Merge branches 'for-2639/i2c-eg20t', 'for-2639/i2c-shmobile', 'for-2639/i2c-tegra' and 'for-2639/i2c-nomadik2' into for-linus/2640/i2c

This commit is contained in:
Ben Dooks 2011-05-25 00:25:55 +01:00
commit 5bdfdfeed5
5084 changed files with 334876 additions and 326093 deletions

View File

@ -328,7 +328,7 @@ S: Haifa, Israel
N: Johannes Berg
E: johannes@sipsolutions.net
W: http://johannes.sipsolutions.net/
P: 1024D/9AB78CA5 AD02 0176 4E29 C137 1DF6 08D2 FC44 CF86 9AB7 8CA5
P: 4096R/7BF9099A C0EB C440 F6DA 091C 884D 8532 E0F3 73F3 7BF9 099A
D: powerpc & 802.11 hacker
N: Stephen R. van den Berg (AKA BuGless)

View File

@ -328,8 +328,6 @@ sysrq.txt
- info on the magic SysRq key.
telephony/
- directory with info on telephony (e.g. voice over IP) support.
uml/
- directory with information about User Mode Linux.
unicode.txt
- info on the Unicode character/font mapping used in Linux.
unshare.txt

View File

@ -0,0 +1,10 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/startup_profile
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 0-4.
When read, this attribute returns the number of the actual
profile. This value is persistent, so its equivalent to the
profile that's active when the mouse is powered on next time.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
Please use actual_profile, it does the same thing.

View File

@ -0,0 +1,31 @@
What: /sys/bus/bcma/devices/.../manuf
Date: May 2011
KernelVersion: 2.6.40
Contact: Rafał Miłecki <zajec5@gmail.com>
Description:
Each BCMA core has it's manufacturer id. See
include/linux/bcma/bcma.h for possible values.
What: /sys/bus/bcma/devices/.../id
Date: May 2011
KernelVersion: 2.6.40
Contact: Rafał Miłecki <zajec5@gmail.com>
Description:
There are a few types of BCMA cores, they can be identified by
id field.
What: /sys/bus/bcma/devices/.../rev
Date: May 2011
KernelVersion: 2.6.40
Contact: Rafał Miłecki <zajec5@gmail.com>
Description:
BCMA cores of the same type can still slightly differ depending
on their revision. Use it for detailed programming.
What: /sys/bus/bcma/devices/.../class
Date: May 2011
KernelVersion: 2.6.40
Contact: Rafał Miłecki <zajec5@gmail.com>
Description:
Each BCMA core is identified by few fields, including class it
belongs to. See include/linux/bcma/bcma.h for possible values.

View File

@ -74,6 +74,15 @@ Description:
hot-remove the PCI device and any of its children.
Depends on CONFIG_HOTPLUG.
What: /sys/bus/pci/devices/.../pci_bus/.../rescan
Date: May 2011
Contact: Linux PCI developers <linux-pci@vger.kernel.org>
Description:
Writing a non-zero value to this attribute will
force a rescan of the bus and all child buses,
and re-discover devices removed earlier from this
part of the device tree. Depends on CONFIG_HOTPLUG.
What: /sys/bus/pci/devices/.../rescan
Date: January 2009
Contact: Linux PCI developers <linux-pci@vger.kernel.org>

View File

@ -183,21 +183,21 @@ Description: Discover and change clock speed of CPUs
to learn how to control the knobs.
What: /sys/devices/system/cpu/cpu*/cache/index*/cache_disable_X
Date: August 2008
What: /sys/devices/system/cpu/cpu*/cache/index3/cache_disable_{0,1}
Date: August 2008
KernelVersion: 2.6.27
Contact: mark.langsdorf@amd.com
Description: These files exist in every cpu's cache index directories.
There are currently 2 cache_disable_# files in each
directory. Reading from these files on a supported
processor will return that cache disable index value
for that processor and node. Writing to one of these
files will cause the specificed cache index to be disabled.
Contact: discuss@x86-64.org
Description: Disable L3 cache indices
Currently, only AMD Family 10h Processors support cache index
disable, and only for their L3 caches. See the BIOS and
Kernel Developer's Guide at
http://support.amd.com/us/Embedded_TechDocs/31116-Public-GH-BKDG_3-28_5-28-09.pdf
for formatting information and other details on the
cache index disable.
Users: joachim.deguara@amd.com
These files exist in every CPU's cache/index3 directory. Each
cache_disable_{0,1} file corresponds to one disable slot which
can be used to disable a cache index. Reading from these files
on a processor with this functionality will return the currently
disabled index for that node. There is one L3 structure per
node, or per internal node on MCM machines. Writing a valid
index to one of these files will cause the specificed cache
index to be disabled.
All AMD processors with L3 caches provide this functionality.
For details, see BKDGs at
http://developer.amd.com/documentation/guides/Pages/default.aspx

View File

@ -1,9 +1,12 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/actual_profile
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the number of the actual profile in
range 0-4.
This file is readonly.
Description: The integer value of this attribute ranges from 0-4.
When read, this attribute returns the number of the actual
profile. This value is persistent, so its equivalent to the
profile that's active when the mouse is powered on next time.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
Users: http://roccat.sourceforge.net
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/firmware_version
@ -89,16 +92,6 @@ Description: The mouse has a tracking- and a distance-control-unit. These
This file is writeonly.
Users: http://roccat.sourceforge.net
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/startup_profile
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 0-4.
When read, this attribute returns the number of the profile
that's active when the mouse is powered on.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
Users: http://roccat.sourceforge.net
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/tcu
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>

View File

@ -14,14 +14,15 @@ Description:
DMI is structured as a large table of entries, where
each entry has a common header indicating the type and
length of the entry, as well as 'handle' that is
supposed to be unique amongst all entries.
length of the entry, as well as a firmware-provided
'handle' that is supposed to be unique amongst all
entries.
Some entries are required by the specification, but many
others are optional. In general though, users should
never expect to find a specific entry type on their
system unless they know for certain what their firmware
is doing. Machine to machine will vary.
is doing. Machine to machine experiences will vary.
Multiple entries of the same type are allowed. In order
to handle these duplicate entry types, each entry is
@ -67,25 +68,24 @@ Description:
and the two terminating nul characters.
type : The type of the entry. This value is the same
as found in the directory name. It indicates
how the rest of the entry should be
interpreted.
how the rest of the entry should be interpreted.
instance: The instance ordinal of the entry for the
given type. This value is the same as found
in the parent directory name.
position: The position of the entry within the entirety
of the entirety.
position: The ordinal position (zero-based) of the entry
within the entirety of the DMI entry table.
=== Entry Specialization ===
Some entry types may have other information available in
sysfs.
sysfs. Not all types are specialized.
--- Type 15 - System Event Log ---
This entry allows the firmware to export a log of
events the system has taken. This information is
typically backed by nvram, but the implementation
details are abstracted by this table. This entries data
details are abstracted by this table. This entry's data
is exported in the directory:
/sys/firmware/dmi/entries/15-0/system_event_log

View File

@ -0,0 +1,58 @@
What: /sys/firmware/gsmi
Date: March 2011
Contact: Mike Waychison <mikew@google.com>
Description:
Some servers used internally at Google have firmware
that provides callback functionality via explicit SMI
triggers. Some of the callbacks are similar to those
provided by the EFI runtime services page, but due to
historical reasons this different entry-point has been
used.
The gsmi driver implements the kernel's abstraction for
these firmware callbacks. Currently, this functionality
is limited to handling the system event log and getting
access to EFI-style variables stored in nvram.
Layout:
/sys/firmware/gsmi/vars:
This directory has the same layout (and
underlying implementation as /sys/firmware/efi/vars.
See Documentation/ABI/*/sysfs-firmware-efi-vars
for more information on how to interact with
this structure.
/sys/firmware/gsmi/append_to_eventlog - write-only:
This file takes a binary blob and passes it onto
the firmware to be timestamped and appended to
the system eventlog. The binary format is
interpreted by the firmware and may change from
platform to platform. The only kernel-enforced
requirement is that the blob be prefixed with a
32bit host-endian type used as part of the
firmware call.
/sys/firmware/gsmi/clear_config - write-only:
Writing any value to this file will cause the
entire firmware configuration to be reset to
"factory defaults". Callers should assume that
a reboot is required for the configuration to be
cleared.
/sys/firmware/gsmi/clear_eventlog - write-only:
This file is used to clear out a portion/the
whole of the system event log. Values written
should be values between 1 and 100 inclusive (in
ASCII) representing the fraction of the log to
clear. Not all platforms support fractional
clearing though, and this writes to this file
will error out if the firmware doesn't like your
submitted fraction.
Callers should assume that a reboot is needed
for this operation to complete.

View File

@ -0,0 +1,7 @@
What: /sys/firmware/log
Date: February 2011
Contact: Mike Waychison <mikew@google.com>
Description:
The /sys/firmware/log is a binary file that represents a
read-only copy of the firmware's log if one is
available.

View File

@ -0,0 +1,8 @@
What: /sys/kernel/fscaps
Date: February 2011
KernelVersion: 2.6.38
Contact: Ludwig Nussel <ludwig.nussel@suse.de>
Description
Shows whether file system capabilities are honored
when executing a binary

View File

@ -158,3 +158,17 @@ Description:
successful, will make the kernel abort a subsequent transition
to a sleep state if any wakeup events are reported after the
write has returned.
What: /sys/power/reserved_size
Date: May 2011
Contact: Rafael J. Wysocki <rjw@sisk.pl>
Description:
The /sys/power/reserved_size file allows user space to control
the amount of memory reserved for allocations made by device
drivers during the "device freeze" stage of hibernation. It can
be written a string representing a non-negative integer that
will be used as the amount of memory to reserve for allocations
made by device drivers' "freeze" callbacks, in bytes.
Reading from this file will display the current value, which is
set to 1 MB by default.

View File

@ -8,3 +8,4 @@
*.dvi
*.log
*.out
media/

View File

@ -96,10 +96,10 @@ X!Iinclude/linux/kobject.h
<chapter id="devdrivers">
<title>Device drivers infrastructure</title>
<sect1><title>The Basic Device Driver-Model Structures </title>
!Iinclude/linux/device.h
</sect1>
<sect1><title>Device Drivers Base</title>
<!--
X!Iinclude/linux/device.h
-->
!Edrivers/base/driver.c
!Edrivers/base/core.c
!Edrivers/base/class.c

View File

@ -34,6 +34,14 @@
<revhistory>
<!-- Put document revisions here, newest first. -->
<revision>
<revnumber>2.0.4</revnumber>
<date>2011-05-06</date>
<authorinitials>mcc</authorinitials>
<revremark>
Add more information about DVB APIv5, better describing the frontend GET/SET props ioctl's.
</revremark>
</revision>
<revision>
<revnumber>2.0.3</revnumber>
<date>2010-07-03</date>

View File

@ -1,6 +1,327 @@
<section id="FE_GET_PROPERTY">
<section id="FE_GET_SET_PROPERTY">
<title>FE_GET_PROPERTY/FE_SET_PROPERTY</title>
<programlisting>
/* Reserved fields should be set to 0 */
struct dtv_property {
__u32 cmd;
union {
__u32 data;
struct {
__u8 data[32];
__u32 len;
__u32 reserved1[3];
void *reserved2;
} buffer;
} u;
int result;
} __attribute__ ((packed));
/* num of properties cannot exceed DTV_IOCTL_MAX_MSGS per ioctl */
#define DTV_IOCTL_MAX_MSGS 64
struct dtv_properties {
__u32 num;
struct dtv_property *props;
};
</programlisting>
<section id="FE_GET_PROPERTY">
<title>FE_GET_PROPERTY</title>
<para>DESCRIPTION
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
<para>This ioctl call returns one or more frontend properties. This call only
requires read-only access to the device.</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>SYNOPSIS
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
<para>int ioctl(int fd, int request = <link linkend="FE_GET_PROPERTY">FE_GET_PROPERTY</link>,
dtv_properties &#x22C6;props);</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>PARAMETERS
</para>
<informaltable><tgroup cols="2"><tbody><row><entry align="char">
<para>int fd</para>
</entry><entry
align="char">
<para>File descriptor returned by a previous call to open().</para>
</entry>
</row><row><entry
align="char">
<para>int num</para>
</entry><entry
align="char">
<para>Equals <link linkend="FE_GET_PROPERTY">FE_GET_PROPERTY</link> for this command.</para>
</entry>
</row><row><entry
align="char">
<para>struct dtv_property *props</para>
</entry><entry
align="char">
<para>Points to the location where the front-end property commands are stored.</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>ERRORS</para>
<informaltable><tgroup cols="2"><tbody><row>
<entry align="char"><para>EINVAL</para></entry>
<entry align="char"><para>Invalid parameter(s) received or number of parameters out of the range.</para></entry>
</row><row>
<entry align="char"><para>ENOMEM</para></entry>
<entry align="char"><para>Out of memory.</para></entry>
</row><row>
<entry align="char"><para>EFAULT</para></entry>
<entry align="char"><para>Failure while copying data from/to userspace.</para></entry>
</row><row>
<entry align="char"><para>EOPNOTSUPP</para></entry>
<entry align="char"><para>Property type not supported.</para></entry>
</row></tbody></tgroup></informaltable>
</section>
<section id="FE_SET_PROPERTY">
<title>FE_SET_PROPERTY</title>
<para>DESCRIPTION
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
<para>This ioctl call sets one or more frontend properties. This call only
requires read-only access to the device.</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>SYNOPSIS
</para>
<informaltable><tgroup cols="1"><tbody><row><entry
align="char">
<para>int ioctl(int fd, int request = <link linkend="FE_SET_PROPERTY">FE_SET_PROPERTY</link>,
dtv_properties &#x22C6;props);</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>PARAMETERS
</para>
<informaltable><tgroup cols="2"><tbody><row><entry align="char">
<para>int fd</para>
</entry><entry
align="char">
<para>File descriptor returned by a previous call to open().</para>
</entry>
</row><row><entry
align="char">
<para>int num</para>
</entry><entry
align="char">
<para>Equals <link linkend="FE_SET_PROPERTY">FE_SET_PROPERTY</link> for this command.</para>
</entry>
</row><row><entry
align="char">
<para>struct dtv_property *props</para>
</entry><entry
align="char">
<para>Points to the location where the front-end property commands are stored.</para>
</entry>
</row></tbody></tgroup></informaltable>
<para>ERRORS
</para>
<informaltable><tgroup cols="2"><tbody><row>
<entry align="char"><para>EINVAL</para></entry>
<entry align="char"><para>Invalid parameter(s) received or number of parameters out of the range.</para></entry>
</row><row>
<entry align="char"><para>ENOMEM</para></entry>
<entry align="char"><para>Out of memory.</para></entry>
</row><row>
<entry align="char"><para>EFAULT</para></entry>
<entry align="char"><para>Failure while copying data from/to userspace.</para></entry>
</row><row>
<entry align="char"><para>EOPNOTSUPP</para></entry>
<entry align="char"><para>Property type not supported.</para></entry>
</row></tbody></tgroup></informaltable>
</section>
<para>
On <link linkend="FE_GET_PROPERTY">FE_GET_PROPERTY</link>/<link linkend="FE_SET_PROPERTY">FE_SET_PROPERTY</link>,
the actual action is determined by the dtv_property cmd/data pairs. With one single ioctl, is possible to
get/set up to 64 properties. The actual meaning of each property is described on the next sections.
</para>
<para>The Available frontend property types are:</para>
<programlisting>
#define DTV_UNDEFINED 0
#define DTV_TUNE 1
#define DTV_CLEAR 2
#define DTV_FREQUENCY 3
#define DTV_MODULATION 4
#define DTV_BANDWIDTH_HZ 5
#define DTV_INVERSION 6
#define DTV_DISEQC_MASTER 7
#define DTV_SYMBOL_RATE 8
#define DTV_INNER_FEC 9
#define DTV_VOLTAGE 10
#define DTV_TONE 11
#define DTV_PILOT 12
#define DTV_ROLLOFF 13
#define DTV_DISEQC_SLAVE_REPLY 14
#define DTV_FE_CAPABILITY_COUNT 15
#define DTV_FE_CAPABILITY 16
#define DTV_DELIVERY_SYSTEM 17
#define DTV_ISDBT_PARTIAL_RECEPTION 18
#define DTV_ISDBT_SOUND_BROADCASTING 19
#define DTV_ISDBT_SB_SUBCHANNEL_ID 20
#define DTV_ISDBT_SB_SEGMENT_IDX 21
#define DTV_ISDBT_SB_SEGMENT_COUNT 22
#define DTV_ISDBT_LAYERA_FEC 23
#define DTV_ISDBT_LAYERA_MODULATION 24
#define DTV_ISDBT_LAYERA_SEGMENT_COUNT 25
#define DTV_ISDBT_LAYERA_TIME_INTERLEAVING 26
#define DTV_ISDBT_LAYERB_FEC 27
#define DTV_ISDBT_LAYERB_MODULATION 28
#define DTV_ISDBT_LAYERB_SEGMENT_COUNT 29
#define DTV_ISDBT_LAYERB_TIME_INTERLEAVING 30
#define DTV_ISDBT_LAYERC_FEC 31
#define DTV_ISDBT_LAYERC_MODULATION 32
#define DTV_ISDBT_LAYERC_SEGMENT_COUNT 33
#define DTV_ISDBT_LAYERC_TIME_INTERLEAVING 34
#define DTV_API_VERSION 35
#define DTV_CODE_RATE_HP 36
#define DTV_CODE_RATE_LP 37
#define DTV_GUARD_INTERVAL 38
#define DTV_TRANSMISSION_MODE 39
#define DTV_HIERARCHY 40
#define DTV_ISDBT_LAYER_ENABLED 41
#define DTV_ISDBS_TS_ID 42
</programlisting>
<section id="fe_property_common">
<title>Parameters that are common to all Digital TV standards</title>
<section id="DTV_FREQUENCY">
<title><constant>DTV_FREQUENCY</constant></title>
<para>Central frequency of the channel, in HZ.</para>
<para>Notes:</para>
<para>1)For ISDB-T, the channels are usually transmitted with an offset of 143kHz.
E.g. a valid frequncy could be 474143 kHz. The stepping is bound to the bandwidth of
the channel which is 6MHz.</para>
<para>2)As in ISDB-Tsb the channel consists of only one or three segments the
frequency step is 429kHz, 3*429 respectively. As for ISDB-T the
central frequency of the channel is expected.</para>
</section>
<section id="DTV_BANDWIDTH_HZ">
<title><constant>DTV_BANDWIDTH_HZ</constant></title>
<para>Bandwidth for the channel, in HZ.</para>
<para>Possible values:
<constant>1712000</constant>,
<constant>5000000</constant>,
<constant>6000000</constant>,
<constant>7000000</constant>,
<constant>8000000</constant>,
<constant>10000000</constant>.
</para>
<para>Notes:</para>
<para>1) For ISDB-T it should be always 6000000Hz (6MHz)</para>
<para>2) For ISDB-Tsb it can vary depending on the number of connected segments</para>
<para>3) Bandwidth doesn't apply for DVB-C transmissions, as the bandwidth
for DVB-C depends on the symbol rate</para>
<para>4) Bandwidth in ISDB-T is fixed (6MHz) or can be easily derived from
other parameters (DTV_ISDBT_SB_SEGMENT_IDX,
DTV_ISDBT_SB_SEGMENT_COUNT).</para>
<para>5) DVB-T supports 6, 7 and 8MHz.</para>
<para>6) In addition, DVB-T2 supports 1.172, 5 and 10MHz.</para>
</section>
<section id="DTV_DELIVERY_SYSTEM">
<title><constant>DTV_DELIVERY_SYSTEM</constant></title>
<para>Specifies the type of Delivery system</para>
<para>Possible values: </para>
<programlisting>
typedef enum fe_delivery_system {
SYS_UNDEFINED,
SYS_DVBC_ANNEX_AC,
SYS_DVBC_ANNEX_B,
SYS_DVBT,
SYS_DSS,
SYS_DVBS,
SYS_DVBS2,
SYS_DVBH,
SYS_ISDBT,
SYS_ISDBS,
SYS_ISDBC,
SYS_ATSC,
SYS_ATSCMH,
SYS_DMBTH,
SYS_CMMB,
SYS_DAB,
SYS_DVBT2,
} fe_delivery_system_t;
</programlisting>
</section>
<section id="DTV_TRANSMISSION_MODE">
<title><constant>DTV_TRANSMISSION_MODE</constant></title>
<para>Specifies the number of carriers used by the standard</para>
<para>Possible values are:</para>
<programlisting>
typedef enum fe_transmit_mode {
TRANSMISSION_MODE_2K,
TRANSMISSION_MODE_8K,
TRANSMISSION_MODE_AUTO,
TRANSMISSION_MODE_4K,
TRANSMISSION_MODE_1K,
TRANSMISSION_MODE_16K,
TRANSMISSION_MODE_32K,
} fe_transmit_mode_t;
</programlisting>
<para>Notes:</para>
<para>1) ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is called
'mode' in the standard: Mode 1 is 2K, mode 2 is 4K, mode 3 is 8K</para>
<para>2) If <constant>DTV_TRANSMISSION_MODE</constant> is set the <constant>TRANSMISSION_MODE_AUTO</constant> the
hardware will try to find the correct FFT-size (if capable) and will
use TMCC to fill in the missing parameters.</para>
<para>3) DVB-T specifies 2K and 8K as valid sizes.</para>
<para>4) DVB-T2 specifies 1K, 2K, 4K, 8K, 16K and 32K.</para>
</section>
<section id="DTV_GUARD_INTERVAL">
<title><constant>DTV_GUARD_INTERVAL</constant></title>
<para>Possible values are:</para>
<programlisting>
typedef enum fe_guard_interval {
GUARD_INTERVAL_1_32,
GUARD_INTERVAL_1_16,
GUARD_INTERVAL_1_8,
GUARD_INTERVAL_1_4,
GUARD_INTERVAL_AUTO,
GUARD_INTERVAL_1_128,
GUARD_INTERVAL_19_128,
GUARD_INTERVAL_19_256,
} fe_guard_interval_t;
</programlisting>
<para>Notes:</para>
<para>1) If <constant>DTV_GUARD_INTERVAL</constant> is set the <constant>GUARD_INTERVAL_AUTO</constant> the hardware will
try to find the correct guard interval (if capable) and will use TMCC to fill
in the missing parameters.</para>
<para>2) Intervals 1/128, 19/128 and 19/256 are used only for DVB-T2 at present</para>
</section>
</section>
<section id="isdbt">
<title>ISDB-T frontend</title>
<para>This section describes shortly what are the possible parameters in the Linux
@ -32,73 +353,6 @@
<para>Parameters used by ISDB-T and ISDB-Tsb.</para>
<section id="isdbt-parms">
<title>Parameters that are common with DVB-T and ATSC</title>
<section id="isdbt-freq">
<title><constant>DTV_FREQUENCY</constant></title>
<para>Central frequency of the channel.</para>
<para>For ISDB-T the channels are usually transmitted with an offset of 143kHz. E.g. a
valid frequncy could be 474143 kHz. The stepping is bound to the bandwidth of
the channel which is 6MHz.</para>
<para>As in ISDB-Tsb the channel consists of only one or three segments the
frequency step is 429kHz, 3*429 respectively. As for ISDB-T the
central frequency of the channel is expected.</para>
</section>
<section id="isdbt-bw">
<title><constant>DTV_BANDWIDTH_HZ</constant> (optional)</title>
<para>Possible values:</para>
<para>For ISDB-T it should be always 6000000Hz (6MHz)</para>
<para>For ISDB-Tsb it can vary depending on the number of connected segments</para>
<para>Note: Hardware specific values might be given here, but standard
applications should not bother to set a value to this field as
standard demods are ignoring it anyway.</para>
<para>Bandwidth in ISDB-T is fixed (6MHz) or can be easily derived from
other parameters (DTV_ISDBT_SB_SEGMENT_IDX,
DTV_ISDBT_SB_SEGMENT_COUNT).</para>
</section>
<section id="isdbt-delivery-sys">
<title><constant>DTV_DELIVERY_SYSTEM</constant></title>
<para>Possible values: <constant>SYS_ISDBT</constant></para>
</section>
<section id="isdbt-tx-mode">
<title><constant>DTV_TRANSMISSION_MODE</constant></title>
<para>ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is called
'mode' in the standard: Mode 1 is 2K, mode 2 is 4K, mode 3 is 8K</para>
<para>Possible values: <constant>TRANSMISSION_MODE_2K</constant>, <constant>TRANSMISSION_MODE_8K</constant>,
<constant>TRANSMISSION_MODE_AUTO</constant>, <constant>TRANSMISSION_MODE_4K</constant></para>
<para>If <constant>DTV_TRANSMISSION_MODE</constant> is set the <constant>TRANSMISSION_MODE_AUTO</constant> the
hardware will try to find the correct FFT-size (if capable) and will
use TMCC to fill in the missing parameters.</para>
<para><constant>TRANSMISSION_MODE_4K</constant> is added at the same time as the other new parameters.</para>
</section>
<section id="isdbt-guard-interval">
<title><constant>DTV_GUARD_INTERVAL</constant></title>
<para>Possible values: <constant>GUARD_INTERVAL_1_32</constant>, <constant>GUARD_INTERVAL_1_16</constant>, <constant>GUARD_INTERVAL_1_8</constant>,
<constant>GUARD_INTERVAL_1_4</constant>, <constant>GUARD_INTERVAL_AUTO</constant></para>
<para>If <constant>DTV_GUARD_INTERVAL</constant> is set the <constant>GUARD_INTERVAL_AUTO</constant> the hardware will
try to find the correct guard interval (if capable) and will use TMCC to fill
in the missing parameters.</para>
</section>
</section>
<section id="isdbt-new-parms">
<title>ISDB-T only parameters</title>
@ -314,5 +568,20 @@
</section>
</section>
</section>
<section id="dvbt2-params">
<title>DVB-T2 parameters</title>
<para>This section covers parameters that apply only to the DVB-T2 delivery method. DVB-T2
support is currently in the early stages development so expect this section to grow
and become more detailed with time.</para>
<section id="dvbt2-plp-id">
<title><constant>DTV_DVBT2_PLP_ID</constant></title>
<para>DVB-T2 supports Physical Layer Pipes (PLP) to allow transmission of
many data types via a single multiplex. The API will soon support this
at which point this section will be expanded.</para>
</section>
</section>
</section>
</section>

