drm/i915: Export a preallocate variant of i915_active_acquire()

Sometimes we have to be very careful not to allocate underneath a mutex
(or spinlock) and yet still want to track activity. Enter
i915_active_acquire_for_context(). This raises the activity counter on
i915_active prior to use and ensures that the fence-tree contains a slot
for the context.

v2: Refactor active_lookup() so it can be called again before/after
locking to resolve contention. Since we protect the rbtree until we
idle, we can do a lockfree lookup, with the caveat that if another
thread performs a concurrent insertion, the rotations from the insert
may cause us to not find our target. A second pass holding the treelock
will find the target if it exists, or the place to perform our
insertion.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Thomas Hellström <thomas.hellstrom@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200731085015.32368-3-chris@chris-wilson.co.uk
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
This commit is contained in:
Chris Wilson 2020-07-31 09:50:11 +01:00 committed by Joonas Lahtinen
parent 04240e30ed
commit 5d9341370f
4 changed files with 130 additions and 38 deletions

View File

@ -1741,7 +1741,7 @@ __parser_mark_active(struct i915_vma *vma,
{
struct intel_gt_buffer_pool_node *node = vma->private;
return i915_active_ref(&node->active, tl, fence);
return i915_active_ref(&node->active, tl->fence_context, fence);
}
static int

View File

@ -486,7 +486,9 @@ __intel_timeline_get_seqno(struct intel_timeline *tl,
* free it after the current request is retired, which ensures that
* all writes into the cacheline from previous requests are complete.
*/
err = i915_active_ref(&tl->hwsp_cacheline->active, tl, &rq->fence);
err = i915_active_ref(&tl->hwsp_cacheline->active,
tl->fence_context,
&rq->fence);
if (err)
goto err_cacheline;

