Blackfin arch: change L1 malloc to base on slab cache and lists.

Remove the sram piece limitation and improve the performance to
alloc/free sram piece data.

Signed-off-by: Sonic Zhang <sonic.zhang@analog.com>
Signed-off-by: Bryan Wu <cooloney@kernel.org>
This commit is contained in:
Sonic Zhang 2008-07-19 14:51:31 +08:00 committed by Bryan Wu
parent 1a8caeebe3
commit 5d481f4975
3 changed files with 253 additions and 168 deletions

View File

@ -41,215 +41,276 @@
#include <asm/blackfin.h>
#include "blackfin_sram.h"
spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
#if CONFIG_L1_MAX_PIECE < 16
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE 16
#endif
#if CONFIG_L1_MAX_PIECE > 1024
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE 1024
#endif
#define SRAM_SLT_NULL 0
#define SRAM_SLT_FREE 1
#define SRAM_SLT_ALLOCATED 2
static spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
/* the data structure for L1 scratchpad and DATA SRAM */
struct l1_sram_piece {
struct sram_piece {
void *paddr;
int size;
int flag;
pid_t pid;
struct sram_piece *next;
};
static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];
static struct sram_piece free_l1_ssram_head, used_l1_ssram_head;
#if L1_DATA_A_LENGTH != 0
static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
static struct sram_piece free_l1_data_A_sram_head, used_l1_data_A_sram_head;
#endif
#if L1_DATA_B_LENGTH != 0
static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
static struct sram_piece free_l1_data_B_sram_head, used_l1_data_B_sram_head;
#endif
#if L1_CODE_LENGTH != 0
static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
static struct sram_piece free_l1_inst_sram_head, used_l1_inst_sram_head;
#endif
/* L1 Scratchpad SRAM initialization function */
void __init l1sram_init(void)
{
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
L1_SCRATCH_LENGTH >> 10);
static struct kmem_cache *sram_piece_cache;
memset(&l1_ssram, 0x00, sizeof(l1_ssram));
l1_ssram[0].paddr = (void *)L1_SCRATCH_START;
l1_ssram[0].size = L1_SCRATCH_LENGTH;
l1_ssram[0].flag = SRAM_SLT_FREE;
/* L1 Scratchpad SRAM initialization function */
static void __init l1sram_init(void)
{
free_l1_ssram_head.next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!free_l1_ssram_head.next) {
printk(KERN_INFO"Fail to initialize Scratchpad data SRAM.\n");
return;
}
free_l1_ssram_head.next->paddr = (void *)L1_SCRATCH_START;
free_l1_ssram_head.next->size = L1_SCRATCH_LENGTH;
free_l1_ssram_head.next->pid = 0;
free_l1_ssram_head.next->next = NULL;
used_l1_ssram_head.next = NULL;
/* mutex initialize */
spin_lock_init(&l1sram_lock);
printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
L1_SCRATCH_LENGTH >> 10);
}
void __init l1_data_sram_init(void)
static void __init l1_data_sram_init(void)
{
#if L1_DATA_A_LENGTH != 0
memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +
(_ebss_l1 - _sdata_l1);
l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
l1_data_A_sram[0].flag = SRAM_SLT_FREE;
free_l1_data_A_sram_head.next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!free_l1_data_A_sram_head.next) {
printk(KERN_INFO"Fail to initialize Data A SRAM.\n");
return;
}
free_l1_data_A_sram_head.next->paddr =
(void *)L1_DATA_A_START + (_ebss_l1 - _sdata_l1);
free_l1_data_A_sram_head.next->size =
L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
free_l1_data_A_sram_head.next->pid = 0;
free_l1_data_A_sram_head.next->next = NULL;
used_l1_data_A_sram_head.next = NULL;
printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",
L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);
L1_DATA_A_LENGTH >> 10,
free_l1_data_A_sram_head.next->size >> 10);
#endif
#if L1_DATA_B_LENGTH != 0
memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
l1_data_B_sram[0].paddr = (void *)L1_DATA_B_START +
(_ebss_b_l1 - _sdata_b_l1);
l1_data_B_sram[0].size = L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
l1_data_B_sram[0].flag = SRAM_SLT_FREE;
free_l1_data_B_sram_head.next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!free_l1_data_B_sram_head.next) {
printk(KERN_INFO"Fail to initialize Data B SRAM.\n");
return;
}
free_l1_data_B_sram_head.next->paddr =
(void *)L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1);
free_l1_data_B_sram_head.next->size =
L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
free_l1_data_B_sram_head.next->pid = 0;
free_l1_data_B_sram_head.next->next = NULL;
used_l1_data_B_sram_head.next = NULL;
printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",
L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);
L1_DATA_B_LENGTH >> 10,
free_l1_data_B_sram_head.next->size >> 10);
#endif
/* mutex initialize */
spin_lock_init(&l1_data_sram_lock);
}
void __init l1_inst_sram_init(void)
static void __init l1_inst_sram_init(void)
{
#if L1_CODE_LENGTH != 0
memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
l1_inst_sram[0].paddr = (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
l1_inst_sram[0].flag = SRAM_SLT_FREE;
free_l1_inst_sram_head.next =
kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!free_l1_inst_sram_head.next) {
printk(KERN_INFO"Fail to initialize Instruction SRAM.\n");
return;
