Revert "convert SLB miss handlers to C" and subsequent commits

This reverts commits:
  5e46e29e6a ("powerpc/64s/hash: convert SLB miss handlers to C")
  8fed04d0f6 ("powerpc/64s/hash: remove user SLB data from the paca")
  655deecf67 ("powerpc/64s/hash: SLB allocation status bitmaps")
  2e1626744e ("powerpc/64s/hash: provide arch_setup_exec hooks for hash slice setup")
  89ca4e126a ("powerpc/64s/hash: Add a SLB preload cache")

This series had a few bugs, and the fixes are not all trivial. So
revert most of it for now.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This commit is contained in:
Michael Ellerman 2018-10-02 23:56:39 +10:00
parent 0823c68b05
commit 54be0b9c7c
19 changed files with 774 additions and 465 deletions

View File

@ -78,8 +78,6 @@ void kernel_bad_stack(struct pt_regs *regs);
void system_reset_exception(struct pt_regs *regs);
void machine_check_exception(struct pt_regs *regs);
void emulation_assist_interrupt(struct pt_regs *regs);
long do_slb_fault(struct pt_regs *regs, unsigned long ea);
void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err);
/* signals, syscalls and interrupts */
long sys_swapcontext(struct ucontext __user *old_ctx,

View File

@ -487,8 +487,6 @@ int htab_remove_mapping(unsigned long vstart, unsigned long vend,
extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
extern void hash__setup_new_exec(void);
#ifdef CONFIG_PPC_PSERIES
void hpte_init_pseries(void);
#else
@ -503,7 +501,6 @@ struct slb_entry {
};
extern void slb_initialize(void);
extern void core_flush_all_slbs(struct mm_struct *mm);
extern void slb_flush_and_rebolt(void);
void slb_flush_all_realmode(void);
void __slb_restore_bolted_realmode(void);

View File

@ -60,6 +60,14 @@
*/
#define MAX_MCE_DEPTH 4
/*
* EX_LR is only used in EXSLB and where it does not overlap with EX_DAR
* EX_CCR similarly with DSISR, but being 4 byte registers there is a hole
* in the save area so it's not necessary to overlap them. Could be used
* for future savings though if another 4 byte register was to be saved.
*/
#define EX_LR EX_DAR
/*
* EX_R3 is only used by the bad_stack handler. bad_stack reloads and
* saves DAR from SPRN_DAR, and EX_DAR is not used. So EX_R3 can overlap

View File

@ -113,10 +113,7 @@ struct paca_struct {
* on the linear mapping */
/* SLB related definitions */
u16 vmalloc_sllp;
u8 slb_cache_ptr;
u8 stab_rr; /* stab/slb round-robin counter */
u32 slb_used_bitmap; /* Bitmaps for first 32 SLB entries. */
u32 slb_kern_bitmap;
u16 slb_cache_ptr;
u32 slb_cache[SLB_CACHE_ENTRIES];
#endif /* CONFIG_PPC_BOOK3S_64 */
@ -146,11 +143,24 @@ struct paca_struct {
struct tlb_core_data tcd;
#endif /* CONFIG_PPC_BOOK3E */
#ifdef CONFIG_PPC_BOOK3S
mm_context_id_t mm_ctx_id;
#ifdef CONFIG_PPC_MM_SLICES
unsigned char mm_ctx_low_slices_psize[BITS_PER_LONG / BITS_PER_BYTE];
unsigned char mm_ctx_high_slices_psize[SLICE_ARRAY_SIZE];
unsigned long mm_ctx_slb_addr_limit;
#else
u16 mm_ctx_user_psize;
u16 mm_ctx_sllp;
#endif
#endif
/*
* then miscellaneous read-write fields
*/
struct task_struct *__current; /* Pointer to current */
u64 kstack; /* Saved Kernel stack addr */
u64 stab_rr; /* stab/slb round-robin counter */
u64 saved_r1; /* r1 save for RTAS calls or PM or EE=0 */
u64 saved_msr; /* MSR saved here by enter_rtas */
u16 trap_save; /* Used when bad stack is encountered */
@ -248,6 +258,7 @@ struct paca_struct {
#endif /* CONFIG_PPC_BOOK3S_64 */
} ____cacheline_aligned;
extern void copy_mm_to_paca(struct mm_struct *mm);
extern struct paca_struct **paca_ptrs;
extern void initialise_paca(struct paca_struct *new_paca, int cpu);
extern void setup_paca(struct paca_struct *new_paca);