View File

@ -176,14 +176,20 @@ typedef enum fe_transmit_mode {
TRANSMISSION_MODE_2K,
TRANSMISSION_MODE_8K,
TRANSMISSION_MODE_AUTO,
TRANSMISSION_MODE_4K
TRANSMISSION_MODE_4K,
TRANSMISSION_MODE_1K,
TRANSMISSION_MODE_16K,
TRANSMISSION_MODE_32K,
} fe_transmit_mode_t;
typedef enum fe_bandwidth {
BANDWIDTH_8_MHZ,
BANDWIDTH_7_MHZ,
BANDWIDTH_6_MHZ,
BANDWIDTH_AUTO
BANDWIDTH_AUTO,
BANDWIDTH_5_MHZ,
BANDWIDTH_10_MHZ,
BANDWIDTH_1_712_MHZ,
} fe_bandwidth_t;
@ -192,7 +198,10 @@ typedef enum fe_guard_interval {
GUARD_INTERVAL_1_16,
GUARD_INTERVAL_1_8,
GUARD_INTERVAL_1_4,
GUARD_INTERVAL_AUTO
GUARD_INTERVAL_AUTO,
GUARD_INTERVAL_1_128,
GUARD_INTERVAL_19_128,
GUARD_INTERVAL_19_256,
} fe_guard_interval_t;
@ -306,7 +315,9 @@ struct dvb_frontend_event {
#define DTV_ISDBS_TS_ID 42
#define DTV_MAX_COMMAND DTV_ISDBS_TS_ID
#define DTV_DVBT2_PLP_ID 43
#define DTV_MAX_COMMAND DTV_DVBT2_PLP_ID
typedef enum fe_pilot {
PILOT_ON,
@ -338,6 +349,7 @@ typedef enum fe_delivery_system {
SYS_DMBTH,
SYS_CMMB,
SYS_DAB,
SYS_DVBT2,
} fe_delivery_system_t;
struct dtv_cmds_h {

View File

@ -191,8 +191,8 @@
<para>
Whenever an interrupt triggers, the lowlevel arch code calls into
the generic interrupt code by calling desc->handle_irq().
This highlevel IRQ handling function only uses desc->chip primitives
referenced by the assigned chip descriptor structure.
This highlevel IRQ handling function only uses desc->irq_data.chip
primitives referenced by the assigned chip descriptor structure.
</para>
</sect1>
<sect1 id="Highlevel_Driver_API">
@ -206,11 +206,11 @@
<listitem><para>enable_irq()</para></listitem>
<listitem><para>disable_irq_nosync() (SMP only)</para></listitem>
<listitem><para>synchronize_irq() (SMP only)</para></listitem>
<listitem><para>set_irq_type()</para></listitem>
<listitem><para>set_irq_wake()</para></listitem>
<listitem><para>set_irq_data()</para></listitem>
<listitem><para>set_irq_chip()</para></listitem>
<listitem><para>set_irq_chip_data()</para></listitem>
<listitem><para>irq_set_irq_type()</para></listitem>
<listitem><para>irq_set_irq_wake()</para></listitem>
<listitem><para>irq_set_handler_data()</para></listitem>
<listitem><para>irq_set_chip()</para></listitem>
<listitem><para>irq_set_chip_data()</para></listitem>
</itemizedlist>
See the autogenerated function documentation for details.
</para>
@ -225,6 +225,8 @@
<listitem><para>handle_fasteoi_irq</para></listitem>
<listitem><para>handle_simple_irq</para></listitem>
<listitem><para>handle_percpu_irq</para></listitem>
<listitem><para>handle_edge_eoi_irq</para></listitem>
<listitem><para>handle_bad_irq</para></listitem>
</itemizedlist>
The interrupt flow handlers (either predefined or architecture
specific) are assigned to specific interrupts by the architecture
@ -241,13 +243,13 @@
<programlisting>
default_enable(struct irq_data *data)
{
desc->chip->irq_unmask(data);
desc->irq_data.chip->irq_unmask(data);
}
default_disable(struct irq_data *data)
{
if (!delay_disable(data))
desc->chip->irq_mask(data);
desc->irq_data.chip->irq_mask(data);
}
default_ack(struct irq_data *data)
@ -284,9 +286,9 @@ noop(struct irq_data *data))
<para>
The following control flow is implemented (simplified excerpt):
<programlisting>
desc->chip->irq_mask();
handle_IRQ_event(desc->action);
desc->chip->irq_unmask();
desc->irq_data.chip->irq_mask_ack();
handle_irq_event(desc->action);
desc->irq_data.chip->irq_unmask();
</programlisting>
</para>
</sect3>
@ -300,8 +302,8 @@ desc->chip->irq_unmask();
<para>
The following control flow is implemented (simplified excerpt):
<programlisting>
handle_IRQ_event(desc->action);
desc->chip->irq_eoi();
handle_irq_event(desc->action);
desc->irq_data.chip->irq_eoi();
</programlisting>
</para>
</sect3>
@ -315,17 +317,17 @@ desc->chip->irq_eoi();
The following control flow is implemented (simplified excerpt):
<programlisting>
if (desc->status &amp; running) {
desc->chip->irq_mask();
desc->irq_data.chip->irq_mask_ack();
desc->status |= pending | masked;
return;
}
desc->chip->irq_ack();
desc->irq_data.chip->irq_ack();
desc->status |= running;
do {
if (desc->status &amp; masked)
desc->chip->irq_unmask();
desc->irq_data.chip->irq_unmask();
desc->status &amp;= ~pending;
handle_IRQ_event(desc->action);
handle_irq_event(desc->action);
} while (status &amp; pending);
desc->status &amp;= ~running;
</programlisting>
@ -344,7 +346,7 @@ desc->status &amp;= ~running;
<para>
The following control flow is implemented (simplified excerpt):
<programlisting>
handle_IRQ_event(desc->action);
handle_irq_event(desc->action);
</programlisting>
</para>
</sect3>
@ -362,12 +364,29 @@ handle_IRQ_event(desc->action);
<para>
The following control flow is implemented (simplified excerpt):
<programlisting>
handle_IRQ_event(desc->action);
if (desc->chip->irq_eoi)
desc->chip->irq_eoi();
if (desc->irq_data.chip->irq_ack)
desc->irq_data.chip->irq_ack();
handle_irq_event(desc->action);
if (desc->irq_data.chip->irq_eoi)
desc->irq_data.chip->irq_eoi();
</programlisting>
</para>
</sect3>
<sect3 id="EOI_Edge_IRQ_flow_handler">
<title>EOI Edge IRQ flow handler</title>
<para>
handle_edge_eoi_irq provides an abnomination of the edge
handler which is solely used to tame a badly wreckaged
irq controller on powerpc/cell.
</para>
</sect3>
<sect3 id="BAD_IRQ_flow_handler">
<title>Bad IRQ flow handler</title>
<para>
handle_bad_irq is used for spurious interrupts which
have no real handler assigned..
</para>
</sect3>
</sect2>
<sect2 id="Quirks_and_optimizations">
<title>Quirks and optimizations</title>
@ -410,6 +429,7 @@ if (desc->chip->irq_eoi)
<listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
<listitem><para>irq_mask()</para></listitem>
<listitem><para>irq_unmask()</para></listitem>
<listitem><para>irq_eoi() - Optional, required for eoi flow handlers</para></listitem>
<listitem><para>irq_retrigger() - Optional</para></listitem>
<listitem><para>irq_set_type() - Optional</para></listitem>
<listitem><para>irq_set_wake() - Optional</para></listitem>
@ -424,32 +444,24 @@ if (desc->chip->irq_eoi)
<chapter id="doirq">
<title>__do_IRQ entry point</title>
<para>
The original implementation __do_IRQ() is an alternative entry
point for all types of interrupts.
The original implementation __do_IRQ() was an alternative entry
point for all types of interrupts. It not longer exists.
</para>
<para>
This handler turned out to be not suitable for all
interrupt hardware and was therefore reimplemented with split
functionality for egde/level/simple/percpu interrupts. This is not
functionality for edge/level/simple/percpu interrupts. This is not
only a functional optimization. It also shortens code paths for
interrupts.
</para>
<para>
To make use of the split implementation, replace the call to
__do_IRQ by a call to desc->handle_irq() and associate
the appropriate handler function to desc->handle_irq().
In most cases the generic handler implementations should
be sufficient.
</para>
</chapter>
<chapter id="locking">
<title>Locking on SMP</title>
<para>
The locking of chip registers is up to the architecture that
defines the chip primitives. There is a chip->lock field that can be used
for serialization, but the generic layer does not touch it. The per-irq
structure is protected via desc->lock, by the generic layer.
defines the chip primitives. The per-irq structure is
protected via desc->lock, by the generic layer.
</para>
</chapter>
<chapter id="structs">

View File

@ -270,6 +270,7 @@
<!ENTITY sub-write SYSTEM "v4l/func-write.xml">
<!ENTITY sub-io SYSTEM "v4l/io.xml">
<!ENTITY sub-grey SYSTEM "v4l/pixfmt-grey.xml">
<!ENTITY sub-m420 SYSTEM "v4l/pixfmt-m420.xml">
<!ENTITY sub-nv12 SYSTEM "v4l/pixfmt-nv12.xml">
<!ENTITY sub-nv12m SYSTEM "v4l/pixfmt-nv12m.xml">
<!ENTITY sub-nv12mt SYSTEM "v4l/pixfmt-nv12mt.xml">
@ -295,6 +296,7 @@
<!ENTITY sub-srggb8 SYSTEM "v4l/pixfmt-srggb8.xml">
<!ENTITY sub-y10 SYSTEM "v4l/pixfmt-y10.xml">
<!ENTITY sub-y12 SYSTEM "v4l/pixfmt-y12.xml">
<!ENTITY sub-y10b SYSTEM "v4l/pixfmt-y10b.xml">
<!ENTITY sub-pixfmt SYSTEM "v4l/pixfmt.xml">
<!ENTITY sub-cropcap SYSTEM "v4l/vidioc-cropcap.xml">
<!ENTITY sub-dbg-g-register SYSTEM "v4l/vidioc-dbg-g-register.xml">

View File

@ -0,0 +1,147 @@
<refentry id="V4L2-PIX-FMT-M420">
<refmeta>
<refentrytitle>V4L2_PIX_FMT_M420 ('M420')</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname><constant>V4L2_PIX_FMT_M420</constant></refname>
<refpurpose>Format with &frac12; horizontal and vertical chroma
resolution, also known as YUV 4:2:0. Hybrid plane line-interleaved
layout.</refpurpose>
</refnamediv>
<refsect1>
<title>Description</title>
<para>M420 is a YUV format with &frac12; horizontal and vertical chroma
subsampling (YUV 4:2:0). Pixels are organized as interleaved luma and
chroma planes. Two lines of luma data are followed by one line of chroma
data.</para>
<para>The luma plane has one byte per pixel. The chroma plane contains
interleaved CbCr pixels subsampled by &frac12; in the horizontal and
vertical directions. Each CbCr pair belongs to four pixels. For example,
Cb<subscript>0</subscript>/Cr<subscript>0</subscript> belongs to
Y'<subscript>00</subscript>, Y'<subscript>01</subscript>,
Y'<subscript>10</subscript>, Y'<subscript>11</subscript>.</para>
<para>All line lengths are identical: if the Y lines include pad bytes
so do the CbCr lines.</para>
<example>
<title><constant>V4L2_PIX_FMT_M420</constant> 4 &times; 4
pixel image</title>
<formalpara>
<title>Byte Order.</title>
<para>Each cell is one byte.
<informaltable frame="none">
<tgroup cols="5" align="center">
<colspec align="left" colwidth="2*" />
<tbody valign="top">
<row>
<entry>start&nbsp;+&nbsp;0:</entry>
<entry>Y'<subscript>00</subscript></entry>
<entry>Y'<subscript>01</subscript></entry>
<entry>Y'<subscript>02</subscript></entry>
<entry>Y'<subscript>03</subscript></entry>
</row>
<row>
<entry>start&nbsp;+&nbsp;4:</entry>
<entry>Y'<subscript>10</subscript></entry>
<entry>Y'<subscript>11</subscript></entry>
<entry>Y'<subscript>12</subscript></entry>
<entry>Y'<subscript>13</subscript></entry>
</row>
<row>
<entry>start&nbsp;+&nbsp;8:</entry>
<entry>Cb<subscript>00</subscript></entry>
<entry>Cr<subscript>00</subscript></entry>
<entry>Cb<subscript>01</subscript></entry>
<entry>Cr<subscript>01</subscript></entry>
</row>
<row>
<entry>start&nbsp;+&nbsp;16:</entry>
<entry>Y'<subscript>20</subscript></entry>
<entry>Y'<subscript>21</subscript></entry>
<entry>Y'<subscript>22</subscript></entry>
<entry>Y'<subscript>23</subscript></entry>
</row>
<row>
<entry>start&nbsp;+&nbsp;20:</entry>
<entry>Y'<subscript>30</subscript></entry>
<entry>Y'<subscript>31</subscript></entry>
<entry>Y'<subscript>32</subscript></entry>
<entry>Y'<subscript>33</subscript></entry>
</row>
<row>
<entry>start&nbsp;+&nbsp;24:</entry>
<entry>Cb<subscript>10</subscript></entry>
<entry>Cr<subscript>10</subscript></entry>
<entry>Cb<subscript>11</subscript></entry>
<entry>Cr<subscript>11</subscript></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</formalpara>
<formalpara>
<title>Color Sample Location.</title>
<para>
<informaltable frame="none">
<tgroup cols="7" align="center">
<tbody valign="top">
<row>
<entry></entry>
<entry>0</entry><entry></entry><entry>1</entry><entry></entry>
<entry>2</entry><entry></entry><entry>3</entry>
</row>
<row>
<entry>0</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
<entry></entry><entry>C</entry><entry></entry><entry></entry>
<entry></entry><entry>C</entry><entry></entry>
</row>
<row>
<entry>1</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
</row>
<row>
<entry>2</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
<entry></entry><entry>C</entry><entry></entry><entry></entry>
<entry></entry><entry>C</entry><entry></entry>
</row>
<row>
<entry>3</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</formalpara>
</example>
</refsect1>
</refentry>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "pixfmt.sgml"
indent-tabs-mode: nil
End:
-->

View File

@ -0,0 +1,43 @@
<refentry id="V4L2-PIX-FMT-Y10BPACK">
<refmeta>
<refentrytitle>V4L2_PIX_FMT_Y10BPACK ('Y10B')</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname><constant>V4L2_PIX_FMT_Y10BPACK</constant></refname>
<refpurpose>Grey-scale image as a bit-packed array</refpurpose>
</refnamediv>
<refsect1>
<title>Description</title>
<para>This is a packed grey-scale image format with a depth of 10 bits per
pixel. Pixels are stored in a bit-packed array of 10bit bits per pixel,
with no padding between them and with the most significant bits coming
first from the left.</para>
<example>
<title><constant>V4L2_PIX_FMT_Y10BPACK</constant> 4 pixel data stream taking 5 bytes</title>
<formalpara>
<title>Bit-packed representation</title>
<para>pixels cross the byte boundary and have a ratio of 5 bytes for each 4
pixels.
<informaltable frame="all">
<tgroup cols="5" align="center">
<colspec align="left" colwidth="2*" />
<tbody valign="top">
<row>
<entry>Y'<subscript>00[9:2]</subscript></entry>
<entry>Y'<subscript>00[1:0]</subscript>Y'<subscript>01[9:4]</subscript></entry>
<entry>Y'<subscript>01[3:0]</subscript>Y'<subscript>02[9:6]</subscript></entry>
<entry>Y'<subscript>02[5:0]</subscript>Y'<subscript>03[9:8]</subscript></entry>
<entry>Y'<subscript>03[7:0]</subscript></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</formalpara>
</example>
</refsect1>
</refentry>

View File

@ -697,6 +697,7 @@ information.</para>
&sub-grey;
&sub-y10;
&sub-y12;
&sub-y10b;
&sub-y16;
&sub-yuyv;
&sub-uyvy;
@ -712,6 +713,7 @@ information.</para>
&sub-nv12m;
&sub-nv12mt;
&sub-nv16;
&sub-m420;
</section>
<section>

View File

@ -2522,5 +2522,51 @@
</tgroup>
</table>
</section>
<section>
<title>JPEG Compressed Formats</title>
<para>Those data formats consist of an ordered sequence of 8-bit bytes
obtained from JPEG compression process. Additionally to the
<constant>_JPEG</constant> prefix the format code is made of
the following information.
<itemizedlist>
<listitem>The number of bus samples per entropy encoded byte.</listitem>
<listitem>The bus width.</listitem>
</itemizedlist>
<para>For instance, for a JPEG baseline process and an 8-bit bus width
the format will be named <constant>V4L2_MBUS_FMT_JPEG_1X8</constant>.
</para>
</para>
<para>The following table lists existing JPEG compressed formats.</para>
<table pgwide="0" frame="none" id="v4l2-mbus-pixelcode-jpeg">
<title>JPEG Formats</title>
<tgroup cols="3">
<colspec colname="id" align="left" />
<colspec colname="code" align="left"/>
<colspec colname="remarks" align="left"/>
<thead>
<row>
<entry>Identifier</entry>
<entry>Code</entry>
<entry>Remarks</entry>
</row>
</thead>
<tbody valign="top">
<row id="V4L2-MBUS-FMT-JPEG-1X8">
<entry>V4L2_MBUS_FMT_JPEG_1X8</entry>
<entry>0x4001</entry>
<entry>Besides of its usage for the parallel bus this format is
recommended for transmission of JPEG data over MIPI CSI bus
using the User Defined 8-bit Data types.
</entry>
</row>
</tbody>
</tgroup>
</table>
</section>
</section>
</section>

View File

@ -311,6 +311,9 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
#define <link linkend="V4L2-PIX-FMT-Y10">V4L2_PIX_FMT_Y10</link> v4l2_fourcc('Y', '1', '0', ' ') /* 10 Greyscale */
#define <link linkend="V4L2-PIX-FMT-Y16">V4L2_PIX_FMT_Y16</link> v4l2_fourcc('Y', '1', '6', ' ') /* 16 Greyscale */
/* Grey bit-packed formats */
#define <link linkend="V4L2-PIX-FMT-Y10BPACK">V4L2_PIX_FMT_Y10BPACK</link> v4l2_fourcc('Y', '1', '0', 'B') /* 10 Greyscale bit-packed */
/* Palette formats */
#define <link linkend="V4L2-PIX-FMT-PAL8">V4L2_PIX_FMT_PAL8</link> v4l2_fourcc('P', 'A', 'L', '8') /* 8 8-bit palette */
@ -333,6 +336,7 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
#define <link linkend="V4L2-PIX-FMT-YUV420">V4L2_PIX_FMT_YUV420</link> v4l2_fourcc('Y', 'U', '1', '2') /* 12 YUV 4:2:0 */
#define <link linkend="V4L2-PIX-FMT-HI240">V4L2_PIX_FMT_HI240</link> v4l2_fourcc('H', 'I', '2', '4') /* 8 8-bit color */
#define <link linkend="V4L2-PIX-FMT-HM12">V4L2_PIX_FMT_HM12</link> v4l2_fourcc('H', 'M', '1', '2') /* 8 YUV 4:2:0 16x16 macroblocks */
#define <link linkend="V4L2-PIX-FMT-M420">V4L2_PIX_FMT_M420</link> v4l2_fourcc('M', '4', '2', '0') /* 12 YUV 4:2:0 2 lines y, 1 line uv interleaved */
/* two planes -- one Y, one Cr + Cb interleaved */
#define <link linkend="V4L2-PIX-FMT-NV12">V4L2_PIX_FMT_NV12</link> v4l2_fourcc('N', 'V', '1', '2') /* 12 Y/CbCr 4:2:0 */

