
of_node_put(scp_node);
if (WARN_ON(!scp_pdev)) {
dev_err(dev, "SCP pdev failed\n");
return NULL;
}
return platform_get_drvdata(scp_pdev);
}
EXPORT_SYMBOL_GPL(scp_get);
/**
* scp_put() - "free" the SCP
*
* @scp: mtk_scp structure from scp_get().
**/
void scp_put(struct mtk_scp *scp)
{
put_device(scp->dev);
}
EXPORT_SYMBOL_GPL(scp_put);
static void scp_wdt_handler(struct mtk_scp *scp, u32 scp_to_host)
{
dev_err(scp->dev, "SCP watchdog timeout! 0x%x", scp_to_host);
rproc_report_crash(scp->rproc, RPROC_WATCHDOG);
}
static void scp_init_ipi_handler(void *data, unsigned int len, void *priv)
{
struct mtk_scp *scp = (struct mtk_scp *)priv;
struct scp_run *run = (struct scp_run *)data;
scp->run.signaled = run->signaled;
strscpy(scp->run.fw_ver, run->fw_ver, SCP_FW_VER_LEN);
scp->run.dec_capability = run->dec_capability;
scp->run.enc_capability = run->enc_capability;
wake_up_interruptible(&scp->run.wq);
}
static void scp_ipi_handler(struct mtk_scp *scp)
{
struct mtk_share_obj __iomem *rcv_obj = scp->recv_buf;
struct scp_ipi_desc *ipi_desc = scp->ipi_desc;
u8 tmp_data[SCP_SHARE_BUFFER_SIZE];
scp_ipi_handler_t handler;
u32 id = readl(&rcv_obj->id);
u32 len = readl(&rcv_obj->len);
if (len > SCP_SHARE_BUFFER_SIZE) {
dev_err(scp->dev, "ipi message too long (len %d, max %d)", len,
SCP_SHARE_BUFFER_SIZE);
return;
}
if (id >= SCP_IPI_MAX) {
dev_err(scp->dev, "No such ipi id = %d\n", id);
return;
}
scp_ipi_lock(scp, id);
handler = ipi_desc[id].handler;
if (!handler) {
dev_err(scp->dev, "No such ipi id = %d\n", id);
scp_ipi_unlock(scp, id);
return;
}
memcpy_fromio(tmp_data, &rcv_obj->share_buf, len);
handler(tmp_data, len, ipi_desc[id].priv);
scp_ipi_unlock(scp, id);
scp->ipi_id_ack[id] = true;
wake_up(&scp->ack_wq);
}
static int scp_ipi_init(struct mtk_scp *scp)
{
size_t send_offset = SCP_FW_END - sizeof(struct mtk_share_obj);
size_t recv_offset = send_offset - sizeof(struct mtk_share_obj);
/* Disable SCP to host interrupt */
writel(MT8183_SCP_IPC_INT_BIT, scp->reg_base + MT8183_SCP_TO_HOST);
/* shared buffer initialization */
scp->recv_buf =
(struct mtk_share_obj __iomem *)(scp->sram_base + recv_offset);
scp->send_buf =
(struct mtk_share_obj __iomem *)(scp->sram_base + send_offset);
memset_io(scp->recv_buf, 0, sizeof(scp->recv_buf));
memset_io(scp->send_buf, 0, sizeof(scp->send_buf));
return 0;
}
static void scp_reset_assert(const struct mtk_scp *scp)
{
u32 val;
val = readl(scp->reg_base + MT8183_SW_RSTN);
val &= ~MT8183_SW_RSTN_BIT;
writel(val, scp->reg_base + MT8183_SW_RSTN);
}
static void scp_reset_deassert(const struct mtk_scp *scp)
{
u32 val;
val = readl(scp->reg_base + MT8183_SW_RSTN);
val |= MT8183_SW_RSTN_BIT;
writel(val, scp->reg_base + MT8183_SW_RSTN);
}
static irqreturn_t scp_irq_handler(int irq, void *priv)
{
struct mtk_scp *scp = priv;
u32 scp_to_host;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(scp->dev, "failed to enable clocks\n");
return IRQ_NONE;
}
scp_to_host = readl(scp->reg_base + MT8183_SCP_TO_HOST);
if (scp_to_host & MT8183_SCP_IPC_INT_BIT)
scp_ipi_handler(scp);
else
scp_wdt_handler(scp, scp_to_host);
/* SCP won't send another interrupt until we set SCP_TO_HOST to 0. */
writel(MT8183_SCP_IPC_INT_BIT | MT8183_SCP_WDT_INT_BIT,
scp->reg_base + MT8183_SCP_TO_HOST);
clk_disable_unprepare(scp->clk);
