x86: clean up drivers/char/rtc.c

tons of style cleanup in drivers/char/rtc.c - no code changed:

   text    data     bss     dec     hex filename
   6400     384      32    6816    1aa0 rtc.o.before
   6400     384      32    6816    1aa0 rtc.o.after

since we seem to have a number of open breakages in this code we might
as well start with making the code more readable and maintainable.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Ingo Molnar 2008-01-30 13:31:09 +01:00
parent 6b4b05bd79
commit 5fd1fe9c58
1 changed files with 127 additions and 107 deletions

View File

@ -1,5 +1,5 @@
/*
* Real Time Clock interface for Linux
* Real Time Clock interface for Linux
*
* Copyright (C) 1996 Paul Gortmaker
*
@ -17,7 +17,7 @@
* has been received. If a RTC interrupt has already happened,
* it will output an unsigned long and then block. The output value
* contains the interrupt status in the low byte and the number of
* interrupts since the last read in the remaining high bytes. The
* interrupts since the last read in the remaining high bytes. The
* /dev/rtc interface can also be used with the select(2) call.
*
* This program is free software; you can redistribute it and/or
@ -104,12 +104,12 @@ static int rtc_has_irq = 1;
#ifndef CONFIG_HPET_EMULATE_RTC
#define is_hpet_enabled() 0
#define hpet_set_alarm_time(hrs, min, sec) 0
#define hpet_set_periodic_freq(arg) 0
#define hpet_mask_rtc_irq_bit(arg) 0
#define hpet_set_rtc_irq_bit(arg) 0
#define hpet_rtc_timer_init() do { } while (0)
#define hpet_rtc_dropped_irq() 0
#define hpet_set_alarm_time(hrs, min, sec) 0
#define hpet_set_periodic_freq(arg) 0
#define hpet_mask_rtc_irq_bit(arg) 0
#define hpet_set_rtc_irq_bit(arg) 0
#define hpet_rtc_timer_init() do { } while (0)
#define hpet_rtc_dropped_irq() 0
#ifdef RTC_IRQ
static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
@ -147,7 +147,7 @@ static int rtc_ioctl(struct inode *inode, struct file *file,
static unsigned int rtc_poll(struct file *file, poll_table *wait);
#endif
static void get_rtc_alm_time (struct rtc_time *alm_tm);
static void get_rtc_alm_time(struct rtc_time *alm_tm);
#ifdef RTC_IRQ
static void set_rtc_irq_bit_locked(unsigned char bit);
static void mask_rtc_irq_bit_locked(unsigned char bit);
@ -185,9 +185,9 @@ static int rtc_proc_open(struct inode *inode, struct file *file);
* rtc_status but before mod_timer is called, which would then reenable the
* timer (but you would need to have an awful timing before you'd trip on it)
*/
static unsigned long rtc_status = 0; /* bitmapped status byte. */
static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
static unsigned long rtc_irq_data = 0; /* our output to the world */
static unsigned long rtc_status; /* bitmapped status byte. */
static unsigned long rtc_freq; /* Current periodic IRQ rate */
static unsigned long rtc_irq_data; /* our output to the world */
static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
#ifdef RTC_IRQ
@ -195,7 +195,7 @@ static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
* rtc_task_lock nests inside rtc_lock.
*/
static DEFINE_SPINLOCK(rtc_task_lock);
static rtc_task_t *rtc_callback = NULL;
static rtc_task_t *rtc_callback;
#endif
/*
@ -205,7 +205,7 @@ static rtc_task_t *rtc_callback = NULL;
static unsigned long epoch = 1900; /* year corresponding to 0x00 */
static const unsigned char days_in_mo[] =
static const unsigned char days_in_mo[] =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/*
@ -242,7 +242,7 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id)
* the last read in the remainder of rtc_irq_data.