View File

@ -209,7 +209,7 @@ tools. One such tool that is particularly recommended is the Linux
Cross-Reference project, which is able to present source code in a
self-referential, indexed webpage format. An excellent up-to-date
repository of the kernel code may be found at:
http://users.sosdg.org/~qiyong/lxr/
http://lxr.linux.no/+trees
The development process

View File

@ -21,7 +21,7 @@ rcu.txt
RTFP.txt
- List of RCU papers (bibliography) going back to 1980.
stallwarn.txt
- RCU CPU stall warnings (CONFIG_RCU_CPU_STALL_DETECTOR)
- RCU CPU stall warnings (module parameter rcu_cpu_stall_suppress)
torture.txt
- RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST)
trace.txt

View File

@ -1,22 +1,25 @@
Using RCU's CPU Stall Detector
The CONFIG_RCU_CPU_STALL_DETECTOR kernel config parameter enables
RCU's CPU stall detector, which detects conditions that unduly delay
RCU grace periods. The stall detector's idea of what constitutes
"unduly delayed" is controlled by a set of C preprocessor macros:
The rcu_cpu_stall_suppress module parameter enables RCU's CPU stall
detector, which detects conditions that unduly delay RCU grace periods.
This module parameter enables CPU stall detection by default, but
may be overridden via boot-time parameter or at runtime via sysfs.
The stall detector's idea of what constitutes "unduly delayed" is
controlled by a set of kernel configuration variables and cpp macros:
RCU_SECONDS_TILL_STALL_CHECK
CONFIG_RCU_CPU_STALL_TIMEOUT
This macro defines the period of time that RCU will wait from
the beginning of a grace period until it issues an RCU CPU
stall warning. This time period is normally ten seconds.
This kernel configuration parameter defines the period of time
that RCU will wait from the beginning of a grace period until it
issues an RCU CPU stall warning. This time period is normally
ten seconds.
RCU_SECONDS_TILL_STALL_RECHECK
This macro defines the period of time that RCU will wait after
issuing a stall warning until it issues another stall warning
for the same stall. This time period is normally set to thirty
seconds.
for the same stall. This time period is normally set to three
times the check interval plus thirty seconds.
RCU_STALL_RAT_DELAY

View File

@ -10,34 +10,46 @@ for rcutree and next for rcutiny.
CONFIG_TREE_RCU and CONFIG_TREE_PREEMPT_RCU debugfs Files and Formats
These implementations of RCU provides five debugfs files under the
top-level directory RCU: rcu/rcudata (which displays fields in struct
rcu_data), rcu/rcudata.csv (which is a .csv spreadsheet version of
rcu/rcudata), rcu/rcugp (which displays grace-period counters),
rcu/rcuhier (which displays the struct rcu_node hierarchy), and
rcu/rcu_pending (which displays counts of the reasons that the
rcu_pending() function decided that there was core RCU work to do).
These implementations of RCU provides several debugfs files under the
top-level directory "rcu":
rcu/rcudata:
Displays fields in struct rcu_data.
rcu/rcudata.csv:
Comma-separated values spreadsheet version of rcudata.
rcu/rcugp:
Displays grace-period counters.
rcu/rcuhier:
Displays the struct rcu_node hierarchy.
rcu/rcu_pending:
Displays counts of the reasons rcu_pending() decided that RCU had
work to do.
rcu/rcutorture:
Displays rcutorture test progress.
rcu/rcuboost:
Displays RCU boosting statistics. Only present if
CONFIG_RCU_BOOST=y.
The output of "cat rcu/rcudata" looks as follows:
rcu_sched:
0 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=10951/1 dn=0 df=1101 of=0 ri=36 ql=0 b=10
1 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=16117/1 dn=0 df=1015 of=0 ri=0 ql=0 b=10
2 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1445/1 dn=0 df=1839 of=0 ri=0 ql=0 b=10
3 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=6681/1 dn=0 df=1545 of=0 ri=0 ql=0 b=10
4 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1003/1 dn=0 df=1992 of=0 ri=0 ql=0 b=10
5 c=17829 g=17830 pq=1 pqc=17829 qp=1 dt=3887/1 dn=0 df=3331 of=0 ri=4 ql=2 b=10
6 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=859/1 dn=0 df=3224 of=0 ri=0 ql=0 b=10
7 c=17829 g=17830 pq=0 pqc=17829 qp=1 dt=3761/1 dn=0 df=1818 of=0 ri=0 ql=2 b=10
0 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=545/1/0 df=50 of=0 ri=0 ql=163 qs=NRW. kt=0/W/0 ktl=ebc3 b=10 ci=153737 co=0 ca=0
1 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=967/1/0 df=58 of=0 ri=0 ql=634 qs=NRW. kt=0/W/1 ktl=58c b=10 ci=191037 co=0 ca=0
2 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=1081/1/0 df=175 of=0 ri=0 ql=74 qs=N.W. kt=0/W/2 ktl=da94 b=10 ci=75991 co=0 ca=0
3 c=20942 g=20943 pq=1 pqc=20942 qp=1 dt=1846/0/0 df=404 of=0 ri=0 ql=0 qs=.... kt=0/W/3 ktl=d1cd b=10 ci=72261 co=0 ca=0
4 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=369/1/0 df=83 of=0 ri=0 ql=48 qs=N.W. kt=0/W/4 ktl=e0e7 b=10 ci=128365 co=0 ca=0
5 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=381/1/0 df=64 of=0 ri=0 ql=169 qs=NRW. kt=0/W/5 ktl=fb2f b=10 ci=164360 co=0 ca=0
6 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=1037/1/0 df=183 of=0 ri=0 ql=62 qs=N.W. kt=0/W/6 ktl=d2ad b=10 ci=65663 co=0 ca=0
7 c=20897 g=20897 pq=1 pqc=20896 qp=0 dt=1572/0/0 df=382 of=0 ri=0 ql=0 qs=.... kt=0/W/7 ktl=cf15 b=10 ci=75006 co=0 ca=0
rcu_bh:
0 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=10951/1 dn=0 df=0 of=0 ri=0 ql=0 b=10
1 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=16117/1 dn=0 df=13 of=0 ri=0 ql=0 b=10
2 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=1445/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
3 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=6681/1 dn=0 df=9 of=0 ri=0 ql=0 b=10
4 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=1003/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
5 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3887/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
6 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=859/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
7 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3761/1 dn=0 df=15 of=0 ri=0 ql=0 b=10
0 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=545/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/0 ktl=ebc3 b=10 ci=0 co=0 ca=0
1 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=967/1/0 df=3 of=0 ri=1 ql=0 qs=.... kt=0/W/1 ktl=58c b=10 ci=151 co=0 ca=0
2 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=1081/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/2 ktl=da94 b=10 ci=0 co=0 ca=0
3 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=1846/0/0 df=8 of=0 ri=1 ql=0 qs=.... kt=0/W/3 ktl=d1cd b=10 ci=0 co=0 ca=0
4 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=369/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/4 ktl=e0e7 b=10 ci=0 co=0 ca=0
5 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=381/1/0 df=4 of=0 ri=1 ql=0 qs=.... kt=0/W/5 ktl=fb2f b=10 ci=0 co=0 ca=0
6 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=1037/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/6 ktl=d2ad b=10 ci=0 co=0 ca=0
7 c=1474 g=1474 pq=1 pqc=1473 qp=0 dt=1572/0/0 df=8 of=0 ri=1 ql=0 qs=.... kt=0/W/7 ktl=cf15 b=10 ci=0 co=0 ca=0
The first section lists the rcu_data structures for rcu_sched, the second
for rcu_bh. Note that CONFIG_TREE_PREEMPT_RCU kernels will have an
@ -52,17 +64,18 @@ o The number at the beginning of each line is the CPU number.
substantially larger than the number of actual CPUs.
o "c" is the count of grace periods that this CPU believes have
completed. CPUs in dynticks idle mode may lag quite a ways
behind, for example, CPU 4 under "rcu_sched" above, which has
slept through the past 25 RCU grace periods. It is not unusual
to see CPUs lagging by thousands of grace periods.
completed. Offlined CPUs and CPUs in dynticks idle mode may
lag quite a ways behind, for example, CPU 6 under "rcu_sched"
above, which has been offline through not quite 40,000 RCU grace
periods. It is not unusual to see CPUs lagging by thousands of
grace periods.
o "g" is the count of grace periods that this CPU believes have
started. Again, CPUs in dynticks idle mode may lag behind.
If the "c" and "g" values are equal, this CPU has already
reported a quiescent state for the last RCU grace period that
it is aware of, otherwise, the CPU believes that it owes RCU a
quiescent state.
started. Again, offlined CPUs and CPUs in dynticks idle mode
may lag behind. If the "c" and "g" values are equal, this CPU
has already reported a quiescent state for the last RCU grace
period that it is aware of, otherwise, the CPU believes that it
owes RCU a quiescent state.
o "pq" indicates that this CPU has passed through a quiescent state
for the current grace period. It is possible for "pq" to be
@ -81,7 +94,8 @@ o "pqc" indicates which grace period the last-observed quiescent
the next grace period!
o "qp" indicates that RCU still expects a quiescent state from
this CPU.
this CPU. Offlined CPUs and CPUs in dyntick idle mode might
well have qp=1, which is OK: RCU is still ignoring them.
o "dt" is the current value of the dyntick counter that is incremented
when entering or leaving dynticks idle state, either by the
@ -108,7 +122,7 @@ o "df" is the number of times that some other CPU has forced a
o "of" is the number of times that some other CPU has forced a
quiescent state on behalf of this CPU due to this CPU being
offline. In a perfect world, this might neve happen, but it
offline. In a perfect world, this might never happen, but it
turns out that offlining and onlining a CPU can take several grace
periods, and so there is likely to be an extended period of time
when RCU believes that the CPU is online when it really is not.
@ -125,6 +139,62 @@ o "ql" is the number of RCU callbacks currently residing on
of what state they are in (new, waiting for grace period to
start, waiting for grace period to end, ready to invoke).
o "qs" gives an indication of the state of the callback queue
with four characters:
"N" Indicates that there are callbacks queued that are not
ready to be handled by the next grace period, and thus
will be handled by the grace period following the next
one.
"R" Indicates that there are callbacks queued that are
ready to be handled by the next grace period.
"W" Indicates that there are callbacks queued that are
waiting on the current grace period.
"D" Indicates that there are callbacks queued that have
already been handled by a prior grace period, and are
thus waiting to be invoked. Note that callbacks in
the process of being invoked are not counted here.
Callbacks in the process of being invoked are those
that have been removed from the rcu_data structures
queues by rcu_do_batch(), but which have not yet been
invoked.
If there are no callbacks in a given one of the above states,
the corresponding character is replaced by ".".
o "kt" is the per-CPU kernel-thread state. The digit preceding
the first slash is zero if there is no work pending and 1
otherwise. The character between the first pair of slashes is
as follows:
"S" The kernel thread is stopped, in other words, all
CPUs corresponding to this rcu_node structure are
offline.
"R" The kernel thread is running.
"W" The kernel thread is waiting because there is no work
for it to do.
"O" The kernel thread is waiting because it has been
forced off of its designated CPU or because its
->cpus_allowed mask permits it to run on other than
its designated CPU.
"Y" The kernel thread is yielding to avoid hogging CPU.
"?" Unknown value, indicates a bug.
The number after the final slash is the CPU that the kthread
is actually running on.
o "ktl" is the low-order 16 bits (in hexadecimal) of the count of
the number of times that this CPU's per-CPU kthread has gone
through its loop servicing invoke_rcu_cpu_kthread() requests.
o "b" is the batch limit for this CPU. If more than this number
of RCU callbacks is ready to invoke, then the remainder will
be deferred.
@ -174,14 +244,14 @@ o "gpnum" is the number of grace periods that have started. It is
The output of "cat rcu/rcuhier" looks as follows, with very long lines:
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6
1/1 .>. 0:127 ^0
3/3 .>. 0:35 ^0 0/0 .>. 36:71 ^1 0/0 .>. 72:107 ^2 0/0 .>. 108:127 ^3
3/3f .>. 0:5 ^0 2/3 .>. 6:11 ^1 0/0 .>. 12:17 ^2 0/0 .>. 18:23 ^3 0/0 .>. 24:29 ^4 0/0 .>. 30:35 ^5 0/0 .>. 36:41 ^0 0/0 .>. 42:47 ^1 0/0 .>. 48:53 ^2 0/0 .>. 54:59 ^3 0/0 .>. 60:65 ^4 0/0 .>. 66:71 ^5 0/0 .>. 72:77 ^0 0/0 .>. 78:83 ^1 0/0 .>. 84:89 ^2 0/0 .>. 90:95 ^3 0/0 .>. 96:101 ^4 0/0 .>. 102:107 ^5 0/0 .>. 108:113 ^0 0/0 .>. 114:119 ^1 0/0 .>. 120:125 ^2 0/0 .>. 126:127 ^3
1/1 ..>. 0:127 ^0
3/3 ..>. 0:35 ^0 0/0 ..>. 36:71 ^1 0/0 ..>. 72:107 ^2 0/0 ..>. 108:127 ^3
3/3f ..>. 0:5 ^0 2/3 ..>. 6:11 ^1 0/0 ..>. 12:17 ^2 0/0 ..>. 18:23 ^3 0/0 ..>. 24:29 ^4 0/0 ..>. 30:35 ^5 0/0 ..>. 36:41 ^0 0/0 ..>. 42:47 ^1 0/0 ..>. 48:53 ^2 0/0 ..>. 54:59 ^3 0/0 ..>. 60:65 ^4 0/0 ..>. 66:71 ^5 0/0 ..>. 72:77 ^0 0/0 ..>. 78:83 ^1 0/0 ..>. 84:89 ^2 0/0 ..>. 90:95 ^3 0/0 ..>. 96:101 ^4 0/0 ..>. 102:107 ^5 0/0 ..>. 108:113 ^0 0/0 ..>. 114:119 ^1 0/0 ..>. 120:125 ^2 0/0 ..>. 126:127 ^3
rcu_bh:
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0
0/1 .>. 0:127 ^0
0/3 .>. 0:35 ^0 0/0 .>. 36:71 ^1 0/0 .>. 72:107 ^2 0/0 .>. 108:127 ^3
0/3f .>. 0:5 ^0 0/3 .>. 6:11 ^1 0/0 .>. 12:17 ^2 0/0 .>. 18:23 ^3 0/0 .>. 24:29 ^4 0/0 .>. 30:35 ^5 0/0 .>. 36:41 ^0 0/0 .>. 42:47 ^1 0/0 .>. 48:53 ^2 0/0 .>. 54:59 ^3 0/0 .>. 60:65 ^4 0/0 .>. 66:71 ^5 0/0 .>. 72:77 ^0 0/0 .>. 78:83 ^1 0/0 .>. 84:89 ^2 0/0 .>. 90:95 ^3 0/0 .>. 96:101 ^4 0/0 .>. 102:107 ^5 0/0 .>. 108:113 ^0 0/0 .>. 114:119 ^1 0/0 .>. 120:125 ^2 0/0 .>. 126:127 ^3
0/1 ..>. 0:127 ^0
0/3 ..>. 0:35 ^0 0/0 ..>. 36:71 ^1 0/0 ..>. 72:107 ^2 0/0 ..>. 108:127 ^3
0/3f ..>. 0:5 ^0 0/3 ..>. 6:11 ^1 0/0 ..>. 12:17 ^2 0/0 ..>. 18:23 ^3 0/0 ..>. 24:29 ^4 0/0 ..>. 30:35 ^5 0/0 ..>. 36:41 ^0 0/0 ..>. 42:47 ^1 0/0 ..>. 48:53 ^2 0/0 ..>. 54:59 ^3 0/0 ..>. 60:65 ^4 0/0 ..>. 66:71 ^5 0/0 ..>. 72:77 ^0 0/0 ..>. 78:83 ^1 0/0 ..>. 84:89 ^2 0/0 ..>. 90:95 ^3 0/0 ..>. 96:101 ^4 0/0 ..>. 102:107 ^5 0/0 ..>. 108:113 ^0 0/0 ..>. 114:119 ^1 0/0 ..>. 120:125 ^2 0/0 ..>. 126:127 ^3
This is once again split into "rcu_sched" and "rcu_bh" portions,
and CONFIG_TREE_PREEMPT_RCU kernels will again have an additional
@ -240,13 +310,20 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
current grace period.
o The characters separated by the ">" indicate the state
of the blocked-tasks lists. A "T" preceding the ">"
of the blocked-tasks lists. A "G" preceding the ">"
indicates that at least one task blocked in an RCU
read-side critical section blocks the current grace
period, while a "." preceding the ">" indicates otherwise.
The character following the ">" indicates similarly for
the next grace period. A "T" should appear in this
field only for rcu-preempt.
period, while a "E" preceding the ">" indicates that
at least one task blocked in an RCU read-side critical
section blocks the current expedited grace period.
A "T" character following the ">" indicates that at
least one task is blocked within an RCU read-side
critical section, regardless of whether any current
grace period (expedited or normal) is inconvenienced.
A "." character appears if the corresponding condition
does not hold, so that "..>." indicates that no tasks
are blocked. In contrast, "GE>T" indicates maximal
inconvenience from blocked tasks.
o The numbers separated by the ":" are the range of CPUs
served by this struct rcu_node. This can be helpful
@ -328,6 +405,113 @@ o "nn" is the number of times that this CPU needed nothing. Alert
is due to short-circuit evaluation in rcu_pending().
The output of "cat rcu/rcutorture" looks as follows:
rcutorture test sequence: 0 (test in progress)
rcutorture update version number: 615
The first line shows the number of rcutorture tests that have completed
since boot. If a test is currently running, the "(test in progress)"
string will appear as shown above. The second line shows the number of
update cycles that the current test has started, or zero if there is
no test in progress.
The output of "cat rcu/rcuboost" looks as follows:
0:5 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=2f95 bt=300f
balk: nt=0 egt=989 bt=0 nb=0 ny=0 nos=16
6:7 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=2f95 bt=300f
balk: nt=0 egt=225 bt=0 nb=0 ny=0 nos=6
This information is output only for rcu_preempt. Each two-line entry
corresponds to a leaf rcu_node strcuture. The fields are as follows:
o "n:m" is the CPU-number range for the corresponding two-line
entry. In the sample output above, the first entry covers
CPUs zero through five and the second entry covers CPUs 6
and 7.
o "tasks=TNEB" gives the state of the various segments of the
rnp->blocked_tasks list:
"T" This indicates that there are some tasks that blocked
while running on one of the corresponding CPUs while
in an RCU read-side critical section.
"N" This indicates that some of the blocked tasks are preventing
the current normal (non-expedited) grace period from
completing.
"E" This indicates that some of the blocked tasks are preventing
the current expedited grace period from completing.
"B" This indicates that some of the blocked tasks are in
need of RCU priority boosting.
Each character is replaced with "." if the corresponding
condition does not hold.
o "kt" is the state of the RCU priority-boosting kernel
thread associated with the corresponding rcu_node structure.
The state can be one of the following:
"S" The kernel thread is stopped, in other words, all
CPUs corresponding to this rcu_node structure are
offline.
"R" The kernel thread is running.
"W" The kernel thread is waiting because there is no work
for it to do.
"Y" The kernel thread is yielding to avoid hogging CPU.
"?" Unknown value, indicates a bug.
o "ntb" is the number of tasks boosted.
o "neb" is the number of tasks boosted in order to complete an
expedited grace period.
o "nnb" is the number of tasks boosted in order to complete a
normal (non-expedited) grace period. When boosting a task
that was blocking both an expedited and a normal grace period,
it is counted against the expedited total above.
o "j" is the low-order 16 bits of the jiffies counter in
hexadecimal.
o "bt" is the low-order 16 bits of the value that the jiffies
counter will have when we next start boosting, assuming that
the current grace period does not end beforehand. This is
also in hexadecimal.
o "balk: nt" counts the number of times we didn't boost (in
other words, we balked) even though it was time to boost because
there were no blocked tasks to boost. This situation occurs
when there is one blocked task on one rcu_node structure and
none on some other rcu_node structure.
o "egt" counts the number of times we balked because although
there were blocked tasks, none of them were blocking the
current grace period, whether expedited or otherwise.
o "bt" counts the number of times we balked because boosting
had already been initiated for the current grace period.
o "nb" counts the number of times we balked because there
was at least one task blocking the current non-expedited grace
period that never had blocked. If it is already running, it
just won't help to boost its priority!
o "ny" counts the number of times we balked because it was
not yet time to start boosting.
o "nos" counts the number of times we balked for other
reasons, e.g., the grace period ended first.
CONFIG_TINY_RCU and CONFIG_TINY_PREEMPT_RCU debugfs Files and Formats
These implementations of RCU provides a single debugfs file under the
@ -394,9 +578,9 @@ o "neb" is the number of expedited grace periods that have had
o "nnb" is the number of normal grace periods that have had
to resort to RCU priority boosting since boot.
o "j" is the low-order 12 bits of the jiffies counter in hexadecimal.
o "j" is the low-order 16 bits of the jiffies counter in hexadecimal.
o "bt" is the low-order 12 bits of the value that the jiffies counter
o "bt" is the low-order 16 bits of the value that the jiffies counter
will have at the next time that boosting is scheduled to begin.
o In the line beginning with "normal balk", the fields are as follows:

View File

@ -714,10 +714,11 @@ Jeff Garzik, "Linux kernel patch submission format".
<http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/2005/03/31/>
<http://www.kroah.com/log/2005/07/08/>
<http://www.kroah.com/log/2005/10/19/>
<http://www.kroah.com/log/2006/01/11/>
<http://www.kroah.com/log/linux/maintainer.html>
<http://www.kroah.com/log/linux/maintainer-02.html>
<http://www.kroah.com/log/linux/maintainer-03.html>
<http://www.kroah.com/log/linux/maintainer-04.html>
<http://www.kroah.com/log/linux/maintainer-05.html>
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>