return IRQ_HANDLED;
}
static int scp_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
{
struct device *dev = &rproc->dev;
struct elf32_hdr *ehdr;
struct elf32_phdr *phdr;
int i, ret = 0;
const u8 *elf_data = fw->data;
ehdr = (struct elf32_hdr *)elf_data;
phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
/* go through the available ELF segments */
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
u32 da = phdr->p_paddr;
u32 memsz = phdr->p_memsz;
u32 filesz = phdr->p_filesz;
u32 offset = phdr->p_offset;
void __iomem *ptr;
if (phdr->p_type != PT_LOAD)
continue;
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
phdr->p_type, da, memsz, filesz);
if (filesz > memsz) {
dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
filesz, memsz);
ret = -EINVAL;
break;
}
if (offset + filesz > fw->size) {
dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
offset + filesz, fw->size);
ret = -EINVAL;
break;
}
/* grab the kernel address for this device address */
ptr = (void __iomem *)rproc_da_to_va(rproc, da, memsz);
if (!ptr) {
dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
ret = -EINVAL;
break;
}
/* put the segment where the remote processor expects it */
if (phdr->p_filesz)
scp_memcpy_aligned(ptr, elf_data + phdr->p_offset,
filesz);
}
return ret;
}
static int scp_load(struct rproc *rproc, const struct firmware *fw)
{
const struct mtk_scp *scp = rproc->priv;
struct device *dev = scp->dev;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(dev, "failed to enable clocks\n");
return ret;
}
/* Hold SCP in reset while loading FW. */
scp_reset_assert(scp);
/* Reset clocks before loading FW */
writel(0x0, scp->reg_base + MT8183_SCP_CLK_SW_SEL);
writel(0x0, scp->reg_base + MT8183_SCP_CLK_DIV_SEL);
/* Initialize TCM before loading FW. */
writel(0x0, scp->reg_base + MT8183_SCP_L1_SRAM_PD);
writel(0x0, scp->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD);
/* Turn on the power of SCP's SRAM before using it. */
writel(0x0, scp->reg_base + MT8183_SCP_SRAM_PDN);
/*
* Set I-cache and D-cache size before loading SCP FW.
* SCP SRAM logical address may change when cache size setting differs.
*/
writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB,
scp->reg_base + MT8183_SCP_CACHE_CON);
writel(MT8183_SCP_CACHESIZE_8KB, scp->reg_base + MT8183_SCP_DCACHE_CON);
ret = scp_elf_load_segments(rproc, fw);
clk_disable_unprepare(scp->clk);
return ret;
}
static int scp_start(struct rproc *rproc)
{
struct mtk_scp *scp = (struct mtk_scp *)rproc->priv;
struct device *dev = scp->dev;
struct scp_run *run = &scp->run;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(dev, "failed to enable clocks\n");
return ret;
}
run->signaled = false;
scp_reset_deassert(scp);
ret = wait_event_interruptible_timeout(
run->wq,
run->signaled,
msecs_to_jiffies(2000));
if (ret == 0) {
dev_err(dev, "wait SCP initialization timeout!\n");
ret = -ETIME;
goto stop;
}
if (ret == -ERESTARTSYS) {
dev_err(dev, "wait SCP interrupted by a signal!\n");
goto stop;
}
clk_disable_unprepare(scp->clk);
dev_info(dev, "SCP is ready. FW version %s\n", run->fw_ver);
return 0;
stop:
scp_reset_assert(scp);
clk_disable_unprepare(scp->clk);
return ret;
}
static void *scp_da_to_va(struct rproc *rproc, u64 da, int len)
{
struct mtk_scp *scp = (struct mtk_scp *)rproc->priv;