*/
spin_lock (&rtc_lock);
spin_lock(&rtc_lock);
rtc_irq_data += 0x100;
rtc_irq_data &= ~0xff;
if (is_hpet_enabled()) {
@ -259,16 +259,16 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id)
if (rtc_status & RTC_TIMER_ON)
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
spin_unlock (&rtc_lock);
spin_unlock(&rtc_lock);
/* Now do the rest of the actions */
spin_lock(&rtc_task_lock);
if (rtc_callback)
rtc_callback->func(rtc_callback->private_data);
spin_unlock(&rtc_task_lock);
wake_up_interruptible(&rtc_wait);
wake_up_interruptible(&rtc_wait);
kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
@ -335,7 +335,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
DECLARE_WAITQUEUE(wait, current);
unsigned long data;
ssize_t retval;
if (rtc_has_irq == 0)
return -EIO;
@ -358,11 +358,11 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
* confusing. And no, xchg() is not the answer. */
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irq (&rtc_lock);
spin_lock_irq(&rtc_lock);
data = rtc_irq_data;
rtc_irq_data = 0;
spin_unlock_irq (&rtc_lock);
spin_unlock_irq(&rtc_lock);
if (data != 0)
break;
@ -378,10 +378,13 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
schedule();
} while (1);
if (count == sizeof(unsigned int))
retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
else
retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
if (count == sizeof(unsigned int)) {
retval = put_user(data,
(unsigned int __user *)buf) ?: sizeof(int);
} else {
retval = put_user(data,
(unsigned long __user *)buf) ?: sizeof(long);
}
if (!retval)
retval = count;
out:
@ -394,7 +397,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
{
struct rtc_time wtime;
struct rtc_time wtime;
#ifdef RTC_IRQ
if (rtc_has_irq == 0) {
@ -426,35 +429,41 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
}
case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
{
unsigned long flags; /* can be called from isr via rtc_control() */
spin_lock_irqsave (&rtc_lock, flags);
/* can be called from isr via rtc_control() */
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
mask_rtc_irq_bit_locked(RTC_PIE);
if (rtc_status & RTC_TIMER_ON) {
rtc_status &= ~RTC_TIMER_ON;
del_timer(&rtc_irq_timer);
}
spin_unlock_irqrestore (&rtc_lock, flags);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
case RTC_PIE_ON: /* Allow periodic ints */
{
unsigned long flags; /* can be called from isr via rtc_control() */
/* can be called from isr via rtc_control() */
unsigned long flags;
/*
* We don't really want Joe User enabling more
* than 64Hz of interrupts on a multi-user machine.
*/
if (!kernel && (rtc_freq > rtc_max_user_freq) &&
(!capable(CAP_SYS_RESOURCE)))
(!capable(CAP_SYS_RESOURCE)))
return -EACCES;
spin_lock_irqsave (&rtc_lock, flags);
spin_lock_irqsave(&rtc_lock, flags);
if (!(rtc_status & RTC_TIMER_ON)) {
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
2*HZ/100);
rtc_status |= RTC_TIMER_ON;
}
set_rtc_irq_bit_locked(RTC_PIE);
spin_unlock_irqrestore (&rtc_lock, flags);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
case RTC_UIE_OFF: /* Mask ints from RTC updates. */
@ -477,7 +486,7 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
*/
memset(&wtime, 0, sizeof(struct rtc_time));
get_rtc_alm_time(&wtime);
break;
break;
}
case RTC_ALM_SET: /* Store a time into the alarm */
{
@ -505,16 +514,21 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
*/
}
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
RTC_ALWAYS_BCD)
{
if (sec < 60) BIN_TO_BCD(sec);
else sec = 0xff;
RTC_ALWAYS_BCD) {
if (sec < 60)
BIN_TO_BCD(sec);
else
sec = 0xff;
if (min < 60) BIN_TO_BCD(min);
else min = 0xff;
if (min < 60)
BIN_TO_BCD(min);
else
min = 0xff;
if (hrs < 24) BIN_TO_BCD(hrs);
else hrs = 0xff;
if (hrs < 24)
BIN_TO_BCD(hrs);
else
hrs = 0xff;
}
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
CMOS_WRITE(min, RTC_MINUTES_ALARM);
@ -563,11 +577,12 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
return -EINVAL;
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
return -EINVAL;
if ((yrs -= epoch) > 255) /* They are unsigned */
yrs -= epoch;
if (yrs > 255) /* They are unsigned */
return -EINVAL;
spin_lock_irq(&rtc_lock);
@ -635,9 +650,10 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
{
int tmp = 0;
unsigned char val;
unsigned long flags; /* can be called from isr via rtc_control() */
/* can be called from isr via rtc_control() */
unsigned long flags;
/*
/*
* The max we can do is 8192Hz.
*/
if ((arg < 2) || (arg > 8192))
@ -646,7 +662,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
* We don't really want Joe User generating more
* than 64Hz of interrupts on a multi-user machine.
*/
if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
if (!kernel && (arg > rtc_max_user_freq) &&
!capable(CAP_SYS_RESOURCE))
return -EACCES;
while (arg > (1<<tmp))
@ -674,11 +691,11 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
#endif
case RTC_EPOCH_READ: /* Read the epoch. */
{
return put_user (epoch, (unsigned long __user *)arg);
return put_user(epoch, (unsigned long __user *)arg);
}
case RTC_EPOCH_SET: /* Set the epoch. */
{
/*
/*
* There were no RTC clocks before 1900.