View File

@ -0,0 +1,397 @@
=====================================================================
SEC 4 Device Tree Binding
Copyright (C) 2008-2011 Freescale Semiconductor Inc.
CONTENTS
-Overview
-SEC 4 Node
-Job Ring Node
-Run Time Integrity Check (RTIC) Node
-Run Time Integrity Check (RTIC) Memory Node
-Secure Non-Volatile Storage (SNVS) Node
-Full Example
NOTE: the SEC 4 is also known as Freescale's Cryptographic Accelerator
Accelerator and Assurance Module (CAAM).
=====================================================================
Overview
DESCRIPTION
SEC 4 h/w can process requests from 2 types of sources.
1. DPAA Queue Interface (HW interface between Queue Manager & SEC 4).
2. Job Rings (HW interface between cores & SEC 4 registers).
High Speed Data Path Configuration:
HW interface between QM & SEC 4 and also BM & SEC 4, on DPAA-enabled parts
such as the P4080. The number of simultaneous dequeues the QI can make is
equal to the number of Descriptor Controller (DECO) engines in a particular
SEC version. E.g., the SEC 4.0 in the P4080 has 5 DECOs and can thus
dequeue from 5 subportals simultaneously.
Job Ring Data Path Configuration:
Each JR is located on a separate 4k page, they may (or may not) be made visible
in the memory partition devoted to a particular core. The P4080 has 4 JRs, so
up to 4 JRs can be configured; and all 4 JRs process requests in parallel.
=====================================================================
SEC 4 Node
Description
Node defines the base address of the SEC 4 block.
This block specifies the address range of all global
configuration registers for the SEC 4 block. It
also receives interrupts from the Run Time Integrity Check
(RTIC) function within the SEC 4 block.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0"
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration registers.
registers
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4.0 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
EXAMPLE
crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
};
=====================================================================
Job Ring (JR) Node
Child of the crypto node defines data processing interface to SEC 4
across the peripheral bus for purposes of processing
cryptographic descriptors. The specified address
range can be made visible to one (or more) cores.
The interrupt defined for this node is controlled within
the address range of this node.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-job-ring"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: Specifies a two JR parameters: an offset from
the parent physical address and the length the JR registers.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN mapping.
Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this JR. This property is
normally set by boot firmware.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
fsl,liodn = <0x081>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
=====================================================================
Run Time Integrity Check (RTIC) Node
Child node of the crypto node. Defines a register space that
contains up to 5 sets of addresses and their lengths (sizes) that
will be checked at run time. After an initial hash result is
calculated, these addresses are checked by HW to monitor any
change. If any memory is modified, a Security Violation is
triggered (see SNVS definition).
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-rtic".
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes. Must
have a value of 1.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes. Must have a value of 1.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies a two parameters:
an offset from the parent physical address and the length
the SEC4 registers.
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
EXAMPLE
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
};
=====================================================================
Run Time Integrity Check (RTIC) Memory Node
A child node that defines individual RTIC memory regions that are used to
perform run-time integrity check of memory areas that should not modified.
The node defines a register that contains the memory address &
length (combined) and a second register that contains the hash result
in big endian format.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-rtic-memory".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies two parameters:
an offset from the parent physical address and the length:
1. The location of the RTIC memory address & length registers.
2. The location RTIC hash result.
- fsl,rtic-region
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the HW address (36 bit address) for this region
followed by the length of the HW partition to be checked;
the address is represented as a 64 bit quantity followed
by a 32 bit length.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN
mapping. Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this RTIC memory region. This
property is normally set by boot firmware.
EXAMPLE
rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
fsl,liodn = <0x03c>;
fsl,rtic-region = <0x12345678 0x12345678 0x12345678>;
};
=====================================================================
Secure Non-Volatile Storage (SNVS) Node
Node defines address range and the associated
interrupt for the SNVS function. This function
monitors security state information & reports
security violations.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-mon".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration
registers.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
FULL EXAMPLE
crypto: crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================

View File

@ -0,0 +1,61 @@
CAN Device Tree Bindings
------------------------
2011 Freescale Semiconductor, Inc.
fsl,flexcan-v1.0 nodes
-----------------------
In addition to the required compatible-, reg- and interrupt-properties, you can
also specify which clock source shall be used for the controller.
CPI Clock- Can Protocol Interface Clock
This CLK_SRC bit of CTRL(control register) selects the clock source to
the CAN Protocol Interface(CPI) to be either the peripheral clock
(driven by the PLL) or the crystal oscillator clock. The selected clock
is the one fed to the prescaler to generate the Serial Clock (Sclock).
The PRESDIV field of CTRL(control register) controls a prescaler that
generates the Serial Clock (Sclock), whose period defines the
time quantum used to compose the CAN waveform.
Can Engine Clock Source
There are two sources for CAN clock
- Platform Clock It represents the bus clock
- Oscillator Clock
Peripheral Clock (PLL)
--------------
|
--------- -------------
| |CPI Clock | Prescaler | Sclock
| |---------------->| (1.. 256) |------------>
--------- -------------
| |
-------------- ---------------------CLK_SRC
Oscillator Clock
- fsl,flexcan-clock-source : CAN Engine Clock Source.This property selects
the peripheral clock. PLL clock is fed to the
prescaler to generate the Serial Clock (Sclock).
Valid values are "oscillator" and "platform"
"oscillator": CAN engine clock source is oscillator clock.
"platform" The CAN engine clock source is the bus clock
(platform clock).
- fsl,flexcan-clock-divider : for the reference and system clock, an additional
clock divider can be specified.
- clock-frequency: frequency required to calculate the bitrate for FlexCAN.
Note:
- v1.0 of flexcan-v1.0 represent the IP block version for P1010 SOC.
- P1010 does not have oscillator as the Clock Source.So the default
Clock Source is platform clock.
Examples:
can0@1c000 {
compatible = "fsl,flexcan-v1.0";
reg = <0x1c000 0x1000>;
interrupts = <48 0x2>;
interrupt-parent = <&mpic>;
fsl,flexcan-clock-source = "platform";
fsl,flexcan-clock-divider = <2>;
clock-frequency = <fixed by u-boot>;
};

View File

@ -0,0 +1,76 @@
Integrated Flash Controller
Properties:
- name : Should be ifc
- compatible : should contain "fsl,ifc". The version of the integrated
flash controller can be found in the IFC_REV register at
offset zero.
- #address-cells : Should be either two or three. The first cell is the
chipselect number, and the remaining cells are the
offset into the chipselect.
- #size-cells : Either one or two, depending on how large each chipselect
can be.
- reg : Offset and length of the register set for the device
- interrupts : IFC has two interrupts. The first one is the "common"
interrupt(CM_EVTER_STAT), and second is the NAND interrupt
(NAND_EVTER_STAT).
- ranges : Each range corresponds to a single chipselect, and covers
the entire access window as configured.
Child device nodes describe the devices connected to IFC such as NOR (e.g.
cfi-flash) and NAND (fsl,ifc-nand). There might be board specific devices
like FPGAs, CPLDs, etc.
Example:
ifc@ffe1e000 {
compatible = "fsl,ifc", "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
reg = <0x0 0xffe1e000 0 0x2000>;
interrupts = <16 2 19 2>;
/* NOR, NAND Flashes and CPLD on board */
ranges = <0x0 0x0 0x0 0xee000000 0x02000000
0x1 0x0 0x0 0xffa00000 0x00010000
0x3 0x0 0x0 0xffb00000 0x00020000>;
flash@0,0 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "cfi-flash";
reg = <0x0 0x0 0x2000000>;
bank-width = <2>;
device-width = <1>;
partition@0 {
/* 32MB for user data */
reg = <0x0 0x02000000>;
label = "NOR Data";
};
};
flash@1,0 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "fsl,ifc-nand";
reg = <0x1 0x0 0x10000>;
partition@0 {
/* This location must not be altered */
/* 1MB for u-boot Bootloader Image */
reg = <0x0 0x00100000>;
label = "NAND U-Boot Image";
read-only;
};
};
cpld@3,0 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "fsl,p1010rdb-cpld";
reg = <0x3 0x0 0x000001f>;
};
};

View File

@ -0,0 +1,38 @@
* Freescale MPIC timers
Required properties:
- compatible: "fsl,mpic-global-timer"
- reg : Contains two regions. The first is the main timer register bank
(GTCCRxx, GTBCRxx, GTVPRxx, GTDRxx). The second is the timer control
register (TCRx) for the group.
- fsl,available-ranges: use <start count> style section to define which
timer interrupts can be used. This property is optional; without this,
all timers within the group can be used.
- interrupts: one interrupt per timer in the group, in order, starting
with timer zero. If timer-available-ranges is present, only the
interrupts that correspond to available timers shall be present.
Example:
/* Note that this requires #interrupt-cells to be 4 */
timer0: timer@41100 {
compatible = "fsl,mpic-global-timer";
reg = <0x41100 0x100 0x41300 4>;
/* Another AMP partition is using timers 0 and 1 */
fsl,available-ranges = <2 2>;
interrupts = <2 0 3 0
3 0 3 0>;
};
timer1: timer@42100 {
compatible = "fsl,mpic-global-timer";
reg = <0x42100 0x100 0x42300 4>;
interrupts = <4 0 3 0
5 0 3 0
6 0 3 0
7 0 3 0>;
};

View File

@ -190,7 +190,7 @@ EXAMPLE 4
*/
timer0: timer@41100 {
compatible = "fsl,mpic-global-timer";
reg = <0x41100 0x100>;
reg = <0x41100 0x100 0x41300 4>;
interrupts = <0 0 3 0
1 0 3 0
2 0 3 0

View File

@ -127,7 +127,7 @@ Nintendo Wii device tree
- reg : should contain the SDHCI registers location and length
- interrupts : should contain the SDHCI interrupt
1.j) The Inter-Processsor Communication (IPC) node
1.j) The Inter-Processor Communication (IPC) node
Represent the Inter-Processor Communication interface. This interface
enables communications between the Broadway and the Starlet processors.

View File

@ -1,6 +1,8 @@
*.a
*.aux
*.bin
*.bz2
*.cis
*.cpio
*.csp
*.dsp
@ -8,6 +10,8 @@
*.elf
*.eps
*.fw
*.gcno
*.gcov
*.gen.S
*.gif
*.grep
@ -19,14 +23,20 @@
*.ko
*.log
*.lst
*.lzma
*.lzo
*.mo
*.moc
*.mod.c
*.o
*.o.*
*.order
*.orig
*.out
*.patch
*.pdf
*.png
*.pot
*.ps
*.rej
*.s
@ -39,16 +49,22 @@
*.tex
*.ver
*.xml
*.xz
*_MODULES
*_vga16.c
*~
\#*#
*.9
*.9.gz
.*
.*.d
.mm
53c700_d.h
CVS
ChangeSet
GPATH
GRTAGS
GSYMS
GTAGS
Image
Kerntypes
Module.markers
@ -57,15 +73,14 @@ PENDING
SCCS
System.map*
TAGS
aconf
af_names.h
aic7*reg.h*
aic7*reg_print.c*
aic7*seq.h*
aicasm
aicdb.h*
altivec1.c
altivec2.c
altivec4.c
altivec8.c
altivec*.c
asm-offsets.h
asm_offsets.h
autoconf.h*
@ -80,6 +95,7 @@ btfixupprep
build
bvmlinux
bzImage*
capability_names.h
capflags.c
classlist.h*
comp*.log
@ -88,7 +104,8 @@ conf
config
config-*
config_data.h*
config_data.gz*
config.mak
config.mak.autogen
conmakehash
consolemap_deftbl.c*
cpustr.h
@ -96,7 +113,9 @@ crc32table.h*
cscope.*
defkeymap.c
devlist.h*
dnotify_test
docproc
dslm
elf2ecoff
elfconfig.h*
evergreen_reg_safe.h
@ -105,6 +124,7 @@ flask.h
fore200e_mkfirm
fore200e_pca_fw.c*
gconf
gconf.glade.h
gen-devlist
gen_crc32table
gen_init_cpio
@ -112,11 +132,12 @@ generated
genheaders
genksyms
*_gray256.c
hpet_example
hugepage-mmap
hugepage-shm
ihex2fw
ikconfig.h*
inat-tables.c
initramfs_data.cpio
initramfs_data.cpio.gz
initramfs_list
int16.c
int1.c
@ -133,15 +154,19 @@ kxgettext
lkc_defs.h
lex.c
lex.*.c
linux
logo_*.c
logo_*_clut224.c
logo_*_mono.c
lxdialog
mach
mach-types
mach-types.h
machtypes.h
map
map_hugetlb
maui_boot.h
media
mconf
miboot*
mk_elfconfig
@ -150,23 +175,29 @@ mkbugboot
mkcpustr
mkdep
mkprep
mkregtable
mktables
mktree
modpost
modules.builtin
modules.order
modversions.h*
nconf
ncscope.*
offset.h
offsets.h
oui.c*
page-types
parse.c
parse.h
patches*
pca200e.bin
pca200e_ecd.bin2
piggy.gz
perf.data
perf.data.old
perf-archive
piggyback
piggy.gzip
piggy.S
pnmtologo
ppc_defs.h*
@ -177,10 +208,9 @@ r200_reg_safe.h
r300_reg_safe.h
r420_reg_safe.h
r600_reg_safe.h
raid6altivec*.c
raid6int*.c
raid6tables.c
recordmcount
relocs
rlim_names.h
rn50_reg_safe.h
rs600_reg_safe.h
rv515_reg_safe.h
@ -194,6 +224,7 @@ split-include
syscalltab.h
tables.c
tags
test_get_len
tftpboot.img
timeconst.h
times.h*
@ -210,10 +241,13 @@ vdso32.so.dbg
vdso64.lds
vdso64.so.dbg
version.h*
vmImage
vmlinux
vmlinux-*
vmlinux.aout
vmlinux.bin.all
vmlinux.lds
vmlinuz
voffset.h
vsyscall.lds
vsyscall_32.lds