View File

@ -28,12 +28,14 @@ static struct i915_global_active {
} global;
struct active_node {
struct rb_node node;
struct i915_active_fence base;
struct i915_active *ref;
struct rb_node node;
u64 timeline;
};
#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
static inline struct active_node *
node_from_active(struct i915_active_fence *active)
{
@ -216,12 +218,9 @@ excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
active_retire(container_of(cb, struct i915_active, excl.cb));
}
static struct i915_active_fence *
active_instance(struct i915_active *ref, struct intel_timeline *tl)
static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
{
struct active_node *node, *prealloc;
struct rb_node **p, *parent;
u64 idx = tl->fence_context;
struct active_node *it;
/*
* We track the most recently used timeline to skip a rbtree search
@ -230,8 +229,39 @@ active_instance(struct i915_active *ref, struct intel_timeline *tl)
* after the previous activity has been retired, or if it matches the
* current timeline.
*/
node = READ_ONCE(ref->cache);
if (node && node->timeline == idx)
it = READ_ONCE(ref->cache);
if (it && it->timeline == idx)
return it;
BUILD_BUG_ON(offsetof(typeof(*it), node));
/* While active, the tree can only be built; not destroyed */
GEM_BUG_ON(i915_active_is_idle(ref));
it = fetch_node(ref->tree.rb_node);
while (it) {
if (it->timeline < idx) {
it = fetch_node(it->node.rb_right);
} else if (it->timeline > idx) {
it = fetch_node(it->node.rb_left);
} else {
WRITE_ONCE(ref->cache, it);
break;
}
}
/* NB: If the tree rotated beneath us, we may miss our target. */
return it;
}
static struct i915_active_fence *
active_instance(struct i915_active *ref, u64 idx)
{
struct active_node *node, *prealloc;
struct rb_node **p, *parent;
node = __active_lookup(ref, idx);
if (likely(node))
return &node->base;
/* Preallocate a replacement, just in case */
@ -268,10 +298,9 @@ active_instance(struct i915_active *ref, struct intel_timeline *tl)
rb_insert_color(&node->node, &ref->tree);
out:
ref->cache = node;
WRITE_ONCE(ref->cache, node);
spin_unlock_irq(&ref->tree_lock);
BUILD_BUG_ON(offsetof(typeof(*node), base));
return &node->base;
}
@ -353,63 +382,102 @@ __active_del_barrier(struct i915_active *ref, struct active_node *node)
return ____active_del_barrier(ref, node, barrier_to_engine(node));
}
int i915_active_ref(struct i915_active *ref,
struct intel_timeline *tl,
struct dma_fence *fence)
static bool
replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
{
struct i915_active_fence *active;
int err;
if (!is_barrier(active)) /* proto-node used by our idle barrier? */
return false;
lockdep_assert_held(&tl->mutex);
/* Prevent reaping in case we malloc/wait while building the tree */
err = i915_active_acquire(ref);
if (err)
return err;
active = active_instance(ref, tl);
if (!active) {
err = -ENOMEM;
goto out;
}
if (is_barrier(active)) { /* proto-node used by our idle barrier */
/*
* This request is on the kernel_context timeline, and so
* we can use it to substitute for the pending idle-barrer
* request that we want to emit on the kernel_context.
*/
__active_del_barrier(ref, node_from_active(active));
return true;
}
int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
{
struct i915_active_fence *active;
int err;
/* Prevent reaping in case we malloc/wait while building the tree */
err = i915_active_acquire(ref);
if (err)
return err;
active = active_instance(ref, idx);
if (!active) {
err = -ENOMEM;
goto out;
}
if (replace_barrier(ref, active)) {
RCU_INIT_POINTER(active->fence, NULL);
atomic_dec(&ref->count);
}
if (!__i915_active_fence_set(active, fence))
atomic_inc(&ref->count);
__i915_active_acquire(ref);
out:
i915_active_release(ref);
return err;
}
struct dma_fence *
i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
static struct dma_fence *
__i915_active_set_fence(struct i915_active *ref,
struct i915_active_fence *active,
struct dma_fence *fence)
{
struct dma_fence *prev;
/* We expect the caller to manage the exclusive timeline ordering */
GEM_BUG_ON(i915_active_is_idle(ref));
if (replace_barrier(ref, active)) {
RCU_INIT_POINTER(active->fence, fence);
return NULL;
}
rcu_read_lock();
prev = __i915_active_fence_set(&ref->excl, f);
prev = __i915_active_fence_set(active, fence);
if (prev)
prev = dma_fence_get_rcu(prev);
else
atomic_inc(&ref->count);
__i915_active_acquire(ref);
rcu_read_unlock();
return prev;
}
static struct i915_active_fence *
__active_fence(struct i915_active *ref, u64 idx)
{
struct active_node *it;
it = __active_lookup(ref, idx);
if (unlikely(!it)) { /* Contention with parallel tree builders! */
spin_lock_irq(&ref->tree_lock);
it = __active_lookup(ref, idx);
spin_unlock_irq(&ref->tree_lock);
}
GEM_BUG_ON(!it); /* slot must be preallocated */
return &it->base;
}
struct dma_fence *
__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
{
/* Only valid while active, see i915_active_acquire_for_context() */
return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
}
struct dma_fence *
i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
{
/* We expect the caller to manage the exclusive timeline ordering */
return __i915_active_set_fence(ref, &ref->excl, f);
}
bool i915_active_acquire_if_busy(struct i915_active *ref)
{
debug_active_assert(ref);
@ -451,6 +519,24 @@ int i915_active_acquire(struct i915_active *ref)
return err;
}
int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
{
struct i915_active_fence *active;
int err;
err = i915_active_acquire(ref);
if (err)
return err;
active = active_instance(ref, idx);
if (!active) {
i915_active_release(ref);
return -ENOMEM;
}
return 0; /* return with active ref */
}
void i915_active_release(struct i915_active *ref)
{
debug_active_assert(ref);
@ -754,7 +840,7 @@ static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
match:
rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
if (p == &ref->cache->node)
ref->cache = NULL;
WRITE_ONCE(ref->cache, NULL);
spin_unlock_irq(&ref->tree_lock);
return rb_entry(p, struct active_node, node);
@ -809,7 +895,7 @@ int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
*/
RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
node->base.cb.node.prev = (void *)engine;
atomic_inc(&ref->count);
__i915_active_acquire(ref);
}
GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));

View File

@ -163,14 +163,16 @@ void __i915_active_init(struct i915_active *ref,
__i915_active_init(ref, active, retire, &__mkey, &__wkey); \
} while (0)
int i915_active_ref(struct i915_active *ref,
struct intel_timeline *tl,
struct dma_fence *fence);
struct dma_fence *
__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence);
int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence);
static inline int
i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
{
return i915_active_ref(ref, i915_request_timeline(rq), &rq->fence);
return i915_active_ref(ref,
i915_request_timeline(rq)->fence_context,
&rq->fence);
}
struct dma_fence *
@ -198,7 +200,9 @@ int i915_request_await_active(struct i915_request *rq,
#define I915_ACTIVE_AWAIT_BARRIER BIT(2)
int i915_active_acquire(struct i915_active *ref);
int i915_active_acquire_for_context(struct i915_active *ref, u64 idx);
bool i915_active_acquire_if_busy(struct i915_active *ref);
void i915_active_release(struct i915_active *ref);
static inline void __i915_active_acquire(struct i915_active *ref)