}
free_l1_inst_sram_head.next->paddr =
(void *)L1_CODE_START + (_etext_l1 - _stext_l1);
free_l1_inst_sram_head.next->size =
L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
free_l1_inst_sram_head.next->pid = 0;
free_l1_inst_sram_head.next->next = NULL;
used_l1_inst_sram_head.next = NULL;
printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",
L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);
L1_CODE_LENGTH >> 10,
free_l1_inst_sram_head.next->size >> 10);
#endif
/* mutex initialize */
spin_lock_init(&l1_inst_sram_lock);
}
/* L1 memory allocate function */
static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
void __init bfin_sram_init(void)
{
int i, index = 0;
void *addr = NULL;
sram_piece_cache = kmem_cache_create("sram_piece_cache",
sizeof(struct sram_piece),
0, SLAB_PANIC, NULL);
if (size <= 0)
l1sram_init();
l1_data_sram_init();
l1_inst_sram_init();
}
/* L1 memory allocate function */
static void *_l1_sram_alloc(size_t size, struct sram_piece *pfree_head,
struct sram_piece *pused_head)
{
struct sram_piece *pslot, *plast, *pavail;
if (size <= 0 || !pfree_head || !pused_head)
return NULL;
/* Align the size */
size = (size + 3) & ~3;
/* not use the good method to match the best slot !!! */
/* search an available memory slot */
for (i = 0; i < count; i++) {
if ((pfree[i].flag == SRAM_SLT_FREE)
&& (pfree[i].size >= size)) {
addr = pfree[i].paddr;
pfree[i].flag = SRAM_SLT_ALLOCATED;
pfree[i].pid = current->pid;
index = i;
break;
pslot = pfree_head->next;
plast = pfree_head;
/* search an available piece slot */
while (pslot != NULL && size > pslot->size) {
plast = pslot;
pslot = pslot->next;
}
}
if (i >= count)
if (!pslot)
return NULL;
/* updated the NULL memory slot !!! */
if (pfree[i].size > size) {
for (i = 0; i < count; i++) {
if (pfree[i].flag == SRAM_SLT_NULL) {
pfree[i].pid = 0;
pfree[i].flag = SRAM_SLT_FREE;
pfree[i].paddr = addr + size;
pfree[i].size = pfree[index].size - size;
pfree[index].size = size;
break;
}
}
if (pslot->size == size) {
plast->next = pslot->next;
pavail = pslot;
} else {
pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
if (!pavail)
return NULL;
pavail->paddr = pslot->paddr;
pavail->size = size;
pslot->paddr += size;
pslot->size -= size;
}
return addr;
pavail->pid = current->pid;
pslot = pused_head->next;
plast = pused_head;
/* insert new piece into used piece list !!! */
while (pslot != NULL && pavail->paddr < pslot->paddr) {
plast = pslot;
pslot = pslot->next;
}
pavail->next = pslot;
plast->next = pavail;
return pavail->paddr;
}
/* Allocate the largest available block. */
static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
static void *_l1_sram_alloc_max(struct sram_piece *pfree_head,
struct sram_piece *pused_head,
unsigned long *psize)
{
unsigned long best = 0;
int i, index = -1;
void *addr = NULL;
struct sram_piece *pslot, *pmax;
/* search an available memory slot */
for (i = 0; i < count; i++) {
if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
addr = pfree[i].paddr;
index = i;
best = pfree[i].size;
}
}
if (index < 0)
if (!pfree_head || !pused_head)
return NULL;
*psize = best;
pfree[index].pid = current->pid;
pfree[index].flag = SRAM_SLT_ALLOCATED;
return addr;
pmax = pslot = pfree_head->next;
/* search an available piece slot */
while (pslot != NULL) {
if (pslot->size > pmax->size)
pmax = pslot;
pslot = pslot->next;
}
if (!pmax)
return NULL;
*psize = pmax->size;
return _l1_sram_alloc(*psize, pfree_head, pused_head);
}
/* L1 memory free function */
static int _l1_sram_free(const void *addr,
struct l1_sram_piece *pfree,
int count)
struct sram_piece *pfree_head,
struct sram_piece *pused_head)
{
int i, index = 0;
struct sram_piece *pslot, *plast, *pavail;
if (!pfree_head || !pused_head)
return -1;
/* search the relevant memory slot */
for (i = 0; i < count; i++) {
if (pfree[i].paddr == addr) {
if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
/* error log */
return -1;
pslot = pused_head->next;
plast = pused_head;
/* search an available piece slot */
while (pslot != NULL && pslot->paddr != addr) {
plast = pslot;
pslot = pslot->next;
}
index = i;
break;
}
}
if (i >= count)
if (!pslot)
return -1;
pfree[index].pid = 0;
pfree[index].flag = SRAM_SLT_FREE;
plast->next = pslot->next;
pavail = pslot;
pavail->pid = 0;
/* link the next address slot */
for (i = 0; i < count; i++) {
if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
&& (pfree[i].flag == SRAM_SLT_FREE)) {
pfree[i].pid = 0;
pfree[i].flag = SRAM_SLT_NULL;
pfree[index].size += pfree[i].size;
pfree[index].flag = SRAM_SLT_FREE;
break;
}
/* insert free pieces back to the free list */
pslot = pfree_head->next;
plast = pfree_head;
while (pslot != NULL && addr > pslot->paddr) {
plast = pslot;
pslot = pslot->next;
}
/* link the last address slot */
for (i = 0; i < count; i++) {
if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
(pfree[i].flag == SRAM_SLT_FREE)) {
pfree[index].flag = SRAM_SLT_NULL;
pfree[i].size += pfree[index].size;
break;
if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
plast->size += pavail->size;
kmem_cache_free(sram_piece_cache, pavail);
} else {
pavail->next = plast;
plast->next = pavail;
plast = pavail;