View File

@ -3,24 +3,7 @@ Bus Types
Definition
~~~~~~~~~~
struct bus_type {
char * name;
struct subsystem subsys;
struct kset drivers;
struct kset devices;
struct bus_attribute * bus_attrs;
struct device_attribute * dev_attrs;
struct driver_attribute * drv_attrs;
int (*match)(struct device * dev, struct device_driver * drv);
int (*hotplug) (struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
int (*suspend)(struct device * dev, pm_message_t state);
int (*resume)(struct device * dev);
};
See the kerneldoc for the struct bus_type.
int bus_register(struct bus_type * bus);

View File

@ -27,22 +27,7 @@ The device class structure looks like:
typedef int (*devclass_add)(struct device *);
typedef void (*devclass_remove)(struct device *);
struct device_class {
char * name;
rwlock_t lock;
u32 devnum;
struct list_head node;
struct list_head drivers;
struct list_head intf_list;
struct driver_dir_entry dir;
struct driver_dir_entry device_dir;
struct driver_dir_entry driver_dir;
devclass_add add_device;
devclass_remove remove_device;
};
See the kerneldoc for the struct class.
A typical device class definition would look like:

View File

@ -2,96 +2,7 @@
The Basic Device Structure
~~~~~~~~~~~~~~~~~~~~~~~~~~
struct device {
struct list_head g_list;
struct list_head node;
struct list_head bus_list;
struct list_head driver_list;
struct list_head intf_list;
struct list_head children;
struct device * parent;
char name[DEVICE_NAME_SIZE];
char bus_id[BUS_ID_SIZE];
spinlock_t lock;
atomic_t refcount;
struct bus_type * bus;
struct driver_dir_entry dir;
u32 class_num;
struct device_driver *driver;
void *driver_data;
void *platform_data;
u32 current_state;
unsigned char *saved_state;
void (*release)(struct device * dev);
};
Fields
~~~~~~
g_list: Node in the global device list.
node: Node in device's parent's children list.
bus_list: Node in device's bus's devices list.
driver_list: Node in device's driver's devices list.
intf_list: List of intf_data. There is one structure allocated for
each interface that the device supports.
children: List of child devices.
parent: *** FIXME ***
name: ASCII description of device.
Example: " 3Com Corporation 3c905 100BaseTX [Boomerang]"
bus_id: ASCII representation of device's bus position. This
field should be a name unique across all devices on the
bus type the device belongs to.
Example: PCI bus_ids are in the form of
<bus number>:<slot number>.<function number>
This name is unique across all PCI devices in the system.
lock: Spinlock for the device.
refcount: Reference count on the device.
bus: Pointer to struct bus_type that device belongs to.
dir: Device's sysfs directory.
class_num: Class-enumerated value of the device.
driver: Pointer to struct device_driver that controls the device.
driver_data: Driver-specific data.
platform_data: Platform data specific to the device.
Example: for devices on custom boards, as typical of embedded
and SOC based hardware, Linux often uses platform_data to point
to board-specific structures describing devices and how they
are wired. That can include what ports are available, chip
variants, which GPIO pins act in what additional roles, and so
on. This shrinks the "Board Support Packages" (BSPs) and
minimizes board-specific #ifdefs in drivers.
current_state: Current power state of the device.
saved_state: Pointer to saved state of the device. This is usable by
the device driver controlling the device.
release: Callback to free the device after all references have
gone away. This should be set by the allocator of the
device (i.e. the bus driver that discovered the device).
See the kerneldoc for the struct device.
Programming Interface

View File

@ -1,23 +1,7 @@
Device Drivers
struct device_driver {
char * name;
struct bus_type * bus;
struct completion unloaded;
struct kobject kobj;
list_t devices;
struct module *owner;
int (*probe) (struct device * dev);
int (*remove) (struct device * dev);
int (*suspend) (struct device * dev, pm_message_t state);
int (*resume) (struct device * dev);
};
See the kerneldoc for the struct device_driver.
Allocation

View File

@ -35,17 +35,6 @@ Who: Luis R. Rodriguez <lrodriguez@atheros.com>
---------------------------
What: AR9170USB
When: 2.6.40
Why: This driver is deprecated and the firmware is no longer
maintained. The replacement driver "carl9170" has been
around for a while, so the devices are still supported.
Who: Christian Lamparter <chunkeey@googlemail.com>
---------------------------
What: IRQF_SAMPLE_RANDOM
Check: IRQF_SAMPLE_RANDOM
When: July 2009
@ -226,7 +215,7 @@ Who: Zhang Rui <rui.zhang@intel.com>
What: CONFIG_ACPI_PROCFS_POWER
When: 2.6.39
Why: sysfs I/F for ACPI power devices, including AC and Battery,
has been working in upstream kenrel since 2.6.24, Sep 2007.
has been working in upstream kernel since 2.6.24, Sep 2007.
In 2.6.37, we make the sysfs I/F always built in and this option
disabled by default.
Remove this option and the ACPI power procfs interface in 2.6.39.
@ -405,16 +394,6 @@ Who: anybody or Florian Mickler <florian@mickler.org>
----------------------------
What: capifs
When: February 2011
Files: drivers/isdn/capi/capifs.*
Why: udev fully replaces this special file system that only contains CAPI
NCCI TTY device nodes. User space (pppdcapiplugin) works without
noticing the difference.
Who: Jan Kiszka <jan.kiszka@web.de>
----------------------------
What: KVM paravirt mmu host support
When: January 2011
Why: The paravirt mmu host support is slower than non-paravirt mmu, both
@ -460,14 +439,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
----------------------------
What: The acpi_sleep=s4_nonvs command line option
When: 2.6.37
Files: arch/x86/kernel/acpi/sleep.c
Why: superseded by acpi_sleep=nonvs
Who: Rafael J. Wysocki <rjw@sisk.pl>
----------------------------
What: PCI DMA unmap state API
When: August 2012
Why: PCI DMA unmap state API (include/linux/pci-dma.h) was replaced
@ -580,3 +551,26 @@ Why: These legacy callbacks should no longer be used as i2c-core offers
Who: Jean Delvare <khali@linux-fr.org>
----------------------------
What: Support for UVCIOC_CTRL_ADD in the uvcvideo driver
When: 2.6.42
Why: The information passed to the driver by this ioctl is now queried
dynamically from the device.
Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
----------------------------
What: Support for UVCIOC_CTRL_MAP_OLD in the uvcvideo driver
When: 2.6.42
Why: Used only by applications compiled against older driver versions.
Superseded by UVCIOC_CTRL_MAP which supports V4L2 menu controls.
Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
----------------------------
What: Support for UVCIOC_CTRL_GET and UVCIOC_CTRL_SET in the uvcvideo driver
When: 2.6.42
Why: Superseded by the UVCIOC_CTRL_QUERY ioctl.
Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
----------------------------

View File

@ -836,7 +836,6 @@ Provides counts of softirq handlers serviced since boot time, for each cpu.
TASKLET: 0 0 0 290
SCHED: 27035 26983 26971 26746
HRTIMER: 0 0 0 0
RCU: 1678 1769 2178 2250
1.3 IDE devices in /proc/ide

View File

@ -0,0 +1,119 @@
HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
==================================================================
The hidraw driver provides a raw interface to USB and Bluetooth Human
Interface Devices (HIDs). It differs from hiddev in that reports sent and
received are not parsed by the HID parser, but are sent to and received from
the device unmodified.
Hidraw should be used if the userspace application knows exactly how to
communicate with the hardware device, and is able to construct the HID
reports manually. This is often the case when making userspace drivers for
custom HID devices.
Hidraw is also useful for communicating with non-conformant HID devices
which send and receive data in a way that is inconsistent with their report
descriptors. Because hiddev parses reports which are sent and received
through it, checking them against the device's report descriptor, such
communication with these non-conformant devices is impossible using hiddev.
Hidraw is the only alternative, short of writing a custom kernel driver, for
these non-conformant devices.
A benefit of hidraw is that its use by userspace applications is independent
of the underlying hardware type. Currently, Hidraw is implemented for USB
and Bluetooth. In the future, as new hardware bus types are developed which
use the HID specification, hidraw will be expanded to add support for these
new bus types.
Hidraw uses a dynamic major number, meaning that udev should be relied on to
create hidraw device nodes. Udev will typically create the device nodes
directly under /dev (eg: /dev/hidraw0). As this location is distribution-
and udev rule-dependent, applications should use libudev to locate hidraw
devices attached to the system. There is a tutorial on libudev with a
working example at:
http://www.signal11.us/oss/udev/
The HIDRAW API
---------------
read()
-------
read() will read a queued report received from the HID device. On USB
devices, the reports read using read() are the reports sent from the device
on the INTERRUPT IN endpoint. By default, read() will block until there is
a report available to be read. read() can be made non-blocking, by passing
the O_NONBLOCK flag to open(), or by setting the O_NONBLOCK flag using
fcntl().
On a device which uses numbered reports, the first byte of the returned data
will be the report number; the report data follows, beginning in the second
byte. For devices which do not use numbered reports, the report data
will begin at the first byte.
write()
--------
The write() function will write a report to the device. For USB devices, if
the device has an INTERRUPT OUT endpoint, the report will be sent on that
endpoint. If it does not, the report will be sent over the control endpoint,
using a SET_REPORT transfer.
The first byte of the buffer passed to write() should be set to the report
number. If the device does not use numbered reports, the first byte should
be set to 0. The report data itself should begin at the second byte.
ioctl()
--------
Hidraw supports the following ioctls:
HIDIOCGRDESCSIZE: Get Report Descriptor Size
This ioctl will get the size of the device's report descriptor.
HIDIOCGRDESC: Get Report Descriptor
This ioctl returns the device's report descriptor using a
hidraw_report_descriptor struct. Make sure to set the size field of the
hidraw_report_descriptor struct to the size returned from HIDIOCGRDESCSIZE.
HIDIOCGRAWINFO: Get Raw Info
This ioctl will return a hidraw_devinfo struct containing the bus type, the
vendor ID (VID), and product ID (PID) of the device. The bus type can be one
of:
BUS_USB
BUS_HIL
BUS_BLUETOOTH
BUS_VIRTUAL
which are defined in linux/input.h.
HIDIOCGRAWNAME(len): Get Raw Name
This ioctl returns a string containing the vendor and product strings of
the device. The returned string is Unicode, UTF-8 encoded.
HIDIOCGRAWPHYS(len): Get Physical Address
This ioctl returns a string representing the physical address of the device.
For USB devices, the string contains the physical path to the device (the
USB controller, hubs, ports, etc). For Bluetooth devices, the string
contains the hardware (MAC) address of the device.
HIDIOCSFEATURE(len): Send a Feature Report
This ioctl will send a feature report to the device. Per the HID
specification, feature reports are always sent using the control endpoint.
Set the first byte of the supplied buffer to the report number. For devices
which do not use numbered reports, set the first byte to 0. The report data
begins in the second byte. Make sure to set len accordingly, to one more
than the length of the report (to account for the report number).
HIDIOCGFEATURE(len): Get a Feature Report
This ioctl will request a feature report from the device using the control
endpoint. The first byte of the supplied buffer should be set to the report
number of the requested report. For devices which do not use numbered
reports, set the first byte to 0. The report will be returned starting at
the first byte of the buffer (ie: the report number is not returned).
Example
---------
In samples/, find hid-example.c, which shows examples of read(), write(),
and all the ioctls for hidraw. The code may be used by anyone for any
purpose, and can serve as a starting point for developing applications using
hidraw.
Document by:
Alan Ott <alan@signal11.us>, Signal 11 Software

View File

@ -0,0 +1,60 @@
Kernel driver adm1275
=====================
Supported chips:
* Analog Devices ADM1275
Prefix: 'adm1275'
Addresses scanned: -
Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1275.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
This driver supports hardware montoring for Analog Devices ADM1275 Hot-Swap
Controller and Digital Power Monitor.
The ADM1275 is a hot-swap controller that allows a circuit board to be removed
from or inserted into a live backplane. It also features current and voltage
readback via an integrated 12-bit analog-to-digital converter (ADC), accessed
using a PMBus. interface.
The driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Platform data support
---------------------
The driver supports standard PMBus driver platform data. Please see
Documentation/hwmon/pmbus for details.
Sysfs entries
-------------
The following attributes are supported. Limits are read-write; all other
attributes are read-only.
in1_label "vin1" or "vout1" depending on chip variant and
configuration.
in1_input Measured voltage. From READ_VOUT register.
in1_min Minumum Voltage. From VOUT_UV_WARN_LIMIT register.
in1_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
in1_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
in1_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
curr1_label "iout1"
curr1_input Measured current. From READ_IOUT register.
curr1_max Maximum current. From IOUT_OC_WARN_LIMIT register.
curr1_max_alarm Current high alarm. From IOUT_OC_WARN_LIMIT register.

View File

@ -15,8 +15,13 @@ Author: Rudolf Marek
Description
-----------
This driver permits reading the DTS (Digital Temperature Sensor) embedded
inside Intel CPUs. This driver can read both the per-core and per-package
temperature using the appropriate sensors. The per-package sensor is new;
as of now, it is present only in the SandyBridge platform. The driver will
show the temperature of all cores inside a package under a single device
directory inside hwmon.
This driver permits reading temperature sensor embedded inside Intel Core CPU.
Temperature is measured in degrees Celsius and measurement resolution is
1 degree C. Valid temperatures are from 0 to TjMax degrees C, because
the actual value of temperature register is in fact a delta from TjMax.
@ -27,13 +32,15 @@ mechanism will perform actions to forcibly cool down the processor. Alarm
may be raised, if the temperature grows enough (more than TjMax) to trigger
the Out-Of-Spec bit. Following table summarizes the exported sysfs files:
temp1_input - Core temperature (in millidegrees Celsius).
temp1_max - All cooling devices should be turned on (on Core2).
temp1_crit - Maximum junction temperature (in millidegrees Celsius).
temp1_crit_alarm - Set when Out-of-spec bit is set, never clears.
All Sysfs entries are named with their core_id (represented here by 'X').
tempX_input - Core temperature (in millidegrees Celsius).
tempX_max - All cooling devices should be turned on (on Core2).
tempX_crit - Maximum junction temperature (in millidegrees Celsius).
tempX_crit_alarm - Set when Out-of-spec bit is set, never clears.
Correct CPU operation is no longer guaranteed.
temp1_label - Contains string "Core X", where X is processor
number.
tempX_label - Contains string "Core X", where X is processor
number. For Package temp, this will be "Physical id Y",
where Y is the package number.
The TjMax temperature is set to 85 degrees C if undocumented model specific
register (UMSR) 0xee has bit 30 set. If not the TjMax is 100 degrees C as

View File

@ -0,0 +1,98 @@
Kernel driver max16065
======================
Supported chips:
* Maxim MAX16065, MAX16066
Prefixes: 'max16065', 'max16066'
Addresses scanned: -
Datasheet:
http://datasheets.maxim-ic.com/en/ds/MAX16065-MAX16066.pdf
* Maxim MAX16067
Prefix: 'max16067'
Addresses scanned: -
Datasheet:
http://datasheets.maxim-ic.com/en/ds/MAX16067.pdf
* Maxim MAX16068
Prefix: 'max16068'
Addresses scanned: -
Datasheet:
http://datasheets.maxim-ic.com/en/ds/MAX16068.pdf
* Maxim MAX16070/MAX16071
Prefixes: 'max16070', 'max16071'
Addresses scanned: -
Datasheet:
http://datasheets.maxim-ic.com/en/ds/MAX16070-MAX16071.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
[From datasheets] The MAX16065/MAX16066 flash-configurable system managers
monitor and sequence multiple system voltages. The MAX16065/MAX16066 can also
accurately monitor (+/-2.5%) one current channel using a dedicated high-side
current-sense amplifier. The MAX16065 manages up to twelve system voltages
simultaneously, and the MAX16066 manages up to eight supply voltages.
The MAX16067 flash-configurable system manager monitors and sequences multiple
system voltages. The MAX16067 manages up to six system voltages simultaneously.
The MAX16068 flash-configurable system manager monitors and manages up to six
system voltages simultaneously.
The MAX16070/MAX16071 flash-configurable system monitors supervise multiple
system voltages. The MAX16070/MAX16071 can also accurately monitor (+/-2.5%)
one current channel using a dedicated high-side current-sense amplifier. The
MAX16070 monitors up to twelve system voltages simultaneously, and the MAX16071
monitors up to eight supply voltages.
Each monitored channel has its own low and high critical limits. MAX16065,
MAX16066, MAX16070, and MAX16071 support an additional limit which is
configurable as either low or high secondary limit. MAX16065, MAX16066,
MAX16070, and MAX16071 also support supply current monitoring.
Usage Notes
-----------
This driver does not probe for devices, since there is no register which
can be safely used to identify the chip. You will have to instantiate
the devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Sysfs entries
-------------
in[0-11]_input Input voltage measurements.
in12_input Voltage on CSP (Current Sense Positive) pin.
Only if the chip supports current sensing and if
current sensing is enabled.
in[0-11]_min Low warning limit.
Supported on MAX16065, MAX16066, MAX16070, and MAX16071
only.
in[0-11]_max High warning limit.
Supported on MAX16065, MAX16066, MAX16070, and MAX16071
only.
Either low or high warning limits are supported
(depending on chip configuration), but not both.
in[0-11]_lcrit Low critical limit.
in[0-11]_crit High critical limit.
in[0-11]_alarm Input voltage alarm.
curr1_input Current sense input; only if the chip supports current
sensing and if current sensing is enabled.
Displayed current assumes 0.001 Ohm current sense
resistor.
curr1_alarm Overcurrent alarm; only if the chip supports current
sensing and if current sensing is enabled.

View File

@ -0,0 +1,21 @@
Kernel driver max6642
=====================
Supported chips:
* Maxim MAX6642
Prefix: 'max6642'
Addresses scanned: I2C 0x48-0x4f
Datasheet: Publicly available at the Maxim website
http://datasheets.maxim-ic.com/en/ds/MAX6642.pdf
Authors:
Per Dalen <per.dalen@appeartv.com>
Description
-----------
The MAX6642 is a digital temperature sensor. It senses its own temperature as
well as the temperature on one external diode.
All temperature values are given in degrees Celsius. Resolution
is 0.25 degree for the local temperature and for the remote temperature.

View File

@ -1,36 +0,0 @@
Kernel driver pkgtemp
======================
Supported chips:
* Intel family
Prefix: 'pkgtemp'
CPUID:
Datasheet: Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3A: System Programming Guide
Author: Fenghua Yu
Description
-----------
This driver permits reading package level temperature sensor embedded inside
Intel CPU package. The sensors can be in core, uncore, memory controller, or
other components in a package. The feature is first implemented in Intel Sandy
Bridge platform.
Temperature is measured in degrees Celsius and measurement resolution is
1 degree C. Valid temperatures are from 0 to TjMax degrees C, because the actual
value of temperature register is in fact a delta from TjMax.
Temperature known as TjMax is the maximum junction temperature of package.
We get this from MSR_IA32_TEMPERATURE_TARGET. If the MSR is not accessible,
we define TjMax as 100 degrees Celsius. At this temperature, protection
mechanism will perform actions to forcibly cool down the package. Alarm
may be raised, if the temperature grows enough (more than TjMax) to trigger
the Out-Of-Spec bit. Following table summarizes the exported sysfs files:
temp1_input - Package temperature (in millidegrees Celsius).
temp1_max - All cooling devices should be turned on.
temp1_crit - Maximum junction temperature (in millidegrees Celsius).
temp1_crit_alarm - Set when Out-of-spec bit is set, never clears.
Correct CPU operation is no longer guaranteed.

74
Documentation/hwmon/sht15 Normal file
View File

@ -0,0 +1,74 @@
Kernel driver sht15
===================
Authors:
* Wouter Horre
* Jonathan Cameron
* Vivien Didelot <vivien.didelot@savoirfairelinux.com>
* Jerome Oufella <jerome.oufella@savoirfairelinux.com>
Supported chips:
* Sensirion SHT10
Prefix: 'sht10'
* Sensirion SHT11
Prefix: 'sht11'
* Sensirion SHT15
Prefix: 'sht15'
* Sensirion SHT71
Prefix: 'sht71'
* Sensirion SHT75
Prefix: 'sht75'
Datasheet: Publicly available at the Sensirion website
http://www.sensirion.ch/en/pdf/product_information/Datasheet-humidity-sensor-SHT1x.pdf
Description
-----------
The SHT10, SHT11, SHT15, SHT71, and SHT75 are humidity and temperature
sensors.
The devices communicate using two GPIO lines.
Supported resolutions for the measurements are 14 bits for temperature and 12
bits for humidity, or 12 bits for temperature and 8 bits for humidity.
The humidity calibration coefficients are programmed into an OTP memory on the
chip. These coefficients are used to internally calibrate the signals from the
sensors. Disabling the reload of those coefficients allows saving 10ms for each
measurement and decrease power consumption, while loosing on precision.
Some options may be set directly in the sht15_platform_data structure
or via sysfs attributes.
Notes:
* The regulator supply name is set to "vcc".
* If a CRC validation fails, a soft reset command is sent, which resets
status register to its hardware default value, but the driver will try to
restore the previous device configuration.
Platform data
-------------
* checksum:
set it to true to enable CRC validation of the readings (default to false).