int offset;
if (da < scp->sram_size) {
offset = da;
if (offset >= 0 && (offset + len) < scp->sram_size)
return (void __force *)scp->sram_base + offset;
} else {
offset = da - scp->phys_addr;
if (offset >= 0 && (offset + len) < scp->dram_size)
return (void __force *)scp->cpu_addr + offset;
}
return NULL;
}
static int scp_stop(struct rproc *rproc)
{
struct mtk_scp *scp = (struct mtk_scp *)rproc->priv;
int ret;
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(scp->dev, "failed to enable clocks\n");
return ret;
}
scp_reset_assert(scp);
/* Disable SCP watchdog */
writel(0, scp->reg_base + MT8183_WDT_CFG);
clk_disable_unprepare(scp->clk);
return 0;
}
static const struct rproc_ops scp_ops = {
.start = scp_start,
.stop = scp_stop,
.load = scp_load,
.da_to_va = scp_da_to_va,
};
/**
* scp_get_device() - get device struct of SCP
*
* @scp: mtk_scp structure
**/
struct device *scp_get_device(struct mtk_scp *scp)
{
return scp->dev;
}
EXPORT_SYMBOL_GPL(scp_get_device);
/**
* scp_get_rproc() - get rproc struct of SCP
*
* @scp: mtk_scp structure
**/
struct rproc *scp_get_rproc(struct mtk_scp *scp)
{
return scp->rproc;
}
EXPORT_SYMBOL_GPL(scp_get_rproc);
/**
* scp_get_vdec_hw_capa() - get video decoder hardware capability
*
* @scp: mtk_scp structure
*
* Return: video decoder hardware capability
**/
unsigned int scp_get_vdec_hw_capa(struct mtk_scp *scp)
{
return scp->run.dec_capability;
}
EXPORT_SYMBOL_GPL(scp_get_vdec_hw_capa);
/**
* scp_get_venc_hw_capa() - get video encoder hardware capability
*
* @scp: mtk_scp structure
*
* Return: video encoder hardware capability
**/
unsigned int scp_get_venc_hw_capa(struct mtk_scp *scp)
{
return scp->run.enc_capability;
}
EXPORT_SYMBOL_GPL(scp_get_venc_hw_capa);
/**
* scp_mapping_dm_addr() - Mapping SRAM/DRAM to kernel virtual address
*
* @scp: mtk_scp structure
* @mem_addr: SCP views memory address
*
* Mapping the SCP's SRAM address /
* DMEM (Data Extended Memory) memory address /
* Working buffer memory address to
* kernel virtual address.
*
* Return: Return ERR_PTR(-EINVAL) if mapping failed,
* otherwise the mapped kernel virtual address
**/
void *scp_mapping_dm_addr(struct mtk_scp *scp, u32 mem_addr)
{
void *ptr;
ptr = scp_da_to_va(scp->rproc, mem_addr, 0);
if (!ptr)
return ERR_PTR(-EINVAL);
return ptr;
}
EXPORT_SYMBOL_GPL(scp_mapping_dm_addr);
static int scp_map_memory_region(struct mtk_scp *scp)
{
int ret;
ret = of_reserved_mem_device_init(scp->dev);
if (ret) {
dev_err(scp->dev, "failed to assign memory-region: %d\n", ret);
return -ENOMEM;
}
/* Reserved SCP code size */
scp->dram_size = MAX_CODE_SIZE;
scp->cpu_addr = dma_alloc_coherent(scp->dev, scp->dram_size,
&scp->phys_addr, GFP_KERNEL);
if (!scp->cpu_addr)
return -ENOMEM;
return 0;
}
static void scp_unmap_memory_region(struct mtk_scp *scp)
{
dma_free_coherent(scp->dev, scp->dram_size, scp->cpu_addr,
scp->phys_addr);
of_reserved_mem_device_release(scp->dev);
}
static int scp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct mtk_scp *scp;
struct rproc *rproc;
struct resource *res;
char *fw_name = "scp.img";
int ret, i;
rproc = rproc_alloc(dev,
np->name,
&scp_ops,
fw_name,
sizeof(*scp));
if (!rproc) {
dev_err(dev, "unable to allocate remoteproc\n");
return -ENOMEM;
}
scp = (struct mtk_scp *)rproc->priv;