View File

@ -273,7 +273,6 @@ struct thread_struct {
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
struct arch_hw_breakpoint hw_brk; /* info on the hardware breakpoint */
unsigned long trap_nr; /* last trap # on this thread */
u8 load_slb; /* Ages out SLB preload cache entries */
u8 load_fp;
#ifdef CONFIG_ALTIVEC
u8 load_vec;

View File

@ -32,7 +32,6 @@ void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long len, unsigned int psize);
void slice_init_new_context_exec(struct mm_struct *mm);
void slice_setup_new_exec(void);
#endif /* __ASSEMBLY__ */

View File

@ -29,7 +29,6 @@
#include <asm/page.h>
#include <asm/accounting.h>
#define SLB_PRELOAD_NR 16U
/*
* low level task data.
*/
@ -45,10 +44,6 @@ struct thread_info {
#if defined(CONFIG_VIRT_CPU_ACCOUNTING_NATIVE) && defined(CONFIG_PPC32)
struct cpu_accounting_data accounting;
#endif
u8 slb_preload_nr;
u8 slb_preload_tail;
u32 slb_preload_esid[SLB_PRELOAD_NR];
/* low level flags - has atomic operations done on it */
unsigned long flags ____cacheline_aligned_in_smp;
};
@ -77,12 +72,6 @@ static inline struct thread_info *current_thread_info(void)
}
extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
#ifdef CONFIG_PPC_BOOK3S_64
void arch_setup_new_exec(void);
#define arch_setup_new_exec arch_setup_new_exec
#endif
#endif /* __ASSEMBLY__ */
/*

View File

@ -173,6 +173,7 @@ int main(void)
OFFSET(PACAKSAVE, paca_struct, kstack);
OFFSET(PACACURRENT, paca_struct, __current);
OFFSET(PACASAVEDMSR, paca_struct, saved_msr);
OFFSET(PACASTABRR, paca_struct, stab_rr);
OFFSET(PACAR1, paca_struct, saved_r1);
OFFSET(PACATOC, paca_struct, kernel_toc);
OFFSET(PACAKBASE, paca_struct, kernelbase);
@ -180,6 +181,15 @@ int main(void)
OFFSET(PACAIRQSOFTMASK, paca_struct, irq_soft_mask);
OFFSET(PACAIRQHAPPENED, paca_struct, irq_happened);
OFFSET(PACA_FTRACE_ENABLED, paca_struct, ftrace_enabled);
#ifdef CONFIG_PPC_BOOK3S
OFFSET(PACACONTEXTID, paca_struct, mm_ctx_id);
#ifdef CONFIG_PPC_MM_SLICES
OFFSET(PACALOWSLICESPSIZE, paca_struct, mm_ctx_low_slices_psize);
OFFSET(PACAHIGHSLICEPSIZE, paca_struct, mm_ctx_high_slices_psize);
OFFSET(PACA_SLB_ADDR_LIMIT, paca_struct, mm_ctx_slb_addr_limit);
DEFINE(MMUPSIZEDEFSIZE, sizeof(struct mmu_psize_def));
#endif /* CONFIG_PPC_MM_SLICES */
#endif
#ifdef CONFIG_PPC_BOOK3E
OFFSET(PACAPGD, paca_struct, pgd);
@ -202,7 +212,6 @@ int main(void)
#ifdef CONFIG_PPC_BOOK3S_64
OFFSET(PACASLBCACHE, paca_struct, slb_cache);
OFFSET(PACASLBCACHEPTR, paca_struct, slb_cache_ptr);
OFFSET(PACASTABRR, paca_struct, stab_rr);
OFFSET(PACAVMALLOCSLLP, paca_struct, vmalloc_sllp);
#ifdef CONFIG_PPC_MM_SLICES
OFFSET(MMUPSIZESLLP, mmu_psize_def, sllp);