* no_otp_reload:
flag to indicate not to reload from OTP (default to false).
* low_resolution:
flag to indicate the temp/humidity resolution to use (default to false).
Sysfs interface
---------------
* temp1_input: temperature input
* humidity1_input: humidity input
* heater_enable: write 1 in this attribute to enable the on-chip heater,
0 to disable it. Be careful not to enable the heater
for too long.
* temp1_fault: if 1, this means that the voltage is low (below 2.47V) and
measurement may be invalid.
* humidity1_fault: same as temp1_fault.

110
Documentation/hwmon/ucd9000 Normal file
View File

@ -0,0 +1,110 @@
Kernel driver ucd9000
=====================
Supported chips:
* TI UCD90120, UCD90124, UCD9090, and UCD90910
Prefixes: 'ucd90120', 'ucd90124', 'ucd9090', 'ucd90910'
Addresses scanned: -
Datasheets:
http://focus.ti.com/lit/ds/symlink/ucd90120.pdf
http://focus.ti.com/lit/ds/symlink/ucd90124.pdf
http://focus.ti.com/lit/ds/symlink/ucd9090.pdf
http://focus.ti.com/lit/ds/symlink/ucd90910.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
From datasheets:
The UCD90120 Power Supply Sequencer and System Health Monitor monitors and
sequences up to 12 independent voltage rails. The device integrates a 12-bit
ADC with a 2.5V internal reference for monitoring up to 13 power supply voltage,
current, or temperature inputs.
The UCD90124 is a 12-rail PMBus/I2C addressable power-supply sequencer and
system-health monitor. The device integrates a 12-bit ADC for monitoring up to
13 power-supply voltage, current, or temperature inputs. Twenty-six GPIO pins
can be used for power supply enables, power-on reset signals, external
interrupts, cascading, or other system functions. Twelve of these pins offer PWM
functionality. Using these pins, the UCD90124 offers support for fan control,
margining, and general-purpose PWM functions.
The UCD9090 is a 10-rail PMBus/I2C addressable power-supply sequencer and
monitor. The device integrates a 12-bit ADC for monitoring up to 10 power-supply
voltage inputs. Twenty-three GPIO pins can be used for power supply enables,
power-on reset signals, external interrupts, cascading, or other system
functions. Ten of these pins offer PWM functionality. Using these pins, the
UCD9090 offers support for margining, and general-purpose PWM functions.
The UCD90910 is a ten-rail I2C / PMBus addressable power-supply sequencer and
system-health monitor. The device integrates a 12-bit ADC for monitoring up to
13 power-supply voltage, current, or temperature inputs.
This driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Platform data support
---------------------
The driver supports standard PMBus driver platform data. Please see
Documentation/hwmon/pmbus for details.
Sysfs entries
-------------
The following attributes are supported. Limits are read-write; all other
attributes are read-only.
in[1-12]_label "vout[1-12]".
in[1-12]_input Measured voltage. From READ_VOUT register.
in[1-12]_min Minumum Voltage. From VOUT_UV_WARN_LIMIT register.
in[1-12]_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
in[1-12]_lcrit Critical minumum Voltage. VOUT_UV_FAULT_LIMIT register.
in[1-12]_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
in[1-12]_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
in[1-12]_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
in[1-12]_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
in[1-12]_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
curr[1-12]_label "iout[1-12]".
curr[1-12]_input Measured current. From READ_IOUT register.
curr[1-12]_max Maximum current. From IOUT_OC_WARN_LIMIT register.
curr[1-12]_lcrit Critical minumum output current. From IOUT_UC_FAULT_LIMIT
register.
curr[1-12]_crit Critical maximum current. From IOUT_OC_FAULT_LIMIT register.
curr[1-12]_max_alarm Current high alarm. From IOUT_OC_WARNING status.
curr[1-12]_crit_alarm Current critical high alarm. From IOUT_OC_FAULT status.
For each attribute index, either voltage or current is
reported, but not both. If voltage or current is
reported depends on the chip configuration.
temp[1-2]_input Measured temperatures. From READ_TEMPERATURE_1 and
READ_TEMPERATURE_2 registers.
temp[1-2]_max Maximum temperature. From OT_WARN_LIMIT register.
temp[1-2]_crit Critical high temperature. From OT_FAULT_LIMIT register.
temp[1-2]_max_alarm Temperature high alarm.
temp[1-2]_crit_alarm Temperature critical high alarm.
fan[1-4]_input Fan RPM.
fan[1-4]_alarm Fan alarm.
fan[1-4]_fault Fan fault.
Fan attributes are only available on chips supporting
fan control (UCD90124, UCD90910). Attribute files are
created only for enabled fans.
Note that even though UCD90910 supports up to 10 fans,
only up to four fans are currently supported.

112
Documentation/hwmon/ucd9200 Normal file
View File

@ -0,0 +1,112 @@
Kernel driver ucd9200
=====================
Supported chips:
* TI UCD9220, UCD9222, UCD9224, UCD9240, UCD9244, UCD9246, and UCD9248
Prefixes: 'ucd9220', 'ucd9222', 'ucd9224', 'ucd9240', 'ucd9244', 'ucd9246',
'ucd9248'
Addresses scanned: -
Datasheets:
http://focus.ti.com/lit/ds/symlink/ucd9220.pdf
http://focus.ti.com/lit/ds/symlink/ucd9222.pdf
http://focus.ti.com/lit/ds/symlink/ucd9224.pdf
http://focus.ti.com/lit/ds/symlink/ucd9240.pdf
http://focus.ti.com/lit/ds/symlink/ucd9244.pdf
http://focus.ti.com/lit/ds/symlink/ucd9246.pdf
http://focus.ti.com/lit/ds/symlink/ucd9248.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
[From datasheets] UCD9220, UCD9222, UCD9224, UCD9240, UCD9244, UCD9246, and
UCD9248 are multi-rail, multi-phase synchronous buck digital PWM controllers
designed for non-isolated DC/DC power applications. The devices integrate
dedicated circuitry for DC/DC loop management with flash memory and a serial
interface to support configuration, monitoring and management.
This driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Platform data support
---------------------
The driver supports standard PMBus driver platform data. Please see
Documentation/hwmon/pmbus for details.
Sysfs entries
-------------
The following attributes are supported. Limits are read-write; all other
attributes are read-only.
in1_label "vin".
in1_input Measured voltage. From READ_VIN register.
in1_min Minumum Voltage. From VIN_UV_WARN_LIMIT register.
in1_max Maximum voltage. From VIN_OV_WARN_LIMIT register.
in1_lcrit Critical minumum Voltage. VIN_UV_FAULT_LIMIT register.
in1_crit Critical maximum voltage. From VIN_OV_FAULT_LIMIT register.
in1_min_alarm Voltage low alarm. From VIN_UV_WARNING status.
in1_max_alarm Voltage high alarm. From VIN_OV_WARNING status.
in1_lcrit_alarm Voltage critical low alarm. From VIN_UV_FAULT status.
in1_crit_alarm Voltage critical high alarm. From VIN_OV_FAULT status.
in[2-5]_label "vout[1-4]".
in[2-5]_input Measured voltage. From READ_VOUT register.
in[2-5]_min Minumum Voltage. From VOUT_UV_WARN_LIMIT register.
in[2-5]_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
in[2-5]_lcrit Critical minumum Voltage. VOUT_UV_FAULT_LIMIT register.
in[2-5]_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
in[2-5]_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
in[2-5]_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
in[2-5]_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
in[2-5]_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
curr1_label "iin".
curr1_input Measured current. From READ_IIN register.
curr[2-5]_label "iout[1-4]".
curr[2-5]_input Measured current. From READ_IOUT register.
curr[2-5]_max Maximum current. From IOUT_OC_WARN_LIMIT register.
curr[2-5]_lcrit Critical minumum output current. From IOUT_UC_FAULT_LIMIT
register.
curr[2-5]_crit Critical maximum current. From IOUT_OC_FAULT_LIMIT register.
curr[2-5]_max_alarm Current high alarm. From IOUT_OC_WARNING status.
curr[2-5]_crit_alarm Current critical high alarm. From IOUT_OC_FAULT status.
power1_input Measured input power. From READ_PIN register.
power1_label "pin"
power[2-5]_input Measured output power. From READ_POUT register.
power[2-5]_label "pout[1-4]"
The number of output voltage, current, and power
attribute sets is determined by the number of enabled
rails. See chip datasheets for details.
temp[1-5]_input Measured temperatures. From READ_TEMPERATURE_1 and
READ_TEMPERATURE_2 registers.
temp1 is the chip internal temperature. temp[2-5] are
rail temperatures. temp[2-5] attributes are only
created for enabled rails. See chip datasheets for
details.
temp[1-5]_max Maximum temperature. From OT_WARN_LIMIT register.
temp[1-5]_crit Critical high temperature. From OT_FAULT_LIMIT register.
temp[1-5]_max_alarm Temperature high alarm.
temp[1-5]_crit_alarm Temperature critical high alarm.
fan1_input Fan RPM. ucd9240 only.
fan1_alarm Fan alarm. ucd9240 only.
fan1_fault Fan fault. ucd9240 only.

View File

@ -166,7 +166,6 @@ Code Seq#(hex) Include File Comments
'T' all arch/x86/include/asm/ioctls.h conflict!
'T' C0-DF linux/if_tun.h conflict!
'U' all sound/asound.h conflict!
'U' 00-0F drivers/media/video/uvc/uvcvideo.h conflict!
'U' 00-CF linux/uinput.h conflict!
'U' 00-EF linux/usbdevice_fs.h
'U' C0-CF drivers/bluetooth/hci_uart.h
@ -259,6 +258,7 @@ Code Seq#(hex) Include File Comments
't' 80-8F linux/isdn_ppp.h
't' 90 linux/toshiba.h
'u' 00-1F linux/smb_fs.h gone
'u' 20-3F linux/uvcvideo.h USB video class host driver
'v' 00-1F linux/ext2_fs.h conflict!
'v' 00-1F linux/fs.h conflict!
'v' 00-0F linux/sonypi.h conflict!

View File

@ -11,14 +11,14 @@ for non English (read: Japanese) speakers and is not intended as a
fork. So if you have any comments or updates for this file, please try
to update the original English file first.
Last Updated: 2008/10/24
Last Updated: 2011/03/31
==================================
これは、
linux-2.6.28/Documentation/HOWTO
linux-2.6.38/Documentation/HOWTO
の和訳です。
翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
翻訳日: 2008/10/24
翻訳日: 2011/3/28
翻訳者: Tsugikazu Shibata <tshibata at ab dot jp dot nec dot com>
校正者: 松倉さん <nbh--mats at nifty dot com>
小林 雅典さん (Masanori Kobayasi) <zap03216 at nifty dot ne dot jp>
@ -256,8 +256,8 @@ Linux カーネルの開発プロセスは現在幾つかの異なるメイン
- メインの 2.6.x カーネルツリー
- 2.6.x.y -stable カーネルツリー
- 2.6.x -git カーネルパッチ
- 2.6.x -mm カーネルパッチ
- サブシステム毎のカーネルツリーとパッチ
- 統合テストのための 2.6.x -next カーネルツリー
2.6.x カーネルツリー
-----------------
@ -268,9 +268,9 @@ Linux カーネルの開発プロセスは現在幾つかの異なるメイン
- 新しいカーネルがリリースされた直後に、2週間の特別期間が設けられ、
この期間中に、メンテナ達は Linus に大きな差分を送ることができます。
このような差分は通常 -mm カーネルに数週間含まれてきたパッチです。
このような差分は通常 -next カーネルに数週間含まれてきたパッチです。
大きな変更は git(カーネルのソース管理ツール、詳細は
http://git.or.cz/ 参照) を使って送るのが好ましいやり方ですが、パッ
http://git-scm.com/ 参照) を使って送るのが好ましいやり方ですが、パッ
チファイルの形式のまま送るのでも十分です。
- 2週間後、-rc1 カーネルがリリースされ、この後にはカーネル全体の安定
@ -333,86 +333,44 @@ git リポジトリで管理されているLinus のカーネルツリーの毎
れは -rc カーネルと比べて、パッチが大丈夫かどうかも確認しないで自動的
に生成されるので、より実験的です。
2.6.x -mm カーネルパッチ
------------------------
Andrew Morton によってリリースされる実験的なカーネルパッチ群です。
Andrew は個別のサブシステムカーネルツリーとパッチを全て集めてきて
linux-kernel メーリングリストで収集された多数のパッチと同時に一つにま
とめます。
このツリーは新機能とパッチが検証される場となります。ある期間の間パッチ
が -mm に入って価値を証明されたら、Andrew やサブシステムメンテナが、
メインラインへ入れるように Linus にプッシュします。
メインカーネルツリーに含めるために Linus に送る前に、すべての新しいパッ
チが -mm ツリーでテストされることが強く推奨されています。マージウィン
ドウが開く前に -mm ツリーに現れなかったパッチはメインラインにマージさ
れることは困難になります。
これらのカーネルは安定して動作すべきシステムとして使うのには適切ではあ
りませんし、カーネルブランチの中でももっとも動作にリスクが高いものです。
もしあなたが、カーネル開発プロセスの支援をしたいと思っているのであれば、
どうぞこれらのカーネルリリースをテストに使ってみて、そしてもし問題があ
れば、またもし全てが正しく動作したとしても、linux-kernel メーリングリ
ストにフィードバックを提供してください。
すべての他の実験的パッチに加えて、これらのカーネルは通常リリース時点で
メインラインの -git カーネルに含まれる全ての変更も含んでいます。
-mm カーネルは決まったスケジュールではリリースされません、しかし通常幾
つかの -mm カーネル (1 から 3 が普通)が各-rc カーネルの間にリリースさ
れます。
サブシステム毎のカーネルツリーとパッチ
-------------------------------------------
カーネルの様々な領域で何が起きているかを見られるようにするため、多くの
カーネルサブシステム開発者は彼らの開発ツリーを公開しています。これらの
ツリーは説明したように -mm カーネルリリースに入れ込まれます。
それぞれのカーネルサブシステムのメンテナ達は --- そして多くのカーネル
サブシステムの開発者達も --- 各自の最新の開発状況をソースリポジトリに
公開しています。そのため、自分とは異なる領域のカーネルで何が起きている
かを他の人が見られるようになっています。開発が早く進んでいる領域では、
開発者は自身の投稿がどのサブシステムカーネルツリーを元にしているか質問
されるので、その投稿とすでに進行中の他の作業との衝突が避けられます。
以下はさまざまなカーネルツリーの中のいくつかのリスト-
大部分のこれらのリポジトリは git ツリーです。しかしその他の SCM や
quilt シリーズとして公開されているパッチキューも使われています。これら
のサブシステムリポジトリのアドレスは MAINTAINERS ファイルにリストされ
ています。これらの多くは http://git.kernel.org/ で参照することができま
す。
git ツリー-
- Kbuild の開発ツリー、Sam Ravnborg <sam@ravnborg.org>
git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git
提案されたパッチがこのようなサブシステムツリーにコミットされる前に、メー
リングリストで事前にレビューにかけられます(以下の対応するセクションを
参照)。いくつかのカーネルサブシステムでは、このレビューは patchwork
というツールによって追跡されます。Patchwork は web インターフェイスに
よってパッチ投稿の表示、パッチへのコメント付けや改訂などができ、そして
メンテナはパッチに対して、レビュー中、受付済み、拒否というようなマーク
をつけることができます。大部分のこれらの patchwork のサイトは
http://patchwork.kernel.org/ でリストされています。
- ACPI の開発ツリー、 Len Brown <len.brown@intel.com>
git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git
統合テストのための 2.6.x -next カーネルツリー
---------------------------------------------
- Block の開発ツリー、Jens Axboe <axboe@suse.de>
git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git
サブシステムツリーの更新内容がメインラインの 2.6.x ツリーにマージされ
る前に、それらは統合テストされる必要があります。この目的のため、実質的
に全サブシステムツリーからほぼ毎日プルされてできる特別なテスト用のリ
ポジトリが存在します-
http://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
http://linux.f-seidel.de/linux-next/pmwiki/
- DRM の開発ツリー、Dave Airlie <airlied@linux.ie>
git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git
- ia64 の開発ツリー、Tony Luck <tony.luck@intel.com>
git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git
- infiniband, Roland Dreier <rolandd@cisco.com>
git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git
- libata, Jeff Garzik <jgarzik@pobox.com>
git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git
- ネットワークドライバ, Jeff Garzik <jgarzik@pobox.com>
git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git
- pcmcia, Dominik Brodowski <linux@dominikbrodowski.net>
git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git
- SCSI, James Bottomley <James.Bottomley@hansenpartnership.com>
git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
- x86, Ingo Molnar <mingo@elte.hu>
git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git
quilt ツリー-
- USB, ドライバコアと I2C, Greg Kroah-Hartman <gregkh@suse.de>
kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
その他のカーネルツリーは http://git.kernel.org/ と MAINTAINERS ファ
イルに一覧表があります。
このやり方によって、-next カーネルは次のマージ機会でどんなものがメイン
ラインカーネルにマージされるか、おおまかなの展望を提供します。-next
カーネルの実行テストを行う冒険好きなテスターは大いに歓迎されます
バグレポート
-------------
@ -673,10 +631,9 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を
じところからスタートしたのですから。
Paolo Ciarrocchi に感謝、彼は彼の書いた "Development Process"
(http://linux.tar.bz/articles/2.6-development_process)セクショ
ンをこのテキストの原型にすることを許可してくれました。
Rundy Dunlap と Gerrit Huizenga はメーリングリストでやるべきこととやっ
てはいけないことのリストを提供してくれました。
(http://lwn.net/Articles/94386/) セクションをこのテキストの原型にする
ことを許可してくれました。Rundy Dunlap と Gerrit Huizenga はメーリング
リストでやるべきこととやってはいけないことのリストを提供してくれました。
以下の人々のレビュー、コメント、貢献に感謝。
Pat Mochel, Hanna Linder, Randy Dunlap, Kay Sievers,
Vojtech Pavlik, Jan Kara, Josh Boyer, Kees Cook, Andrew Morton, Andi

View File

@ -245,7 +245,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
acpi_sleep= [HW,ACPI] Sleep options
Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,
old_ordering, s4_nonvs, sci_force_enable }
old_ordering, nonvs, sci_force_enable }
See Documentation/power/video.txt for information on
s3_bios and s3_mode.
s3_beep is for debugging; it makes the PC's speaker beep
@ -1664,6 +1664,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
noexec=on: enable non-executable mappings (default)
noexec=off: disable non-executable mappings
nosmep [X86]
Disable SMEP (Supervisor Mode Execution Protection)
even if it is supported by processor.
noexec32 [X86-64]
This affects only 32-bit executables.
noexec32=on: enable non-executable mappings (default)
@ -2581,6 +2585,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
bytes of sense data);
c = FIX_CAPACITY (decrease the reported
device capacity by one sector);
d = NO_READ_DISC_INFO (don't use
READ_DISC_INFO command);
e = NO_READ_CAPACITY_16 (don't use
READ_CAPACITY_16 command);
h = CAPACITY_HEURISTICS (decrease the
reported device capacity by one
sector if the number is odd);

View File

@ -1,4 +1,4 @@
[state: 27-01-2011]
[state: 17-04-2011]
BATMAN-ADV
----------
@ -19,6 +19,7 @@ duce the overhead to a minimum. It does not depend on any (other)
network driver, and can be used on wifi as well as ethernet lan,
vpn, etc ... (anything with ethernet-style layer 2).
CONFIGURATION
-------------
@ -160,13 +161,13 @@ face. Each entry can/has to have the following values:
-> "TQ mac value" - src mac's link quality towards mac address
of a neighbor originator's interface which
is being used for routing
-> "HNA mac" - HNA announced by source mac
-> "TT mac" - TT announced by source mac
-> "PRIMARY" - this is a primary interface
-> "SEC mac" - secondary mac address of source
(requires preceding PRIMARY)
The TQ value has a range from 4 to 255 with 255 being the best.
The HNA entries are showing which hosts are connected to the mesh
The TT entries are showing which hosts are connected to the mesh
via bat0 or being bridged into the mesh network. The PRIMARY/SEC
values are only applied on primary interfaces
@ -199,7 +200,7 @@ abled during run time. Following log_levels are defined:
0 - All debug output disabled
1 - Enable messages related to routing / flooding / broadcasting
2 - Enable route or hna added / changed / deleted
2 - Enable route or tt entry added / changed / deleted
3 - Enable all messages
The debug output can be changed at runtime using the file
@ -207,7 +208,7 @@ The debug output can be changed at runtime using the file
# echo 2 > /sys/class/net/bat0/mesh/log_level
will enable debug messages for when routes or HNAs change.
will enable debug messages for when routes or TTs change.
BATCTL

View File

@ -1,7 +1,7 @@
Linux Ethernet Bonding Driver HOWTO
Latest update: 23 September 2009
Latest update: 27 April 2011
Initial release : Thomas Davis <tadavis at lbl.gov>
Corrections, HA extensions : 2000/10/03-15 :
@ -585,25 +585,23 @@ mode
chosen.
num_grat_arp
Specifies the number of gratuitous ARPs to be issued after a
failover event. One gratuitous ARP is issued immediately after
the failover, subsequent ARPs are sent at a rate of one per link
monitor interval (arp_interval or miimon, whichever is active).
The valid range is 0 - 255; the default value is 1. This option
affects only the active-backup mode. This option was added for
bonding version 3.3.0.
num_unsol_na
Specifies the number of unsolicited IPv6 Neighbor Advertisements
to be issued after a failover event. One unsolicited NA is issued
immediately after the failover.
Specify the number of peer notifications (gratuitous ARPs and
unsolicited IPv6 Neighbor Advertisements) to be issued after a
failover event. As soon as the link is up on the new slave
(possibly immediately) a peer notification is sent on the
bonding device and each VLAN sub-device. This is repeated at
each link monitor interval (arp_interval or miimon, whichever
is active) if the number is greater than 1.
The valid range is 0 - 255; the default value is 1. This option
affects only the active-backup mode. This option was added for
bonding version 3.4.0.
The valid range is 0 - 255; the default value is 1. These options
affect only the active-backup mode. These options were added for
bonding versions 3.3.0 and 3.4.0 respectively.
From Linux 2.6.40 and bonding version 3.7.1, these notifications
are generated by the ipv4 and ipv6 code and the numbers of
repetitions cannot be set independently.
primary

View File

@ -93,6 +93,19 @@ Additional Configurations
REQUIREMENTS: MSI-X support is required for Multiqueue. If MSI-X is not
found, the system will fallback to MSI or to Legacy interrupts.
MAC and VLAN anti-spoofing feature
----------------------------------
When a malicious driver attempts to send a spoofed packet, it is dropped by
the hardware and not transmitted. An interrupt is sent to the PF driver
notifying it of the spoof attempt.
When a spoofed packet is detected the PF driver will send the following
message to the system log (displayed by the "dmesg" command):
Spoof event(s) detected on VF(n)
Where n=the VF that attempted to do the spoofing.
Support
=======

View File

@ -279,11 +279,15 @@ When the system goes into the standby or memory sleep state, the phases are:
time.) Unlike the other suspend-related phases, during the prepare
phase the device tree is traversed top-down.
The prepare phase uses only a bus callback. After the callback method
returns, no new children may be registered below the device. The method
may also prepare the device or driver in some way for the upcoming
system power transition, but it should not put the device into a
low-power state.
In addition to that, if device drivers need to allocate additional
memory to be able to hadle device suspend correctly, that should be
done in the prepare phase.
After the prepare callback method returns, no new children may be
registered below the device. The method may also prepare the device or
driver in some way for the upcoming system power transition (for
example, by allocating additional memory required for this purpose), but
it should not put the device into a low-power state.
2. The suspend methods should quiesce the device to stop it from performing
I/O. They also may save the device registers and put it into the

View File

@ -1,46 +1,41 @@
Suspend notifiers
(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
(C) 2007-2011 Rafael J. Wysocki <rjw@sisk.pl>, GPL
There are some operations that device drivers may want to carry out in their
.suspend() routines, but shouldn't, because they can cause the hibernation or
suspend to fail. For example, a driver may want to allocate a substantial amount
of memory (like 50 MB) in .suspend(), but that shouldn't be done after the
swsusp's memory shrinker has run.
There are some operations that subsystems or drivers may want to carry out
before hibernation/suspend or after restore/resume, but they require the system
to be fully functional, so the drivers' and subsystems' .suspend() and .resume()
or even .prepare() and .complete() callbacks are not suitable for this purpose.
For example, device drivers may want to upload firmware to their devices after
resume/restore, but they cannot do it by calling request_firmware() from their
.resume() or .complete() routines (user land processes are frozen at these
points). The solution may be to load the firmware into memory before processes
are frozen and upload it from there in the .resume() routine.
A suspend/hibernation notifier may be used for this purpose.
Also, there may be some operations, that subsystems want to carry out before a
hibernation/suspend or after a restore/resume, requiring the system to be fully
functional, so the drivers' .suspend() and .resume() routines are not suitable
for this purpose. For example, device drivers may want to upload firmware to