}
if (pslot && plast->paddr + plast->size == pslot->paddr) {
plast->size += pslot->size;
plast->next = pslot->next;
kmem_cache_free(sram_piece_cache, pslot);
}
return 0;
@ -287,7 +348,8 @@ void *l1_data_A_sram_alloc(size_t size)
spin_lock_irqsave(&l1_data_sram_lock, flags);
#if L1_DATA_A_LENGTH != 0
addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
addr = _l1_sram_alloc(size, &free_l1_data_A_sram_head,
&used_l1_data_A_sram_head);
#endif
/* add mutex operation */
@ -309,8 +371,8 @@ int l1_data_A_sram_free(const void *addr)
spin_lock_irqsave(&l1_data_sram_lock, flags);
#if L1_DATA_A_LENGTH != 0
ret = _l1_sram_free(addr,
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
ret = _l1_sram_free(addr, &free_l1_data_A_sram_head,
&used_l1_data_A_sram_head);
#else
ret = -1;
#endif
@ -331,7 +393,8 @@ void *l1_data_B_sram_alloc(size_t size)
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
addr = _l1_sram_alloc(size, &free_l1_data_B_sram_head,
&used_l1_data_B_sram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
@ -355,7 +418,8 @@ int l1_data_B_sram_free(const void *addr)
/* add mutex operation */
spin_lock_irqsave(&l1_data_sram_lock, flags);
ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
ret = _l1_sram_free(addr, &free_l1_data_B_sram_head,
&used_l1_data_B_sram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l1_data_sram_lock, flags);
@ -408,7 +472,8 @@ void *l1_inst_sram_alloc(size_t size)
/* add mutex operation */
spin_lock_irqsave(&l1_inst_sram_lock, flags);
addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
addr = _l1_sram_alloc(size, &free_l1_inst_sram_head,
&used_l1_inst_sram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
@ -432,7 +497,8 @@ int l1_inst_sram_free(const void *addr)
/* add mutex operation */
spin_lock_irqsave(&l1_inst_sram_lock, flags);
ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
ret = _l1_sram_free(addr, &free_l1_inst_sram_head,
&used_l1_inst_sram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
@ -453,7 +519,8 @@ void *l1sram_alloc(size_t size)
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));
addr = _l1_sram_alloc(size, &free_l1_ssram_head,
&used_l1_ssram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
@ -470,7 +537,8 @@ void *l1sram_alloc_max(size_t *psize)
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);
addr = _l1_sram_alloc_max(&free_l1_ssram_head,
&used_l1_ssram_head, psize);
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
@ -487,7 +555,8 @@ int l1sram_free(const void *addr)
/* add mutex operation */
spin_lock_irqsave(&l1sram_lock, flags);
ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));
ret = _l1_sram_free(addr, &free_l1_ssram_head,
&used_l1_ssram_head);
/* add mutex operation */
spin_unlock_irqrestore(&l1sram_lock, flags);
@ -553,28 +622,38 @@ EXPORT_SYMBOL(sram_alloc_with_lsl);
* (including newline).
*/
static int _l1sram_proc_read(char *buf, int *len, int count, const char *desc,
struct l1_sram_piece *pfree, const int array_size)
struct sram_piece *pfree_head,
struct sram_piece *pused_head)
{
int i;
struct sram_piece *pslot;
if (!pfree_head || !pused_head)
return -1;
*len += sprintf(&buf[*len], "--- L1 %-14s Size PID State \n", desc);
for (i = 0; i < array_size && *len < count; ++i) {
const char *alloc_type;
switch (pfree[i].flag) {
case SRAM_SLT_NULL: alloc_type = "NULL"; break;
case SRAM_SLT_FREE: alloc_type = "FREE"; break;
case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;
default: alloc_type = "????"; break;
}
/* if we've got a lot of space to cover, omit things */
if ((PAGE_SIZE - 1024) < (CONFIG_L1_MAX_PIECE + 1) * 4 * 44 &&
pfree[i].size == 0)
continue;
/* search the relevant memory slot */
pslot = pused_head->next;
while (pslot != NULL) {
*len += sprintf(&buf[*len], "%p-%p %8i %5i %-10s\n",
pfree[i].paddr, pfree[i].paddr + pfree[i].size,
pfree[i].size, pfree[i].pid, alloc_type);
pslot->paddr, pslot->paddr + pslot->size,
pslot->size, pslot->pid, "ALLOCATED");
pslot = pslot->next;
}
return (i != array_size);
pslot = pfree_head->next;
while (pslot != NULL) {
*len += sprintf(&buf[*len], "%p-%p %8i %5i %-10s\n",
pslot->paddr, pslot->paddr + pslot->size,
pslot->size, pslot->pid, "FREE");
pslot = pslot->next;
}
return 0;
}
static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
int *eof, void *data)
@ -582,21 +661,23 @@ static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
int len = 0;
if (_l1sram_proc_read(buf, &len, count, "Scratchpad",
l1_ssram, ARRAY_SIZE(l1_ssram)))
&free_l1_ssram_head, &used_l1_ssram_head))
goto not_done;
#if L1_DATA_A_LENGTH != 0
if (_l1sram_proc_read(buf, &len, count, "Data A",
l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram)))
&free_l1_data_A_sram_head,
&used_l1_data_A_sram_head))
goto not_done;
#endif
#if L1_DATA_B_LENGTH != 0
if (_l1sram_proc_read(buf, &len, count, "Data B",
l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram)))
&free_l1_data_B_sram_head,
&used_l1_data_B_sram_head))
goto not_done;
#endif
#if L1_CODE_LENGTH != 0
if (_l1sram_proc_read(buf, &len, count, "Instruction",
l1_inst_sram, ARRAY_SIZE(l1_inst_sram)))
&free_l1_inst_sram_head, &used_l1_inst_sram_head))
goto not_done;
#endif