View File

@ -596,36 +596,28 @@ ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
EXCEPTION_PROLOG(PACA_EXSLB, data_access_slb_common, EXC_STD, KVMTEST_PR, 0x380);
SET_SCRATCH0(r13)
EXCEPTION_PROLOG_0(PACA_EXSLB)
EXCEPTION_PROLOG_1(PACA_EXSLB, KVMTEST_PR, 0x380)
mr r12,r3 /* save r3 */
mfspr r3,SPRN_DAR
mfspr r11,SPRN_SRR1
crset 4*cr6+eq
BRANCH_TO_COMMON(r10, slb_miss_common)
EXC_REAL_END(data_access_slb, 0x380, 0x80)
EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
EXCEPTION_RELON_PROLOG(PACA_EXSLB, data_access_slb_common, EXC_STD, NOTEST, 0x380);
SET_SCRATCH0(r13)
EXCEPTION_PROLOG_0(PACA_EXSLB)
EXCEPTION_PROLOG_1(PACA_EXSLB, NOTEST, 0x380)
mr r12,r3 /* save r3 */
mfspr r3,SPRN_DAR
mfspr r11,SPRN_SRR1
crset 4*cr6+eq
BRANCH_TO_COMMON(r10, slb_miss_common)
EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
TRAMP_KVM_SKIP(PACA_EXSLB, 0x380)
EXC_COMMON_BEGIN(data_access_slb_common)
mfspr r10,SPRN_DAR
std r10,PACA_EXSLB+EX_DAR(r13)
EXCEPTION_PROLOG_COMMON(0x380, PACA_EXSLB)
ld r4,PACA_EXSLB+EX_DAR(r13)
std r4,_DAR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_exception_return
1: /* Error case */
std r3,RESULT(r1)
bl save_nvgprs
RECONCILE_IRQ_STATE(r10, r11)
ld r4,_DAR(r1)
ld r5,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_slb_fault
b ret_from_except
EXC_REAL(instruction_access, 0x400, 0x80)
EXC_VIRT(instruction_access, 0x4400, 0x80, 0x400)
@ -648,33 +640,159 @@ ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
EXCEPTION_PROLOG(PACA_EXSLB, instruction_access_slb_common, EXC_STD, KVMTEST_PR, 0x480);
SET_SCRATCH0(r13)
EXCEPTION_PROLOG_0(PACA_EXSLB)
EXCEPTION_PROLOG_1(PACA_EXSLB, KVMTEST_PR, 0x480)
mr r12,r3 /* save r3 */
mfspr r3,SPRN_SRR0 /* SRR0 is faulting address */
mfspr r11,SPRN_SRR1
crclr 4*cr6+eq
BRANCH_TO_COMMON(r10, slb_miss_common)
EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
EXCEPTION_RELON_PROLOG(PACA_EXSLB, instruction_access_slb_common, EXC_STD, NOTEST, 0x480);
SET_SCRATCH0(r13)
EXCEPTION_PROLOG_0(PACA_EXSLB)
EXCEPTION_PROLOG_1(PACA_EXSLB, NOTEST, 0x480)
mr r12,r3 /* save r3 */
mfspr r3,SPRN_SRR0 /* SRR0 is faulting address */
mfspr r11,SPRN_SRR1
crclr 4*cr6+eq
BRANCH_TO_COMMON(r10, slb_miss_common)
EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
TRAMP_KVM(PACA_EXSLB, 0x480)
EXC_COMMON_BEGIN(instruction_access_slb_common)
EXCEPTION_PROLOG_COMMON(0x480, PACA_EXSLB)
ld r4,_NIP(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_exception_return
1: /* Error case */
std r3,RESULT(r1)
bl save_nvgprs
RECONCILE_IRQ_STATE(r10, r11)
ld r4,_NIP(r1)
ld r5,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_slb_fault
b ret_from_except
/*
* This handler is used by the 0x380 and 0x480 SLB miss interrupts, as well as
* the virtual mode 0x4380 and 0x4480 interrupts if AIL is enabled.
*/
EXC_COMMON_BEGIN(slb_miss_common)
/*
* r13 points to the PACA, r9 contains the saved CR,
* r12 contains the saved r3,
* r11 contain the saved SRR1, SRR0 is still ready for return
* r3 has the faulting address
* r9 - r13 are saved in paca->exslb.
* cr6.eq is set for a D-SLB miss, clear for a I-SLB miss