their devices after a restore from a hibernation image, but they cannot do it by
calling request_firmware() from their .resume() routines (user land processes
are frozen at this point). The solution may be to load the firmware into
memory before processes are frozen and upload it from there in the .resume()
routine. Of course, a hibernation notifier may be used for this purpose.
The subsystems that have such needs can register suspend notifiers that will be
called upon the following events by the suspend core:
The subsystems or drivers having such needs can register suspend notifiers that
will be called upon the following events by the PM core:
PM_HIBERNATION_PREPARE The system is going to hibernate or suspend, tasks will
be frozen immediately.
PM_POST_HIBERNATION The system memory state has been restored from a
hibernation image or an error occurred during the
hibernation. Device drivers' .resume() callbacks have
hibernation image or an error occurred during
hibernation. Device drivers' restore callbacks have
been executed and tasks have been thawed.
PM_RESTORE_PREPARE The system is going to restore a hibernation image.
If all goes well the restored kernel will issue a
If all goes well, the restored kernel will issue a
PM_POST_HIBERNATION notification.
PM_POST_RESTORE An error occurred during the hibernation restore.
Device drivers' .resume() callbacks have been executed
PM_POST_RESTORE An error occurred during restore from hibernation.
Device drivers' restore callbacks have been executed
and tasks have been thawed.
PM_SUSPEND_PREPARE The system is preparing for a suspend.
PM_SUSPEND_PREPARE The system is preparing for suspend.
PM_POST_SUSPEND The system has just resumed or an error occurred during
the suspend. Device drivers' .resume() callbacks have
been executed and tasks have been thawed.
suspend. Device drivers' resume callbacks have been
executed and tasks have been thawed.
It is generally assumed that whatever the notifiers do for
PM_HIBERNATION_PREPARE, should be undone for PM_POST_HIBERNATION. Analogously,

View File

@ -0,0 +1,99 @@
The Intel MID PTI project is HW implemented in Intel Atom
system-on-a-chip designs based on the Parallel Trace
Interface for MIPI P1149.7 cJTAG standard. The kernel solution
for this platform involves the following files:
./include/linux/pti.h
./drivers/.../n_tracesink.h
./drivers/.../n_tracerouter.c
./drivers/.../n_tracesink.c
./drivers/.../pti.c
pti.c is the driver that enables various debugging features
popular on platforms from certain mobile manufacturers.
n_tracerouter.c and n_tracesink.c allow extra system information to
be collected and routed to the pti driver, such as trace
debugging data from a modem. Although n_tracerouter
and n_tracesink are a part of the complete PTI solution,
these two line disciplines can work separately from
pti.c and route any data stream from one /dev/tty node
to another /dev/tty node via kernel-space. This provides
a stable, reliable connection that will not break unless
the user-space application shuts down (plus avoids
kernel->user->kernel context switch overheads of routing
data).
An example debugging usage for this driver system:
*Hook /dev/ttyPTI0 to syslogd. Opening this port will also start
a console device to further capture debugging messages to PTI.
*Hook /dev/ttyPTI1 to modem debugging data to write to PTI HW.
This is where n_tracerouter and n_tracesink are used.
*Hook /dev/pti to a user-level debugging application for writing
to PTI HW.
*Use mipi_* Kernel Driver API in other device drivers for
debugging to PTI by first requesting a PTI write address via
mipi_request_masterchannel(1).
Below is example pseudo-code on how a 'privileged' application
can hook up n_tracerouter and n_tracesink to any tty on
a system. 'Privileged' means the application has enough
privileges to successfully manipulate the ldisc drivers
but is not just blindly executing as 'root'. Keep in mind
the use of ioctl(,TIOCSETD,) is not specific to the n_tracerouter
and n_tracesink line discpline drivers but is a generic
operation for a program to use a line discpline driver
on a tty port other than the default n_tty.
/////////// To hook up n_tracerouter and n_tracesink /////////
// Note that n_tracerouter depends on n_tracesink.
#include <errno.h>
#define ONE_TTY "/dev/ttyOne"
#define TWO_TTY "/dev/ttyTwo"
// needed global to hand onto ldisc connection
static int g_fd_source = -1;
static int g_fd_sink = -1;
// these two vars used to grab LDISC values from loaded ldisc drivers
// in OS. Look at /proc/tty/ldiscs to get the right numbers from
// the ldiscs loaded in the system.
int source_ldisc_num, sink_ldisc_num = -1;
int retval;
g_fd_source = open(ONE_TTY, O_RDWR); // must be R/W
g_fd_sink = open(TWO_TTY, O_RDWR); // must be R/W
if (g_fd_source <= 0) || (g_fd_sink <= 0) {
// doubt you'll want to use these exact error lines of code
printf("Error on open(). errno: %d\n",errno);
return errno;
}
retval = ioctl(g_fd_sink, TIOCSETD, &sink_ldisc_num);
if (retval < 0) {
printf("Error on ioctl(). errno: %d\n", errno);
return errno;
}
retval = ioctl(g_fd_source, TIOCSETD, &source_ldisc_num);
if (retval < 0) {
printf("Error on ioctl(). errno: %d\n", errno);
return errno;
}
/////////// To disconnect n_tracerouter and n_tracesink ////////
// First make sure data through the ldiscs has stopped.
// Second, disconnect ldiscs. This provides a
// little cleaner shutdown on tty stack.
sink_ldisc_num = 0;
source_ldisc_num = 0;
ioctl(g_fd_uart, TIOCSETD, &sink_ldisc_num);
ioctl(g_fd_gadget, TIOCSETD, &source_ldisc_num);
// Three, program closes connection, and cleanup:
close(g_fd_uart);
close(g_fd_gadget);
g_fd_uart = g_fd_gadget = NULL;

View File

@ -1,11 +1,11 @@
Copyright (c) 2003-2005 QLogic Corporation
QLogic Linux Fibre Channel HBA Driver
Copyright (c) 2003-2011 QLogic Corporation
QLogic Linux/ESX Fibre Channel HBA Driver
This program includes a device driver for Linux 2.6 that may be
This program includes a device driver for Linux 2.6/ESX that may be
distributed with QLogic hardware specific firmware binary file.
You may modify and redistribute the device driver code under the
GNU General Public License as published by the Free Software
Foundation (version 2 or a later version).
GNU General Public License (a copy of which is attached hereto as
Exhibit A) published by the Free Software Foundation (version 2).
You may redistribute the hardware specific firmware binary file
under the following terms:
@ -43,3 +43,285 @@ OTHERWISE IN ANY INTELLECTUAL PROPERTY RIGHTS (PATENT, COPYRIGHT,
TRADE SECRET, MASK WORK, OR OTHER PROPRIETARY RIGHT) EMBODIED IN
ANY OTHER QLOGIC HARDWARE OR SOFTWARE EITHER SOLELY OR IN
COMBINATION WITH THIS PROGRAM.
EXHIBIT A
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

View File

@ -1230,6 +1230,13 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
This module supports multiple cards.
The driver requires the firmware loader support on kernel.
Module snd-lola
---------------
Module for Digigram Lola PCI-e boards
This module supports multiple cards.
Module snd-lx6464es
-------------------

View File

@ -94,7 +94,7 @@ ALC662/663/272
3stack-dig 3-stack (2-channel) with SPDIF
3stack-6ch 3-stack (6-channel)
3stack-6ch-dig 3-stack (6-channel) with SPDIF
6stack-dig 6-stack with SPDIF
5stack-dig 5-stack with SPDIF
lenovo-101e Lenovo laptop
eeepc-p701 ASUS Eeepc P701
eeepc-ep20 ASUS Eeepc EP20

View File

@ -122,7 +122,7 @@ operating system to suffer.
In both of these instances, all developers agreed that these were
important changes that needed to be made, and they were made, with
relatively little pain. If Linux had to ensure that it preserve a
relatively little pain. If Linux had to ensure that it will preserve a
stable source interface, a new interface would have been created, and
the older, broken one would have had to be maintained over time, leading
to extra work for the USB developers. Since all Linux USB developers do

View File

@ -231,13 +231,6 @@ its creation).
This directory contains configuration options for the epoll(7) interface.
max_user_instances
------------------
This is the maximum number of epoll file descriptors that a single user can
have open at a given time. The default value is 128, and should be enough
for normal users.
max_user_watches
----------------

View File

@ -32,6 +32,17 @@ Table : Subdirectories in /proc/sys/net
1. /proc/sys/net/core - Network core options
-------------------------------------------------------
bpf_jit_enable
--------------
This enables Berkeley Packet Filter Just in Time compiler.
Currently supported on x86_64 architecture, bpf_jit provides a framework
to speed packet filtering, the one used by tcpdump/libpcap for example.
Values :
0 - disable the JIT (default value)
1 - enable the JIT
2 - enable the JIT and ask the compiler to emit traces on kernel log.
rmem_default
------------

View File

@ -481,10 +481,10 @@ the DMA zone.
Type(A) is called as "Node" order. Type (B) is "Zone" order.
"Node order" orders the zonelists by node, then by zone within each node.
Specify "[Nn]ode" for zone order
Specify "[Nn]ode" for node order
"Zone Order" orders the zonelists by zone type, then by node within each
zone. Specify "[Zz]one"for zode order.
zone. Specify "[Zz]one" for zone order.
Specify "[Dd]efault" to request automatic configuration. Autoconfiguration
will select "node" order in following case.

View File

@ -24,7 +24,7 @@ ATOMIC CONTEXT:
ndelay(unsigned long nsecs)
udelay(unsigned long usecs)
mdelay(unsgined long msecs)
mdelay(unsigned long msecs)
udelay is the generally preferred API; ndelay-level
precision may not actually exist on many non-PC devices.

View File

@ -120,7 +120,6 @@ format:
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1;signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:int common_lock_depth; offset:8; size:4; signed:1;
field:unsigned long __probe_ip; offset:12; size:4; signed:0;
field:int __probe_nargs; offset:16; size:4; signed:1;

View File

@ -95,9 +95,11 @@ pre_reset
int (*pre_reset)(struct usb_interface *intf);
Another driver or user space is triggering a reset on the device which
contains the interface passed as an argument. Cease IO and save any
device state you need to restore.
A driver or user space is triggering a reset on the device which
contains the interface passed as an argument. Cease IO, wait for all
outstanding URBs to complete, and save any device state you need to
restore. No more URBs may be submitted until the post_reset method
is called.
If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you
are in atomic context.

View File

@ -90,10 +90,10 @@ ServiceBinary=%12%\USBSER.sys
[SourceDisksFiles]
[SourceDisksNames]
[DeviceList]
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_0525&PID_A4AB&MI_02
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02
[DeviceList.NTamd64]
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_0525&PID_A4AB&MI_02
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02
;------------------------------------------------------------------------------

View File

@ -18,15 +18,15 @@ DriverVer = 06/21/2006,6.0.6000.16384
; Decoration for x86 architecture
[LinuxDevices.NTx86]
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_0525&PID_a4ab&MI_00
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00
; Decoration for x64 architecture
[LinuxDevices.NTamd64]
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_0525&PID_a4ab&MI_00
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00
; Decoration for ia64 architecture
[LinuxDevices.NTia64]
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_0525&PID_a4ab&MI_00
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00
;@@@ This is the common setting for setup
[ControlFlags]

View File

@ -14,11 +14,10 @@ the legacy VGA arbitration task (besides other bus management tasks) when more
than one legacy device co-exists on the same machine. But the problem happens
when these devices are trying to be accessed by different userspace clients
(e.g. two server in parallel). Their address assignments conflict. Moreover,
ideally, being an userspace application, it is not the role of the the X
server to control bus resources. Therefore an arbitration scheme outside of
the X server is needed to control the sharing of these resources. This
document introduces the operation of the VGA arbiter implemented for Linux
kernel.
ideally, being a userspace application, it is not the role of the X server to
control bus resources. Therefore an arbitration scheme outside of the X server
is needed to control the sharing of these resources. This document introduces
the operation of the VGA arbiter implemented for the Linux kernel.
----------------------------------------------------------------------------
@ -39,7 +38,7 @@ I.1 vgaarb
The vgaarb is a module of the Linux Kernel. When it is initially loaded, it
scans all PCI devices and adds the VGA ones inside the arbitration. The
arbiter then enables/disables the decoding on different devices of the VGA
legacy instructions. Device which do not want/need to use the arbiter may
legacy instructions. Devices which do not want/need to use the arbiter may
explicitly tell it by calling vga_set_legacy_decoding().
The kernel exports a char device interface (/dev/vga_arbiter) to the clients,
@ -95,8 +94,8 @@ In the case of devices hot-{un,}plugged, there is a hook - pci_notify() - to
notify them being added/removed in the system and automatically added/removed
in the arbiter.
There's also a in-kernel API of the arbiter in the case of DRM, vgacon and
others which may use the arbiter.
There is also an in-kernel API of the arbiter in case DRM, vgacon, or other
drivers want to use it.
I.2 libpciaccess
@ -117,9 +116,8 @@ Besides it, in pci_system were added:
struct pci_device *vga_default_dev;
The vga_count is usually need to keep informed how many cards are being
arbitrated, so for instance if there's only one then it can totally escape the
scheme.
The vga_count is used to track how many cards are being arbitrated, so for
instance, if there is only one card, then it can completely escape arbitration.
These functions below acquire VGA resources for the given card and mark those

View File

@ -54,7 +54,7 @@
53 -> Pinnacle Hybrid Pro (em2881)
54 -> Kworld VS-DVB-T 323UR (em2882) [eb1a:e323]
55 -> Terratec Cinnergy Hybrid T USB XS (em2882) (em2882) [0ccd:005e,0ccd:0042]
56 -> Pinnacle Hybrid Pro (2) (em2882) [2304:0226]
56 -> Pinnacle Hybrid Pro (330e) (em2882) [2304:0226]
57 -> Kworld PlusTV HD Hybrid 330 (em2883) [eb1a:a316]
58 -> Compro VideoMate ForYou/Stereo (em2820/em2840) [185b:2041]
60 -> Hauppauge WinTV HVR 850 (em2883) [2040:651f]

View File

@ -130,7 +130,6 @@ Card number: 4
Note: No module for the mse3000 is available yet
Note: No module for the vpx3224 is available yet
Note: use encoder=X or decoder=X for non-default i2c chips
===========================

View File

@ -275,6 +275,7 @@ pac7302 093a:2629 Genious iSlim 300
pac7302 093a:262a Webcam 300k
pac7302 093a:262c Philips SPC 230 NC
jeilinj 0979:0280 Sakar 57379
jeilinj 0979:0280 Sportscam DV15
zc3xx 0ac8:0302 Z-star Vimicro zc0302
vc032x 0ac8:0321 Vimicro generic vc0321
vc032x 0ac8:0323 Vimicro Vc0323

View File

@ -0,0 +1,239 @@
Linux USB Video Class (UVC) driver
==================================
This file documents some driver-specific aspects of the UVC driver, such as
driver-specific ioctls and implementation notes.
Questions and remarks can be sent to the Linux UVC development mailing list at
linux-uvc-devel@lists.berlios.de.
Extension Unit (XU) support
---------------------------
1. Introduction
The UVC specification allows for vendor-specific extensions through extension
units (XUs). The Linux UVC driver supports extension unit controls (XU controls)
through two separate mechanisms:
- through mappings of XU controls to V4L2 controls
- through a driver-specific ioctl interface
The first one allows generic V4L2 applications to use XU controls by mapping
certain XU controls onto V4L2 controls, which then show up during ordinary
control enumeration.
The second mechanism requires uvcvideo-specific knowledge for the application to
access XU controls but exposes the entire UVC XU concept to user space for
maximum flexibility.
Both mechanisms complement each other and are described in more detail below.
2. Control mappings
The UVC driver provides an API for user space applications to define so-called
control mappings at runtime. These allow for individual XU controls or byte
ranges thereof to be mapped to new V4L2 controls. Such controls appear and
function exactly like normal V4L2 controls (i.e. the stock controls, such as
brightness, contrast, etc.). However, reading or writing of such a V4L2 controls
triggers a read or write of the associated XU control.
The ioctl used to create these control mappings is called UVCIOC_CTRL_MAP.
Previous driver versions (before 0.2.0) required another ioctl to be used
beforehand (UVCIOC_CTRL_ADD) to pass XU control information to the UVC driver.
This is no longer necessary as newer uvcvideo versions query the information
directly from the device.
For details on the UVCIOC_CTRL_MAP ioctl please refer to the section titled
"IOCTL reference" below.
3. Driver specific XU control interface
For applications that need to access XU controls directly, e.g. for testing
purposes, firmware upload, or accessing binary controls, a second mechanism to
access XU controls is provided in the form of a driver-specific ioctl, namely
UVCIOC_CTRL_QUERY.
A call to this ioctl allows applications to send queries to the UVC driver that
directly map to the low-level UVC control requests.
In order to make such a request the UVC unit ID of the control's extension unit
and the control selector need to be known. This information either needs to be
hardcoded in the application or queried using other ways such as by parsing the
UVC descriptor or, if available, using the media controller API to enumerate a
device's entities.
Unless the control size is already known it is necessary to first make a
UVC_GET_LEN requests in order to be able to allocate a sufficiently large buffer
and set the buffer size to the correct value. Similarly, to find out whether
UVC_GET_CUR or UVC_SET_CUR are valid requests for a given control, a
UVC_GET_INFO request should be made. The bits 0 (GET supported) and 1 (SET
supported) of the resulting byte indicate which requests are valid.
With the addition of the UVCIOC_CTRL_QUERY ioctl the UVCIOC_CTRL_GET and
UVCIOC_CTRL_SET ioctls have become obsolete since their functionality is a
subset of the former ioctl. For the time being they are still supported but
application developers are encouraged to use UVCIOC_CTRL_QUERY instead.
For details on the UVCIOC_CTRL_QUERY ioctl please refer to the section titled
"IOCTL reference" below.
4. Security
The API doesn't currently provide a fine-grained access control facility. The
UVCIOC_CTRL_ADD and UVCIOC_CTRL_MAP ioctls require super user permissions.
Suggestions on how to improve this are welcome.
5. Debugging
In order to debug problems related to XU controls or controls in general it is
recommended to enable the UVC_TRACE_CONTROL bit in the module parameter 'trace'.
This causes extra output to be written into the system log.
6. IOCTL reference
---- UVCIOC_CTRL_MAP - Map a UVC control to a V4L2 control ----
Argument: struct uvc_xu_control_mapping
Description:
This ioctl creates a mapping between a UVC control or part of a UVC
control and a V4L2 control. Once mappings are defined, userspace
applications can access vendor-defined UVC control through the V4L2
control API.
To create a mapping, applications fill the uvc_xu_control_mapping
structure with information about an existing UVC control defined with
UVCIOC_CTRL_ADD and a new V4L2 control.
A UVC control can be mapped to several V4L2 controls. For instance,
a UVC pan/tilt control could be mapped to separate pan and tilt V4L2
controls. The UVC control is divided into non overlapping fields using
the 'size' and 'offset' fields and are then independantly mapped to
V4L2 control.
For signed integer V4L2 controls the data_type field should be set to
UVC_CTRL_DATA_TYPE_SIGNED. Other values are currently ignored.
Return value:
On success 0 is returned. On error -1 is returned and errno is set
appropriately.
ENOMEM
Not enough memory to perform the operation.
EPERM
Insufficient privileges (super user privileges are required).
EINVAL
No such UVC control.
EOVERFLOW
The requested offset and size would overflow the UVC control.
EEXIST
Mapping already exists.
Data types:
* struct uvc_xu_control_mapping
__u32 id V4L2 control identifier
__u8 name[32] V4L2 control name
__u8 entity[16] UVC extension unit GUID
__u8 selector UVC control selector
__u8 size V4L2 control size (in bits)
__u8 offset V4L2 control offset (in bits)
enum v4l2_ctrl_type
v4l2_type V4L2 control type
enum uvc_control_data_type
data_type UVC control data type
struct uvc_menu_info
*menu_info Array of menu entries (for menu controls only)
__u32 menu_count Number of menu entries (for menu controls only)
* struct uvc_menu_info
__u32 value Menu entry value used by the device
__u8 name[32] Menu entry name
* enum uvc_control_data_type
UVC_CTRL_DATA_TYPE_RAW Raw control (byte array)
UVC_CTRL_DATA_TYPE_SIGNED Signed integer
UVC_CTRL_DATA_TYPE_UNSIGNED Unsigned integer
UVC_CTRL_DATA_TYPE_BOOLEAN Boolean
UVC_CTRL_DATA_TYPE_ENUM Enumeration
UVC_CTRL_DATA_TYPE_BITMASK Bitmask
---- UVCIOC_CTRL_QUERY - Query a UVC XU control ----
Argument: struct uvc_xu_control_query
Description:
This ioctl queries a UVC XU control identified by its extension unit ID
and control selector.
There are a number of different queries available that closely
correspond to the low-level control requests described in the UVC
specification. These requests are:
UVC_GET_CUR
Obtain the current value of the control.
UVC_GET_MIN
Obtain the minimum value of the control.
UVC_GET_MAX
Obtain the maximum value of the control.
UVC_GET_DEF
Obtain the default value of the control.
UVC_GET_RES
Query the resolution of the control, i.e. the step size of the
allowed control values.
UVC_GET_LEN
Query the size of the control in bytes.
UVC_GET_INFO
Query the control information bitmap, which indicates whether
get/set requests are supported.
UVC_SET_CUR
Update the value of the control.
Applications must set the 'size' field to the correct length for the
control. Exceptions are the UVC_GET_LEN and UVC_GET_INFO queries, for
which the size must be set to 2 and 1, respectively. The 'data' field
must point to a valid writable buffer big enough to hold the indicated
number of data bytes.
Data is copied directly from the device without any driver-side
processing. Applications are responsible for data buffer formatting,