View File

@ -30,9 +30,7 @@
#ifndef __BLACKFIN_SRAM_H__
#define __BLACKFIN_SRAM_H__
extern void l1sram_init(void);
extern void l1_inst_sram_init(void);
extern void l1_data_sram_init(void);
extern void bfin_sram_init(void);
extern void *l1sram_alloc(size_t);
#endif

View File

@ -164,11 +164,14 @@ void __init mem_init(void)
"(%uk init code, %uk kernel code, %uk data, %uk dma, %uk reserved)\n",
(unsigned long) freepages << (PAGE_SHIFT-10), _ramend >> 10,
initk, codek, datak, DMA_UNCACHED_REGION >> 10, (reservedpages << (PAGE_SHIFT-10)));
}
static int __init sram_init(void)
{
unsigned long tmp;
/* Initialize the blackfin L1 Memory. */
l1sram_init();
l1_data_sram_init();
l1_inst_sram_init();
bfin_sram_init();
/* Allocate this once; never free it. We assume this gives us a
pointer to the start of L1 scratchpad memory; panic if it
@ -179,7 +182,10 @@ void __init mem_init(void)
tmp, (unsigned long)L1_SCRATCH_TASK_INFO);
panic("No L1, time to give up\n");
}
return 0;
}
pure_initcall(sram_init);
static void __init free_init_pages(const char *what, unsigned long begin, unsigned long end)
{