* We assume we aren't going to take any exceptions during this
* procedure.
*/
mflr r10
stw r9,PACA_EXSLB+EX_CCR(r13) /* save CR in exc. frame */
std r10,PACA_EXSLB+EX_LR(r13) /* save LR */
andi. r9,r11,MSR_PR // Check for exception from userspace
cmpdi cr4,r9,MSR_PR // And save the result in CR4 for later
/*
* Test MSR_RI before calling slb_allocate_realmode, because the
* MSR in r11 gets clobbered. However we still want to allocate
* SLB in case MSR_RI=0, to minimise the risk of getting stuck in
* recursive SLB faults. So use cr5 for this, which is preserved.
*/
andi. r11,r11,MSR_RI /* check for unrecoverable exception */
cmpdi cr5,r11,MSR_RI
crset 4*cr0+eq
#ifdef CONFIG_PPC_BOOK3S_64
BEGIN_MMU_FTR_SECTION
bl slb_allocate
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_TYPE_RADIX)
#endif
ld r10,PACA_EXSLB+EX_LR(r13)
lwz r9,PACA_EXSLB+EX_CCR(r13) /* get saved CR */
mtlr r10
/*
* Large address, check whether we have to allocate new contexts.
*/
beq- 8f
bne- cr5,2f /* if unrecoverable exception, oops */
/* All done -- return from exception. */
bne cr4,1f /* returning to kernel */
mtcrf 0x80,r9
mtcrf 0x08,r9 /* MSR[PR] indication is in cr4 */
mtcrf 0x04,r9 /* MSR[RI] indication is in cr5 */
mtcrf 0x02,r9 /* I/D indication is in cr6 */
mtcrf 0x01,r9 /* slb_allocate uses cr0 and cr7 */
RESTORE_CTR(r9, PACA_EXSLB)
RESTORE_PPR_PACA(PACA_EXSLB, r9)
mr r3,r12
ld r9,PACA_EXSLB+EX_R9(r13)
ld r10,PACA_EXSLB+EX_R10(r13)
ld r11,PACA_EXSLB+EX_R11(r13)
ld r12,PACA_EXSLB+EX_R12(r13)
ld r13,PACA_EXSLB+EX_R13(r13)
RFI_TO_USER
b . /* prevent speculative execution */
1:
mtcrf 0x80,r9
mtcrf 0x08,r9 /* MSR[PR] indication is in cr4 */
mtcrf 0x04,r9 /* MSR[RI] indication is in cr5 */
mtcrf 0x02,r9 /* I/D indication is in cr6 */
mtcrf 0x01,r9 /* slb_allocate uses cr0 and cr7 */
RESTORE_CTR(r9, PACA_EXSLB)
RESTORE_PPR_PACA(PACA_EXSLB, r9)
mr r3,r12
ld r9,PACA_EXSLB+EX_R9(r13)
ld r10,PACA_EXSLB+EX_R10(r13)
ld r11,PACA_EXSLB+EX_R11(r13)
ld r12,PACA_EXSLB+EX_R12(r13)
ld r13,PACA_EXSLB+EX_R13(r13)
RFI_TO_KERNEL
b . /* prevent speculative execution */
2: std r3,PACA_EXSLB+EX_DAR(r13)
mr r3,r12
mfspr r11,SPRN_SRR0
mfspr r12,SPRN_SRR1
LOAD_HANDLER(r10,unrecov_slb)
mtspr SPRN_SRR0,r10
ld r10,PACAKMSR(r13)
mtspr SPRN_SRR1,r10
RFI_TO_KERNEL
b .
8: std r3,PACA_EXSLB+EX_DAR(r13)
mr r3,r12
mfspr r11,SPRN_SRR0
mfspr r12,SPRN_SRR1
LOAD_HANDLER(r10, large_addr_slb)
mtspr SPRN_SRR0,r10
ld r10,PACAKMSR(r13)
mtspr SPRN_SRR1,r10
RFI_TO_KERNEL
b .
EXC_COMMON_BEGIN(unrecov_slb)
EXCEPTION_PROLOG_COMMON(0x4100, PACA_EXSLB)
RECONCILE_IRQ_STATE(r10, r11)
bl save_nvgprs
1: addi r3,r1,STACK_FRAME_OVERHEAD
bl unrecoverable_exception
b 1b
EXC_COMMON_BEGIN(large_addr_slb)
EXCEPTION_PROLOG_COMMON(0x380, PACA_EXSLB)
RECONCILE_IRQ_STATE(r10, r11)
ld r3, PACA_EXSLB+EX_DAR(r13)
std r3, _DAR(r1)
beq cr6, 2f
li r10, 0x481 /* fix trap number for I-SLB miss */
std r10, _TRAP(r1)
2: bl save_nvgprs
addi r3, r1, STACK_FRAME_OVERHEAD
bl slb_miss_large_addr
b ret_from_except
EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
.globl hardware_interrupt_hv;