scp->rproc = rproc;
scp->dev = dev;
platform_set_drvdata(pdev, scp);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
scp->sram_base = devm_ioremap_resource(dev, res);
if (IS_ERR((__force void *)scp->sram_base)) {
dev_err(dev, "Failed to parse and map sram memory\n");
ret = PTR_ERR((__force void *)scp->sram_base);
goto free_rproc;
}
scp->sram_size = resource_size(res);
mutex_init(&scp->send_lock);
for (i = 0; i < SCP_IPI_MAX; i++)
mutex_init(&scp->ipi_desc[i].lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
scp->reg_base = devm_ioremap_resource(dev, res);
if (IS_ERR((__force void *)scp->reg_base)) {
dev_err(dev, "Failed to parse and map cfg memory\n");
ret = PTR_ERR((__force void *)scp->reg_base);
goto destroy_mutex;
}
ret = scp_map_memory_region(scp);
if (ret)
goto destroy_mutex;
scp->clk = devm_clk_get(dev, "main");
if (IS_ERR(scp->clk)) {
dev_err(dev, "Failed to get clock\n");
ret = PTR_ERR(scp->clk);
goto release_dev_mem;
}
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(dev, "failed to enable clocks\n");
goto release_dev_mem;
}
ret = scp_ipi_init(scp);
clk_disable_unprepare(scp->clk);
if (ret) {
dev_err(dev, "Failed to init ipi\n");
goto release_dev_mem;
}
/* register SCP initialization IPI */
ret = scp_ipi_register(scp, SCP_IPI_INIT, scp_init_ipi_handler, scp);
if (ret) {
dev_err(dev, "Failed to register IPI_SCP_INIT\n");
goto release_dev_mem;
}
init_waitqueue_head(&scp->run.wq);
init_waitqueue_head(&scp->ack_wq);
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), NULL,
scp_irq_handler, IRQF_ONESHOT,
pdev->name, scp);
if (ret) {
dev_err(dev, "failed to request irq\n");
goto unregister_ipi;
}
ret = rproc_add(rproc);
if (ret)
goto unregister_ipi;
return ret;
unregister_ipi:
scp_ipi_unregister(scp, SCP_IPI_INIT);
release_dev_mem:
scp_unmap_memory_region(scp);
destroy_mutex:
for (i = 0; i < SCP_IPI_MAX; i++)
mutex_destroy(&scp->ipi_desc[i].lock);
mutex_destroy(&scp->send_lock);
free_rproc:
rproc_free(rproc);
return ret;
}
static int scp_remove(struct platform_device *pdev)
{
struct mtk_scp *scp = platform_get_drvdata(pdev);
int i;
rproc_del(scp->rproc);
scp_ipi_unregister(scp, SCP_IPI_INIT);
scp_unmap_memory_region(scp);
for (i = 0; i < SCP_IPI_MAX; i++)
mutex_destroy(&scp->ipi_desc[i].lock);
mutex_destroy(&scp->send_lock);
rproc_free(scp->rproc);
return 0;
}
static const struct of_device_id mtk_scp_of_match[] = {
{ .compatible = "mediatek,mt8183-scp"},
{},
};
MODULE_DEVICE_TABLE(of, mtk_scp_of_match);
static struct platform_driver mtk_scp_driver = {
.probe = scp_probe,
.remove = scp_remove,
.driver = {
.name = "mtk-scp",
.of_match_table = of_match_ptr(mtk_scp_of_match),
},
};
module_platform_driver(mtk_scp_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MediaTek SCP control driver");

View File

@ -0,0 +1,218 @@
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (c) 2019 MediaTek Inc.
#include <asm/barrier.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/remoteproc/mtk_scp.h>
#include "mtk_common.h"
/**
* scp_ipi_register() - register an ipi function
*
* @scp: mtk_scp structure
* @id: IPI ID
* @handler: IPI handler
* @priv: private data for IPI handler
*
* Register an ipi function to receive ipi interrupt from SCP.
*
* Returns 0 if ipi registers successfully, -error on error.