including little-endian/big-endian conversion. This is particularly
important for the result of the UVC_GET_LEN requests, which is always
returned as a little-endian 16-bit integer by the device.
Return value:
On success 0 is returned. On error -1 is returned and errno is set
appropriately.
ENOENT
The device does not support the given control or the specified
extension unit could not be found.
ENOBUFS
The specified buffer size is incorrect (too big or too small).
EINVAL
An invalid request code was passed.
EBADRQC
The given request is not supported by the given control.
EFAULT
The data pointer references an inaccessible memory area.
Data types:
* struct uvc_xu_control_query
__u8 unit Extension unit ID
__u8 selector Control selector
__u8 query Request code to send to the device
__u16 size Control data size (in bytes)
__u8 *data Control value

View File

@ -0,0 +1,10 @@
Virtualization support in the Linux kernel.
00-INDEX
- this file.
kvm/
- Kernel Virtual Machine. See also http://linux-kvm.org
lguest/
- Extremely simple hypervisor for experimental/educational use.
uml/
- User Mode Linux, builds/runs Linux kernel as a userspace program.

View File

@ -175,7 +175,10 @@ Parameters: vcpu id (apic id on x86)
Returns: vcpu fd on success, -1 on error
This API adds a vcpu to a virtual machine. The vcpu id is a small integer
in the range [0, max_vcpus).
in the range [0, max_vcpus). You can use KVM_CAP_NR_VCPUS of the
KVM_CHECK_EXTENSION ioctl() to determine the value for max_vcpus at run-time.
If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
cpus max.
4.8 KVM_GET_DIRTY_LOG (vm ioctl)
@ -261,7 +264,7 @@ See KVM_GET_REGS for the data structure.
4.13 KVM_GET_SREGS
Capability: basic
Architectures: x86
Architectures: x86, ppc
Type: vcpu ioctl
Parameters: struct kvm_sregs (out)
Returns: 0 on success, -1 on error
@ -279,6 +282,8 @@ struct kvm_sregs {
__u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
};
/* ppc -- see arch/powerpc/include/asm/kvm.h */
interrupt_bitmap is a bitmap of pending external interrupts. At most
one bit may be set. This interrupt has been acknowledged by the APIC
but not yet injected into the cpu core.
@ -286,7 +291,7 @@ but not yet injected into the cpu core.
4.14 KVM_SET_SREGS
Capability: basic
Architectures: x86
Architectures: x86, ppc
Type: vcpu ioctl
Parameters: struct kvm_sregs (in)
Returns: 0 on success, -1 on error
@ -1263,6 +1268,29 @@ struct kvm_assigned_msix_entry {
__u16 padding[3];
};
4.54 KVM_SET_TSC_KHZ
Capability: KVM_CAP_TSC_CONTROL
Architectures: x86
Type: vcpu ioctl
Parameters: virtual tsc_khz
Returns: 0 on success, -1 on error
Specifies the tsc frequency for the virtual machine. The unit of the
frequency is KHz.
4.55 KVM_GET_TSC_KHZ
Capability: KVM_CAP_GET_TSC_KHZ
Architectures: x86
Type: vcpu ioctl
Parameters: none
Returns: virtual tsc-khz on success, negative value on error
Returns the tsc frequency of the guest. The unit of the return value is
KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
error.
5. The kvm_run structure
Application code obtains a pointer to the kvm_run structure by

View File

@ -7,7 +7,7 @@ Review checklist for kvm patches
2. Patches should be against kvm.git master branch.
3. If the patch introduces or modifies a new userspace API:
- the API must be documented in Documentation/kvm/api.txt
- the API must be documented in Documentation/virtual/kvm/api.txt
- the API must be discoverable using KVM_CHECK_EXTENSION
4. New state must include support for save/restore.

View File

@ -74,7 +74,8 @@ Running Lguest:
- Run an lguest as root:
Documentation/lguest/lguest 64 vmlinux --tunnet=192.168.19.1 --block=rootfile root=/dev/vda
Documentation/virtual/lguest/lguest 64 vmlinux --tunnet=192.168.19.1 \
--block=rootfile root=/dev/vda
Explanation:
64: the amount of memory to use, in MB.

View File

@ -206,7 +206,7 @@ IOMMU (input/output memory management unit)
(e.g. because you have < 3 GB memory).
Kernel boot message: "PCI-DMA: Disabling IOMMU"
2. <arch/x86_64/kernel/pci-gart.c>: AMD GART based hardware IOMMU.
2. <arch/x86/kernel/amd_gart_64.c>: AMD GART based hardware IOMMU.
Kernel boot message: "PCI-DMA: using GART IOMMU"
3. <arch/x86_64/kernel/pci-swiotlb.c> : Software IOMMU implementation. Used

View File

@ -0,0 +1,210 @@
锘?Chinese translated version of Documentation/email-clients.txt
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
communicating in English you can also ask the Chinese maintainer for
help. Contact the Chinese maintainer if this translation is outdated
or if there is a problem with the translation.
Chinese maintainer: Harry Wei <harryxiyou@gmail.com>
---------------------------------------------------------------------
Documentation/email-clients.txt ???涓????缈昏??
濡??????宠??璁烘????存?版???????????瀹癸??璇风?存?ヨ??绯诲?????妗g??缁存?よ?????濡????浣?浣跨?ㄨ?辨??
浜ゆ???????伴?剧??璇?锛?涔????浠ュ??涓???????缁存?よ??姹???┿??濡???????缈昏????存?颁???????舵?????缈?
璇?瀛???ㄩ??棰?锛?璇疯??绯讳腑??????缁存?よ?????
涓???????缁存?よ??锛? 璐惧??濞? Harry Wei <harryxiyou@gmail.com>
涓???????缈昏?????锛? 璐惧??濞? Harry Wei <harryxiyou@gmail.com>
涓?????????¤?????锛? Yinglin Luan <synmyth@gmail.com>
Xiaochen Wang <wangxiaochen0@gmail.com>
yaxinsn <yaxinsn@163.com>
浠ヤ??涓烘???
---------------------------------------------------------------------
Linux???浠跺?㈡?风?????缃?淇℃??
======================================================================
?????????缃?
----------------------------------------------------------------------
Linux?????歌ˉ涓???????杩????浠惰?????浜ょ??锛????濂芥??琛ヤ??浣?涓洪??浠朵????????宓?????????????浜?缁存?よ??
??ユ?堕??浠讹??浣???????浠剁?????瀹规?煎??搴?璇ユ??"text/plain"?????惰??锛????浠朵????????涓?璧???????锛?
???涓鸿??浼?浣胯ˉ涓????寮???ㄩ?ㄥ????ㄨ??璁鸿??绋?涓???????寰???伴?俱??
??ㄦ?ュ?????Linux?????歌ˉ涓???????浠跺?㈡?风????ㄥ?????琛ヤ????跺??璇ュ??浜?????????????濮???舵?????渚?濡?锛?
浠?浠?涓???芥?瑰?????????????ゅ?惰〃绗???????绌烘?硷???????虫????ㄦ??涓?琛????寮?澶存?????缁?灏俱??
涓?瑕????杩?"format=flowed"妯″????????琛ヤ?????杩???蜂??寮?璧蜂?????棰????浠ュ?????瀹崇?????琛????
涓?瑕?璁╀????????浠跺?㈡?风??杩?琛??????ㄦ?㈣?????杩???蜂??浼???村??浣????琛ヤ?????
???浠跺?㈡?风??涓???芥?瑰???????????瀛?绗????缂??????瑰?????瑕??????????琛ヤ???????芥??ASCII??????UTF-8缂??????瑰??锛?
濡????浣?浣跨??UTF-8缂??????瑰???????????浠讹??????浣?灏?浼???垮??涓?浜??????藉????????瀛?绗???????棰????
???浠跺?㈡?风??搴?璇ュ舰???骞朵??淇???? References: ?????? In-Reply-To: ???棰?锛?????
???浠惰??棰?灏变??浼?涓???????
澶???剁??甯?(?????????璐寸??甯?)???甯镐????界?ㄤ??琛ヤ??锛????涓哄?惰〃绗?浼?杞????涓虹┖??笺??浣跨??xclipboard, xclip
??????xcutsel涔?璁稿??浠ワ??浣???????濂芥??璇?涓?涓?????????垮??浣跨?ㄥ????剁??甯????
涓?瑕???ㄤ娇???PGP/GPG缃插????????浠朵腑??????琛ヤ?????杩???蜂??浣垮??寰?澶???????涓???借?诲??????????ㄤ??浣????琛ヤ?????
锛?杩?涓????棰?搴?璇ユ?????浠ヤ慨澶????锛?
??ㄧ???????搁??浠跺??琛ㄥ?????琛ヤ??涔????锛?缁????宸卞?????涓?涓?琛ヤ?????涓?涓???????涓绘??锛?淇?瀛???ユ?跺?扮??
???浠讹??灏?琛ヤ?????'patch'??戒护???涓?锛?濡??????????浜?锛????缁??????搁??浠跺??琛ㄥ????????
涓?浜????浠跺?㈡?风?????绀?
----------------------------------------------------------------------
杩????缁???轰??浜?璇?缁????MUA???缃????绀猴?????浠ョ?ㄤ??缁?Linux?????稿?????琛ヤ?????杩?浜?骞朵???????虫??
?????????杞?浠跺?????缃???荤?????
璇存??锛?
TUI = 浠ユ?????涓哄?虹???????ㄦ?锋?ュ??
GUI = ??惧舰?????㈢?ㄦ?锋?ュ??
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alpine (TUI)
???缃????椤癸??
???"Sending Preferences"??ㄥ??锛?
- "Do Not Send Flowed Text"蹇?椤诲?????
- "Strip Whitespace Before Sending"蹇?椤诲?抽??
褰???????浠舵?讹????????搴?璇ユ?惧?ㄨˉ涓?浼???虹?扮????版?癸????跺?????涓?CTRL-R缁???????锛?浣挎??瀹????
琛ヤ?????浠跺????ュ?伴??浠朵腑???
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Evolution (GUI)
涓?浜?寮????????????????浣跨?ㄥ????????琛ヤ??
褰??????╅??浠堕??椤癸??Preformat
浠?Format->Heading->Preformatted (Ctrl-7)??????宸ュ?锋??
??跺??浣跨??锛?
Insert->Text File... (Alt-n x)?????ヨˉ涓????浠躲??
浣?杩????浠?"diff -Nru old.c new.c | xclip"锛???????Preformat锛???跺??浣跨?ㄤ腑??撮??杩?琛?绮?甯????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kmail (GUI)
涓?浜?寮????????????????浣跨?ㄥ????????琛ヤ?????
榛?璁よ?剧疆涓?涓?HTML??煎??????????????锛?涓?瑕??????ㄥ?????
褰?涔????涓?灏????浠剁????跺??锛???ㄩ??椤逛?????涓?瑕??????╄????ㄦ?㈣????????涓????缂虹?瑰氨???浣???ㄩ??浠朵腑杈???ョ??浠讳????????
??戒??浼?琚??????ㄦ?㈣??锛????姝や??蹇?椤诲?ㄥ?????琛ヤ??涔?????????ㄦ?㈣????????绠?????????规??灏辨???????ㄨ????ㄦ?㈣????ヤ功??????浠讹??
??跺?????瀹?淇?瀛?涓鸿??绋裤??涓????浣???ㄨ??绋夸腑???娆℃??寮?瀹?锛?瀹?宸茬????ㄩ?ㄨ????ㄦ?㈣??浜?锛?????浣???????浠惰?界?舵病???
?????╄????ㄦ?㈣??锛?浣????杩?涓?浼?澶卞?诲凡???????????ㄦ?㈣?????
??ㄩ??浠剁??搴????锛??????ヨˉ涓?涔????锛???句??甯哥?ㄧ??琛ヤ??瀹????绗?锛?涓?涓?杩?瀛????(---)???
??跺?????"Message"??????????锛??????╂????ユ??浠讹????ョ????????浣????琛ヤ?????浠躲??杩????涓?涓?棰?澶???????椤癸??浣????浠?
???杩?瀹????缃?浣???????浠跺缓绔?宸ュ?锋????????锛?杩????浠ュ甫涓?"insert file"??炬?????
浣????浠ュ????ㄥ?伴??杩?GPG???璁伴??浠讹??浣???????宓?琛ヤ?????濂戒??瑕?浣跨??GPG???璁板??浠????浣?涓哄??宓??????????绛惧??琛ヤ??锛?
褰?浠?GPG涓???????7浣?缂??????朵??浣夸??浠?????????村??澶???????
濡????浣????瑕?浠ラ??浠剁??褰㈠????????琛ヤ??锛?????灏卞?抽????瑰?婚??浠讹????跺?????涓?灞???э??绐????"Suggest automatic
display"锛?杩???峰??宓????浠舵?村?规??璁╄?昏???????般??
褰?浣?瑕?淇?瀛?灏?瑕?????????????宓???????琛ヤ??锛?浣????浠ヤ??娑???????琛ㄧ????奸????╁?????琛ヤ????????浠讹????跺????冲?婚?????
"save as"???浣????浠ヤ娇??ㄤ??涓?娌℃????存?圭????????琛ヤ????????浠讹??濡????瀹????浠ユ????褰㈠??缁???????褰?浣?姝g????ㄥ??
???宸辩??绐?????涓?瀵????锛????舵病??????椤瑰??浠ヤ??瀛????浠?--宸茬?????涓?涓?杩???风??bug琚?姹???ュ?颁??kmail???bugzilla
骞朵??甯????杩?灏?浼?琚?澶??????????浠舵??浠ュ?????瀵规??涓???ㄦ?峰??璇诲???????????琚?淇?瀛????锛????浠ュ?????浣???虫?????浠跺????跺?板?朵????版?癸??
浣?涓?寰?涓????浠?浠????????????逛负缁?????????翠?????璇汇??
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lotus Notes (GUI)
涓?瑕?浣跨?ㄥ?????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mutt (TUI)
寰?澶?Linux寮????浜哄??浣跨??mutt瀹㈡?风??锛????浠ヨ?????瀹????瀹?宸ヤ????????甯告??浜????
Mutt涓????甯?缂?杈????锛????浠ヤ??绠′??浣跨?ㄤ??涔?缂?杈???ㄩ?戒??搴?璇ュ甫????????ㄦ??琛????澶у????扮??杈???ㄩ?藉甫???
涓?涓?"insert file"???椤癸??瀹????浠ラ??杩?涓???瑰?????浠跺??瀹圭????瑰???????ユ??浠躲??
'vim'浣?涓?mutt???缂?杈????锛?
set editor="vi"
濡????浣跨??xclip锛???插?ヤ互涓???戒护
:set paste
???涓????涔??????????shift-insert??????浣跨??
:r filename
濡??????宠?????琛ヤ??浣?涓哄??宓??????????
(a)ttach宸ヤ?????寰?濂斤??涓?甯????"set paste"???
???缃????椤癸??
瀹?搴?璇ヤ互榛?璁よ?剧疆???褰㈠??宸ヤ?????
??惰??锛????"send_charset"璁剧疆涓?"us-ascii::utf-8"涔????涓?涓?涓???????涓绘?????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pine (TUI)
Pine杩???绘??涓?浜?绌烘?煎????????棰?锛?浣????杩?浜???板?ㄥ??璇ラ?借??淇?澶?浜????
濡???????浠ワ??璇蜂娇???alpine(pine???缁ф?胯??)
???缃????椤癸??
- ???杩?????????????瑕?娑???ゆ??绋???????
- "no-strip-whitespace-before-send"???椤逛????????瑕???????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylpheed (GUI)
- ???宓??????????浠ュ??濂界??宸ヤ??锛???????浣跨?ㄩ??浠讹?????
- ???璁镐娇??ㄥ????ㄧ??缂?杈???ㄣ??
- 瀵逛?????褰?杈?澶???堕??甯告?????
- 濡???????杩?non-SSL杩???ワ?????娉?浣跨??TLS SMTP?????????
- ??ㄧ?????绐???d腑???涓?涓?寰??????ㄧ??ruler bar???
- 缁???板?????涓?娣诲????板??灏变??浼?姝g‘???浜?瑙f?剧ず??????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thunderbird (GUI)
榛?璁ゆ????典??锛?thunderbird寰?瀹规??????????????锛?浣????杩????涓?浜???规?????浠ュ己??跺?????寰???村ソ???
- ??ㄧ?ㄦ?峰????疯?剧疆???锛?缁???????瀵诲??锛?涓?瑕???????"Compose messages in HTML format"???
- 缂?杈?浣????Thunderbird???缃?璁剧疆??ヤ娇瀹?涓?瑕????琛?浣跨??锛?user_pref("mailnews.wraplength", 0);
- 缂?杈?浣????Thunderbird???缃?璁剧疆锛?浣垮??涓?瑕?浣跨??"format=flowed"??煎??锛?user_pref("mailnews.
send_plaintext_flowed", false);
- 浣????瑕?浣?Thunderbird???涓洪???????煎????瑰??锛?
濡????榛?璁ゆ????典??浣?涔??????????HTML??煎??锛????????寰???俱??浠?浠?浠????棰???????涓????妗?涓???????"Preformat"??煎?????
濡????榛?璁ゆ????典??浣?涔??????????????????煎??锛?浣?涓?寰????瀹???逛负HTML??煎??锛?浠?浠?浣?涓轰??娆℃?х??锛???ヤ功?????扮??娑????锛?
??跺??寮哄?朵娇瀹??????版???????煎??锛???????瀹?灏变?????琛????瑕?瀹???板??锛???ㄥ??淇$????炬??涓?浣跨??shift?????ヤ娇瀹????涓?HTML
??煎??锛???跺?????棰???????涓????妗?涓???????"Preformat"??煎?????
- ???璁镐娇??ㄥ????ㄧ??缂?杈????锛?
???瀵?Thunderbird???琛ヤ?????绠?????????规??灏辨??浣跨?ㄤ??涓?"external editor"??╁??锛???跺??浣跨?ㄤ????????娆㈢??
$EDITOR??ヨ?诲???????????骞惰ˉ涓???版?????涓????瑕?瀹???板??锛????浠ヤ??杞藉苟涓?瀹?瑁?杩?涓???╁??锛???跺??娣诲??涓?涓?浣跨?ㄥ?????
??????View->Toolbars->Customize...??????褰?浣?涔????淇℃???????跺??浠?浠???瑰?诲??灏卞??浠ヤ?????
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TkRat (GUI)
???浠ヤ娇??ㄥ?????浣跨??"Insert file..."??????澶???ㄧ??缂?杈???ㄣ??
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Gmail (Web GUI)
涓?瑕?浣跨?ㄥ????????琛ヤ?????
Gmail缃?椤靛?㈡?风???????ㄥ?版????惰〃绗?杞????涓虹┖??笺??
??界?跺?惰〃绗?杞????涓虹┖??奸??棰????浠ヨ??澶???ㄧ??杈???ㄨВ??筹???????跺??杩?浼?浣跨?ㄥ??杞???㈣?????姣?琛???????涓?78涓?瀛?绗????
???涓?涓????棰????Gmail杩?浼????浠讳??涓????ASCII???瀛?绗????淇℃????逛负base64缂???????瀹????涓?瑗垮????????娆ф床浜虹?????瀛????
###

View File

@ -405,8 +405,8 @@ S: Maintained
F: sound/oss/aedsp16.c
AFFS FILE SYSTEM
M: Roman Zippel <zippel@linux-m68k.org>
S: Maintained
L: linux-fsdevel@vger.kernel.org
S: Orphan
F: Documentation/filesystems/affs.txt
F: fs/affs/
@ -548,10 +548,11 @@ S: Maintained
F: sound/aoa/
APM DRIVER
L: linux-laptop@vger.kernel.org
S: Orphan
M: Jiri Kosina <jkosina@suse.cz>
S: Odd fixes
F: arch/x86/kernel/apm_32.c
F: include/linux/apm_bios.h
F: drivers/char/apm-emulation.c
APPLE BCM5974 MULTITOUCH DRIVER
M: Henrik Rydberg <rydberg@euromail.se>
@ -729,7 +730,7 @@ ARM/EZX SMARTPHONES (A780, A910, A1200, E680, ROKR E2 and ROKR E6)
M: Daniel Ribeiro <drwyrm@gmail.com>
M: Stefan Schmidt <stefan@openezx.org>
M: Harald Welte <laforge@openezx.org>
L: openezx-devel@lists.openezx.org (subscribers-only)
L: openezx-devel@lists.openezx.org (moderated for non-subscribers)
W: http://www.openezx.org/
S: Maintained
T: topgit git://git.openezx.org/openezx.git
@ -1232,13 +1233,6 @@ W: http://wireless.kernel.org/en/users/Drivers/ath9k
S: Supported
F: drivers/net/wireless/ath/ath9k/
ATHEROS AR9170 WIRELESS DRIVER
M: Christian Lamparter <chunkeey@web.de>
L: linux-wireless@vger.kernel.org
W: http://wireless.kernel.org/en/users/Drivers/ar9170
S: Obsolete
F: drivers/net/wireless/ath/ar9170/
CARL9170 LINUX COMMUNITY WIRELESS DRIVER
M: Christian Lamparter <chunkeey@googlemail.com>
L: linux-wireless@vger.kernel.org
@ -2813,38 +2807,19 @@ F: Documentation/gpio.txt
F: drivers/gpio/
F: include/linux/gpio*
GRE DEMULTIPLEXER DRIVER
M: Dmitry Kozlov <xeb@mail.ru>
L: netdev@vger.kernel.org
S: Maintained
F: net/ipv4/gre.c
F: include/net/gre.h
GRETH 10/100/1G Ethernet MAC device driver
M: Kristoffer Glembo <kristoffer@gaisler.com>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/greth*
HARD DRIVE ACTIVE PROTECTION SYSTEM (HDAPS) DRIVER
M: Frank Seidel <frank@f-seidel.de>
L: platform-driver-x86@vger.kernel.org
W: http://www.kernel.org/pub/linux/kernel/people/fseidel/hdaps/
S: Maintained
F: drivers/platform/x86/hdaps.c
HWPOISON MEMORY FAILURE HANDLING
M: Andi Kleen <andi@firstfloor.org>
L: linux-mm@kvack.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6.git hwpoison
S: Maintained
F: mm/memory-failure.c
F: mm/hwpoison-inject.c
HYPERVISOR VIRTUAL CONSOLE DRIVER
L: linuxppc-dev@lists.ozlabs.org
S: Odd Fixes
F: drivers/tty/hvc/
iSCSI BOOT FIRMWARE TABLE (iBFT) DRIVER
M: Peter Jones <pjones@redhat.com>
M: Konrad Rzeszutek Wilk <konrad@kernel.org>
S: Maintained
F: drivers/firmware/iscsi_ibft*
GSPCA FINEPIX SUBDRIVER
M: Frank Zago <frank@zago.net>
L: linux-media@vger.kernel.org
@ -2895,6 +2870,26 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6.git
S: Maintained
F: drivers/media/video/gspca/
HARD DRIVE ACTIVE PROTECTION SYSTEM (HDAPS) DRIVER
M: Frank Seidel <frank@f-seidel.de>
L: platform-driver-x86@vger.kernel.org
W: http://www.kernel.org/pub/linux/kernel/people/fseidel/hdaps/
S: Maintained
F: drivers/platform/x86/hdaps.c
HWPOISON MEMORY FAILURE HANDLING
M: Andi Kleen <andi@firstfloor.org>
L: linux-mm@kvack.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6.git hwpoison
S: Maintained
F: mm/memory-failure.c
F: mm/hwpoison-inject.c
HYPERVISOR VIRTUAL CONSOLE DRIVER
L: linuxppc-dev@lists.ozlabs.org
S: Odd Fixes
F: drivers/tty/hvc/
HARDWARE MONITORING
M: Jean Delvare <khali@linux-fr.org>
M: Guenter Roeck <guenter.roeck@ericsson.com>
@ -2945,8 +2940,8 @@ F: drivers/block/cciss*
F: include/linux/cciss_ioctl.h
HFS FILESYSTEM
M: Roman Zippel <zippel@linux-m68k.org>
S: Maintained
L: linux-fsdevel@vger.kernel.org
S: Orphan
F: Documentation/filesystems/hfs.txt
F: fs/hfs/
@ -3362,6 +3357,12 @@ F: Documentation/wimax/README.i2400m
F: drivers/net/wimax/i2400m/
F: include/linux/wimax/i2400m.h
INTEL WIRELESS 3945ABG/BG, 4965AGN (iwlegacy)
M: Stanislaw Gruszka <sgruszka@redhat.com>
L: linux-wireless@vger.kernel.org
S: Supported
F: drivers/net/wireless/iwlegacy/
INTEL WIRELESS WIFI LINK (iwlwifi)
M: Wey-Yi Guy <wey-yi.w.guy@intel.com>
M: Intel Linux Wireless <ilw@linux.intel.com>
@ -3478,6 +3479,12 @@ F: Documentation/isapnp.txt
F: drivers/pnp/isapnp/
F: include/linux/isapnp.h
iSCSI BOOT FIRMWARE TABLE (iBFT) DRIVER
M: Peter Jones <pjones@redhat.com>
M: Konrad Rzeszutek Wilk <konrad@kernel.org>
S: Maintained
F: drivers/firmware/iscsi_ibft*
ISCSI
M: Mike Christie <michaelc@cs.wisc.edu>
L: open-iscsi@googlegroups.com
@ -3807,7 +3814,7 @@ M: Rusty Russell <rusty@rustcorp.com.au>
L: lguest@lists.ozlabs.org
W: http://lguest.ozlabs.org/
S: Odd Fixes
F: Documentation/lguest/
F: Documentation/virtual/lguest/
F: arch/x86/lguest/
F: drivers/lguest/
F: include/linux/lguest*.h
@ -3994,7 +4001,6 @@ F: arch/m32r/
M68K ARCHITECTURE
M: Geert Uytterhoeven <geert@linux-m68k.org>
M: Roman Zippel <zippel@linux-m68k.org>
L: linux-m68k@lists.linux-m68k.org
W: http://www.linux-m68k.org/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k.git
@ -4247,7 +4253,7 @@ F: include/linux/isicom.h
MUSB MULTIPOINT HIGH SPEED DUAL-ROLE CONTROLLER
M: Felipe Balbi <balbi@ti.com>
L: linux-usb@vger.kernel.org
T: git git://gitorious.org/usb/usb.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb.git
S: Maintained
F: drivers/usb/musb/
@ -4264,6 +4270,13 @@ M: Tim Hockin <thockin@hockin.org>
S: Maintained
F: drivers/net/natsemi.c
NATIVE INSTRUMENTS USB SOUND INTERFACE DRIVER
M: Daniel Mack <zonque@gmail.com>
S: Maintained
L: alsa-devel@alsa-project.org
W: http://www.native-instruments.com
F: sound/usb/caiaq/
NCP FILESYSTEM
M: Petr Vandrovec <petr@vandrovec.name>
S: Odd Fixes
@ -4379,6 +4392,7 @@ S: Maintained
F: net/ipv4/
F: net/ipv6/
F: include/net/ip*
F: arch/x86/net/*
NETWORKING [LABELED] (NetLabel, CIPSO, Labeled IPsec, SECMARK)
M: Paul Moore <paul.moore@hp.com>
@ -4574,6 +4588,7 @@ M: Felipe Balbi <balbi@ti.com>
M: David Brownell <dbrownell@users.sourceforge.net>
L: linux-usb@vger.kernel.org
L: linux-omap@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/balbi/usb.git
S: Maintained
F: drivers/usb/*/*omap*
F: arch/arm/*omap*/usb*
@ -4989,6 +5004,13 @@ F: Documentation/pps/
F: drivers/pps/
F: include/linux/pps*.h
PPTP DRIVER
M: Dmitry Kozlov <xeb@mail.ru>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/pptp.c
W: http://sourceforge.net/projects/accel-pptp
PREEMPTIBLE KERNEL
M: Robert Love <rml@tech9.net>
L: kpreempt-tech@lists.sourceforge.net
@ -5418,6 +5440,7 @@ F: include/linux/timex.h
F: kernel/time/clocksource.c
F: kernel/time/time*.c
F: kernel/time/ntp.c
F: drivers/clocksource
TLG2300 VIDEO4LINUX-2 DRIVER
M: Huang Shijie <shijie8@gmail.com>
@ -5598,9 +5621,9 @@ F: include/linux/ata.h
F: include/linux/libata.h
SERVER ENGINES 10Gbps iSCSI - BladeEngine 2 DRIVER
M: Jayamohan Kallickal <jayamohank@serverengines.com>
M: Jayamohan Kallickal <jayamohan.kallickal@emulex.com>
L: linux-scsi@vger.kernel.org
W: http://www.serverengines.com
W: http://www.emulex.com
S: Supported
F: drivers/scsi/be2iscsi/
@ -5818,6 +5841,13 @@ S: Maintained
F: drivers/ssb/
F: include/linux/ssb/
BROADCOM SPECIFIC AMBA DRIVER (BCMA)
M: Rafał Miłecki <zajec5@gmail.com>
L: linux-wireless@vger.kernel.org
S: Maintained
F: drivers/bcma/
F: include/linux/bcma/
SONY VAIO CONTROL DEVICE DRIVER
M: Mattia Dongili <malattia@linux.it>
L: platform-driver-x86@vger.kernel.org
@ -5847,7 +5877,7 @@ F: include/sound/
F: sound/
SOUND - SOC LAYER / DYNAMIC AUDIO POWER MANAGEMENT (ASoC)
M: Liam Girdwood <lrg@slimlogic.co.uk>
M: Liam Girdwood <lrg@ti.com>
M: Mark Brown <broonie@opensource.wolfsonmicro.com>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound-2.6.git
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
@ -6098,7 +6128,7 @@ F: drivers/mmc/host/tifm_sd.c
F: include/linux/tifm.h
TI TWL4030 SERIES SOC CODEC DRIVER
M: Peter Ujfalusi <peter.ujfalusi@nokia.com>
M: Peter Ujfalusi <peter.ujfalusi@ti.com>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
S: Maintained
F: sound/soc/codecs/twl4030*
@ -6201,6 +6231,7 @@ TRIVIAL PATCHES
M: Jiri Kosina <trivial@kernel.org>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial.git
S: Maintained
K: ^Subject:.*(?i)trivial
TTY LAYER
M: Greg Kroah-Hartman <gregkh@suse.de>
@ -6618,7 +6649,7 @@ L: user-mode-linux-devel@lists.sourceforge.net
L: user-mode-linux-user@lists.sourceforge.net
W: http://user-mode-linux.sourceforge.net
S: Maintained
F: Documentation/uml/
F: Documentation/virtual/uml/
F: arch/um/
F: fs/hostfs/
F: fs/hppfs/
@ -6742,7 +6773,7 @@ F: drivers/scsi/vmw_pvscsi.c
F: drivers/scsi/vmw_pvscsi.h
VOLTAGE AND CURRENT REGULATOR FRAMEWORK
M: Liam Girdwood <lrg@slimlogic.co.uk>
M: Liam Girdwood <lrg@ti.com>
M: Mark Brown <broonie@opensource.wolfsonmicro.com>
W: http://opensource.wolfsonmicro.com/node/15
W: http://www.slimlogic.co.uk/?p=48
@ -7024,20 +7055,6 @@ M: "Maciej W. Rozycki" <macro@linux-mips.org>
S: Maintained
F: drivers/tty/serial/zs.*
GRE DEMULTIPLEXER DRIVER
M: Dmitry Kozlov <xeb@mail.ru>
L: netdev@vger.kernel.org
S: Maintained
F: net/ipv4/gre.c
F: include/net/gre.h
PPTP DRIVER
M: Dmitry Kozlov <xeb@mail.ru>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/pptp.c
W: http://sourceforge.net/projects/accel-pptp
THE REST
M: Linus Torvalds <torvalds@linux-foundation.org>
L: linux-kernel@vger.kernel.org

View File

@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 39
EXTRAVERSION = -rc7
EXTRAVERSION =
NAME = Flesh-Eating Bats with Fangs
# *DOCUMENTATION*
@ -1268,6 +1268,7 @@ help:
@echo ' make C=1 [targets] Check all c source with $$CHECK (sparse by default)'
@echo ' make C=2 [targets] Force check of all c source with $$CHECK'
@echo ' make W=1 [targets] Enable extra gcc checks'
@echo ' make RECORDMCOUNT_WARN=1 [targets] Warn about ignored mcount sections'
@echo ''
@echo 'Execute "make" or "make all" to build all targets marked with [*] '
@echo 'For further info see the ./README file'

View File

@ -144,9 +144,6 @@ config HAVE_CLK
config HAVE_DMA_API_DEBUG
bool
config HAVE_DEFAULT_NO_SPIN_MUTEXES
bool
config HAVE_HW_BREAKPOINT
bool
depends on PERF_EVENTS

View File

@ -452,10 +452,14 @@
#define __NR_fanotify_init 494
#define __NR_fanotify_mark 495
#define __NR_prlimit64 496
#define __NR_name_to_handle_at 497
#define __NR_open_by_handle_at 498
#define __NR_clock_adjtime 499
#define __NR_syncfs 500
#ifdef __KERNEL__
#define NR_SYSCALLS 497
#define NR_SYSCALLS 501
#define __ARCH_WANT_IPC_PARSE_VERSION
#define __ARCH_WANT_OLD_READDIR

View File

@ -585,8 +585,7 @@ handle_ipi(struct pt_regs *regs)
switch (which) {
case IPI_RESCHEDULE:
/* Reschedule callback. Everything to be done
is done by the interrupt return path. */
scheduler_ipi();
break;
case IPI_CALL_FUNC:

Some files were not shown because too many files have changed in this diff Show More