*/
if (arg < 1900)
@ -693,7 +710,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
default:
return -ENOTTY;
}
return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
return copy_to_user((void __user *)arg,
&wtime, sizeof wtime) ? -EFAULT : 0;
}
static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
@ -712,26 +730,25 @@ static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
* needed here. Or anywhere else in this driver. */
static int rtc_open(struct inode *inode, struct file *file)
{
spin_lock_irq (&rtc_lock);
spin_lock_irq(&rtc_lock);
if(rtc_status & RTC_IS_OPEN)
if (rtc_status & RTC_IS_OPEN)
goto out_busy;
rtc_status |= RTC_IS_OPEN;
rtc_irq_data = 0;
spin_unlock_irq (&rtc_lock);
spin_unlock_irq(&rtc_lock);
return 0;
out_busy:
spin_unlock_irq (&rtc_lock);
spin_unlock_irq(&rtc_lock);
return -EBUSY;
}
static int rtc_fasync (int fd, struct file *filp, int on)
static int rtc_fasync(int fd, struct file *filp, int on)
{
return fasync_helper (fd, filp, on, &rtc_async_queue);
return fasync_helper(fd, filp, on, &rtc_async_queue);
}
static int rtc_release(struct inode *inode, struct file *file)
@ -762,16 +779,16 @@ static int rtc_release(struct inode *inode, struct file *file)
}
spin_unlock_irq(&rtc_lock);
if (file->f_flags & FASYNC) {
rtc_fasync (-1, file, 0);
}
if (file->f_flags & FASYNC)
rtc_fasync(-1, file, 0);
no_irq:
#endif
spin_lock_irq (&rtc_lock);
spin_lock_irq(&rtc_lock);
rtc_irq_data = 0;
rtc_status &= ~RTC_IS_OPEN;
spin_unlock_irq (&rtc_lock);
spin_unlock_irq(&rtc_lock);
return 0;
}
@ -786,9 +803,9 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait)
poll_wait(file, &rtc_wait, wait);
spin_lock_irq (&rtc_lock);
spin_lock_irq(&rtc_lock);
l = rtc_irq_data;
spin_unlock_irq (&rtc_lock);
spin_unlock_irq(&rtc_lock);
if (l != 0)
return POLLIN | POLLRDNORM;
@ -796,14 +813,6 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait)
}
#endif
/*
* exported stuffs
*/
EXPORT_SYMBOL(rtc_register);
EXPORT_SYMBOL(rtc_unregister);
EXPORT_SYMBOL(rtc_control);
int rtc_register(rtc_task_t *task)
{
#ifndef RTC_IRQ
@ -829,6 +838,7 @@ int rtc_register(rtc_task_t *task)
return 0;
#endif
}
EXPORT_SYMBOL(rtc_register);
int rtc_unregister(rtc_task_t *task)
{
@ -845,7 +855,7 @@ int rtc_unregister(rtc_task_t *task)
return -ENXIO;
}
rtc_callback = NULL;
/* disable controls */
if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
tmp = CMOS_READ(RTC_CONTROL);
@ -865,6 +875,7 @@ int rtc_unregister(rtc_task_t *task)
return 0;
#endif
}
EXPORT_SYMBOL(rtc_unregister);
int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
{
@ -883,7 +894,7 @@ int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
return rtc_do_ioctl(cmd, arg, 1);
#endif
}
EXPORT_SYMBOL(rtc_control);
/*
* The various file operations we support.
@ -910,11 +921,11 @@ static struct miscdevice rtc_dev = {
#ifdef CONFIG_PROC_FS
static const struct file_operations rtc_proc_fops = {
.owner = THIS_MODULE,
.open = rtc_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.owner = THIS_MODULE,
.open = rtc_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
@ -965,7 +976,7 @@ static int __init rtc_init(void)
#ifdef CONFIG_SPARC32
for_each_ebus(ebus) {
for_each_ebusdev(edev, ebus) {
if(strcmp(edev->prom_node->name, "rtc") == 0) {
if (strcmp(edev->prom_node->name, "rtc") == 0) {
rtc_port = edev->resource[0].start;
rtc_irq = edev->irqs[0];
goto found;
@ -986,7 +997,8 @@ found:
* XXX Interrupt pin #7 in Espresso is shared between RTC and
* PCI Slot 2 INTA# (and some INTx# in Slot 1).