*/
int scp_ipi_register(struct mtk_scp *scp,
u32 id,
scp_ipi_handler_t handler,
void *priv)
{
if (!scp) {
dev_err(scp->dev, "scp device is not ready\n");
return -EPROBE_DEFER;
}
if (WARN_ON(id >= SCP_IPI_MAX) || WARN_ON(handler == NULL))
return -EINVAL;
scp_ipi_lock(scp, id);
scp->ipi_desc[id].handler = handler;
scp->ipi_desc[id].priv = priv;
scp_ipi_unlock(scp, id);
return 0;
}
EXPORT_SYMBOL_GPL(scp_ipi_register);
/**
* scp_ipi_unregister() - unregister an ipi function
*
* @scp: mtk_scp structure
* @id: IPI ID
*
* Unregister an ipi function to receive ipi interrupt from SCP.
*/
void scp_ipi_unregister(struct mtk_scp *scp, u32 id)
{
if (!scp)
return;
if (WARN_ON(id >= SCP_IPI_MAX))
return;
scp_ipi_lock(scp, id);
scp->ipi_desc[id].handler = NULL;
scp->ipi_desc[id].priv = NULL;
scp_ipi_unlock(scp, id);
}
EXPORT_SYMBOL_GPL(scp_ipi_unregister);
/*
* scp_memcpy_aligned() - Copy src to dst, where dst is in SCP SRAM region.
*
* @dst: Pointer to the destination buffer, should be in SCP SRAM region.
* @src: Pointer to the source buffer.
* @len: Length of the source buffer to be copied.
*
* Since AP access of SCP SRAM don't support byte write, this always write a
* full word at a time, and may cause some extra bytes to be written at the
* beginning & ending of dst.
*/
void scp_memcpy_aligned(void __iomem *dst, const void *src, unsigned int len)
{
void __iomem *ptr;
u32 val;
unsigned int i = 0, remain;
if (!IS_ALIGNED((unsigned long)dst, 4)) {
ptr = (void __iomem *)ALIGN_DOWN((unsigned long)dst, 4);
i = 4 - (dst - ptr);
val = readl_relaxed(ptr);
memcpy((u8 *)&val + (4 - i), src, i);
writel_relaxed(val, ptr);
}
__iowrite32_copy(dst + i, src + i, (len - i) / 4);
remain = (len - i) % 4;
if (remain > 0) {
val = readl_relaxed(dst + len - remain);
memcpy(&val, src + len - remain, remain);
writel_relaxed(val, dst + len - remain);
}
}
EXPORT_SYMBOL_GPL(scp_memcpy_aligned);
/**
* scp_ipi_lock() - Lock before operations of an IPI ID
*
* @scp: mtk_scp structure
* @id: IPI ID
*
* Note: This should not be used by drivers other than mtk_scp.
*/
void scp_ipi_lock(struct mtk_scp *scp, u32 id)
{
if (WARN_ON(id >= SCP_IPI_MAX))
return;
mutex_lock(&scp->ipi_desc[id].lock);
}
EXPORT_SYMBOL_GPL(scp_ipi_lock);
/**
* scp_ipi_lock() - Unlock after operations of an IPI ID
*
* @scp: mtk_scp structure
* @id: IPI ID
*
* Note: This should not be used by drivers other than mtk_scp.
*/
void scp_ipi_unlock(struct mtk_scp *scp, u32 id)
{
if (WARN_ON(id >= SCP_IPI_MAX))
return;
mutex_unlock(&scp->ipi_desc[id].lock);
}
EXPORT_SYMBOL_GPL(scp_ipi_unlock);
/**
* scp_ipi_send() - send data from AP to scp.
*
* @scp: mtk_scp structure
* @id: IPI ID
* @buf: the data buffer
* @len: the data buffer length
* @wait: number of msecs to wait for ack. 0 to skip waiting.
*
* This function is thread-safe. When this function returns,
* SCP has received the data and starts the processing.
* When the processing completes, IPI handler registered
* by scp_ipi_register will be called in interrupt context.
*
* Returns 0 if sending data successfully, -error on error.
**/
int scp_ipi_send(struct mtk_scp *scp, u32 id, void *buf, unsigned int len,
unsigned int wait)
{
struct mtk_share_obj __iomem *send_obj = scp->send_buf;
unsigned long timeout;
int ret;
if (WARN_ON(id <= SCP_IPI_INIT) || WARN_ON(id >= SCP_IPI_MAX) ||
WARN_ON(len > sizeof(send_obj->share_buf)) || WARN_ON(!buf))
return -EINVAL;
mutex_lock(&scp->send_lock);
ret = clk_prepare_enable(scp->clk);
if (ret) {
dev_err(scp->dev, "failed to enable clock\n");
goto unlock_mutex;
}
/* Wait until SCP receives the last command */
timeout = jiffies + msecs_to_jiffies(2000);
do {
if (time_after(jiffies, timeout)) {
dev_err(scp->dev, "%s: IPI timeout!\n", __func__);
ret = -ETIMEDOUT;
goto clock_disable;
}
} while (readl(scp->reg_base + MT8183_HOST_TO_SCP));
scp_memcpy_aligned(send_obj->share_buf, buf, len);
writel(len, &send_obj->len);
writel(id, &send_obj->id);
scp->ipi_id_ack[id] = false;
/* send the command to SCP */
writel(MT8183_HOST_IPC_INT_BIT, scp->reg_base + MT8183_HOST_TO_SCP);
if (wait) {
/* wait for SCP's ACK */
timeout = msecs_to_jiffies(wait);
ret = wait_event_timeout(scp->ack_wq,
scp->ipi_id_ack[id],
timeout);
scp->ipi_id_ack[id] = false;
if (WARN(!ret, "scp ipi %d ack time out !", id))
ret = -EIO;
else
ret = 0;
}
clock_disable:
clk_disable_unprepare(scp->clk);
unlock_mutex:
mutex_unlock(&scp->send_lock);
return ret;
}
EXPORT_SYMBOL_GPL(scp_ipi_send);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MediaTek scp IPI interface");

View File

@ -0,0 +1,65 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#ifndef _MTK_SCP_H
#define _MTK_SCP_H
#include <linux/platform_device.h>
typedef void (*scp_ipi_handler_t) (void *data,
unsigned int len,
void *priv);
struct mtk_scp;
/**
* enum ipi_id - the id of inter-processor interrupt
*
* @SCP_IPI_INIT: The interrupt from scp is to notfiy kernel
* SCP initialization completed.
* IPI_SCP_INIT is sent from SCP when firmware is
* loaded. AP doesn't need to send IPI_SCP_INIT
* command to SCP.
* For other IPI below, AP should send the request
* to SCP to trigger the interrupt.
* @SCP_IPI_MAX: The maximum IPI number
*/
enum scp_ipi_id {
SCP_IPI_INIT = 0,
SCP_IPI_VDEC_H264,
SCP_IPI_VDEC_VP8,
SCP_IPI_VDEC_VP9,
SCP_IPI_VENC_H264,
SCP_IPI_VENC_VP8,
SCP_IPI_MDP_INIT,
SCP_IPI_MDP_DEINIT,
SCP_IPI_MDP_FRAME,
SCP_IPI_DIP,
SCP_IPI_ISP_CMD,
SCP_IPI_ISP_FRAME,
SCP_IPI_FD_CMD,
SCP_IPI_CROS_HOST_CMD,
SCP_IPI_MAX,
};
struct mtk_scp *scp_get(struct platform_device *pdev);
void scp_put(struct mtk_scp *scp);
struct device *scp_get_device(struct mtk_scp *scp);
struct rproc *scp_get_rproc(struct mtk_scp *scp);
int scp_ipi_register(struct mtk_scp *scp, u32 id, scp_ipi_handler_t handler,
void *priv);
void scp_ipi_unregister(struct mtk_scp *scp, u32 id);
int scp_ipi_send(struct mtk_scp *scp, u32 id, void *buf, unsigned int len,
unsigned int wait);
unsigned int scp_get_vdec_hw_capa(struct mtk_scp *scp);
unsigned int scp_get_venc_hw_capa(struct mtk_scp *scp);
void *scp_mapping_dm_addr(struct mtk_scp *scp, u32 mem_addr);
#endif /* _MTK_SCP_H */