*/
if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
(void *)&rtc_port)) {
rtc_has_irq = 0;
printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
return -EIO;
@ -1020,11 +1032,13 @@ no_irq:
rtc_int_handler_ptr = rtc_interrupt;
}
if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
"rtc", NULL)) {
/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
rtc_has_irq = 0;
printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
rtc_release_region();
return -EIO;
}
hpet_rtc_timer_init();
@ -1052,21 +1066,21 @@ no_irq:
#if defined(__alpha__) || defined(__mips__)
rtc_freq = HZ;
/* Each operating system on an Alpha uses its own epoch.
Let's try to guess which one we are using now. */
if (rtc_is_updating() != 0)
msleep(20);
spin_lock_irq(&rtc_lock);
year = CMOS_READ(RTC_YEAR);
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(year); /* This should never happen... */
if (year < 20) {
epoch = 2000;
guess = "SRM (post-2000)";
@ -1087,7 +1101,8 @@ no_irq:
#endif
}
if (guess)
printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
guess, epoch);
#endif
#ifdef RTC_IRQ
if (rtc_has_irq == 0)
@ -1096,8 +1111,12 @@ no_irq:
spin_lock_irq(&rtc_lock);
rtc_freq = 1024;
if (!hpet_set_periodic_freq(rtc_freq)) {
/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
/*
* Initialize periodic frequency to CMOS reset default,
* which is 1024Hz
*/
CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
RTC_FREQ_SELECT);
}
spin_unlock_irq(&rtc_lock);
no_irq2:
@ -1110,20 +1129,20 @@ no_irq2:
return 0;
}
static void __exit rtc_exit (void)
static void __exit rtc_exit(void)
{
cleanup_sysctl();
remove_proc_entry ("driver/rtc", NULL);
remove_proc_entry("driver/rtc", NULL);
misc_deregister(&rtc_dev);
#ifdef CONFIG_SPARC32
if (rtc_has_irq)
free_irq (rtc_irq, &rtc_port);
free_irq(rtc_irq, &rtc_port);
#else
rtc_release_region();
#ifdef RTC_IRQ
if (rtc_has_irq)
free_irq (RTC_IRQ, NULL);
free_irq(RTC_IRQ, NULL);
#endif
#endif /* CONFIG_SPARC32 */
}
@ -1133,14 +1152,14 @@ module_exit(rtc_exit);
#ifdef RTC_IRQ
/*
* At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
* At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
* (usually during an IDE disk interrupt, with IRQ unmasking off)
* Since the interrupt handler doesn't get called, the IRQ status
* byte doesn't get read, and the RTC stops generating interrupts.
* A timer is set, and will call this function if/when that happens.
* To get it out of this stalled state, we just read the status.
* At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
* (You *really* shouldn't be trying to use a non-realtime system
* (You *really* shouldn't be trying to use a non-realtime system
* for something that requires a steady > 1KHz signal anyways.)
*/
@ -1148,7 +1167,7 @@ static void rtc_dropped_irq(unsigned long data)
{
unsigned long freq;
spin_lock_irq (&rtc_lock);
spin_lock_irq(&rtc_lock);
if (hpet_rtc_dropped_irq()) {
spin_unlock_irq(&rtc_lock);
@ -1167,13 +1186,15 @@ static void rtc_dropped_irq(unsigned long data)
spin_unlock_irq(&rtc_lock);
if (printk_ratelimit())
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
if (printk_ratelimit()) {
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
freq);
}
/* Now we have new data */
wake_up_interruptible(&rtc_wait);
kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
}
#endif
@ -1277,7 +1298,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
* can take just over 2ms. We wait 20ms. There is no need to
* to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
* If you need to know *exactly* when a second has started, enable
* periodic update complete interrupts, (via ioctl) and then
* periodic update complete interrupts, (via ioctl) and then
* immediately read /dev/rtc which will block until you get the IRQ.
* Once the read clears, read the RTC time (again via ioctl). Easy.
*/
@ -1307,8 +1328,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irqrestore(&rtc_lock, flags);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(rtc_tm->tm_sec);
BCD_TO_BIN(rtc_tm->tm_min);
BCD_TO_BIN(rtc_tm->tm_hour);
@ -1326,7 +1346,8 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
* Account for differences between how the RTC uses the values
* and how they are defined in a struct rtc_time;
*/
if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
rtc_tm->tm_year += epoch - 1900;
if (rtc_tm->tm_year <= 69)
rtc_tm->tm_year += 100;
rtc_tm->tm_mon--;
@ -1347,8 +1368,7 @@ static void get_rtc_alm_time(struct rtc_time *alm_tm)
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(alm_tm->tm_sec);
BCD_TO_BIN(alm_tm->tm_min);
BCD_TO_BIN(alm_tm->tm_hour);