View File

@ -258,3 +258,25 @@ void __init free_unused_pacas(void)
printk(KERN_DEBUG "Allocated %u bytes for %u pacas\n",
paca_ptrs_size + paca_struct_size, nr_cpu_ids);
}
void copy_mm_to_paca(struct mm_struct *mm)
{
#ifdef CONFIG_PPC_BOOK3S
mm_context_t *context = &mm->context;
get_paca()->mm_ctx_id = context->id;
#ifdef CONFIG_PPC_MM_SLICES
VM_BUG_ON(!mm->context.slb_addr_limit);
get_paca()->mm_ctx_slb_addr_limit = mm->context.slb_addr_limit;
memcpy(&get_paca()->mm_ctx_low_slices_psize,
&context->low_slices_psize, sizeof(context->low_slices_psize));
memcpy(&get_paca()->mm_ctx_high_slices_psize,
&context->high_slices_psize, TASK_SLICE_ARRAY_SZ(mm));
#else /* CONFIG_PPC_MM_SLICES */
get_paca()->mm_ctx_user_psize = context->user_psize;
get_paca()->mm_ctx_sllp = context->sllp;
#endif
#else /* !CONFIG_PPC_BOOK3S */
return;
#endif
}

View File

@ -1482,15 +1482,6 @@ void flush_thread(void)
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}
#ifdef CONFIG_PPC_BOOK3S_64
void arch_setup_new_exec(void)
{
if (radix_enabled())
return;
hash__setup_new_exec();
}
#endif
int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
@ -1719,8 +1710,6 @@ int copy_thread(unsigned long clone_flags, unsigned long usp,
return 0;
}
void preload_new_slb_context(unsigned long start, unsigned long sp);
/*
* Set up a thread for executing a new program
*/
@ -1728,10 +1717,6 @@ void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
#ifdef CONFIG_PPC_BOOK3S_64
preload_new_slb_context(start, sp);
#endif
#endif
/*
@ -1822,7 +1807,6 @@ void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
#ifdef CONFIG_VSX
current->thread.used_vsr = 0;
#endif
current->thread.load_slb = 0;
current->thread.load_fp = 0;
memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
current->thread.fp_save_area = NULL;

View File

@ -15,7 +15,7 @@ obj-$(CONFIG_PPC_MMU_NOHASH) += mmu_context_nohash.o tlb_nohash.o \
obj-$(CONFIG_PPC_BOOK3E) += tlb_low_$(BITS)e.o
hash64-$(CONFIG_PPC_NATIVE) := hash_native_64.o
obj-$(CONFIG_PPC_BOOK3E_64) += pgtable-book3e.o
obj-$(CONFIG_PPC_BOOK3S_64) += pgtable-hash64.o hash_utils_64.o slb.o $(hash64-y) mmu_context_book3s64.o pgtable-book3s64.o
obj-$(CONFIG_PPC_BOOK3S_64) += pgtable-hash64.o hash_utils_64.o slb_low.o slb.o $(hash64-y) mmu_context_book3s64.o pgtable-book3s64.o
obj-$(CONFIG_PPC_RADIX_MMU) += pgtable-radix.o tlb-radix.o
obj-$(CONFIG_PPC_STD_MMU_32) += ppc_mmu_32.o hash_low_32.o mmu_context_hash32.o
obj-$(CONFIG_PPC_STD_MMU) += tlb_hash$(BITS).o

View File

@ -1088,16 +1088,16 @@ unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
}
#ifdef CONFIG_PPC_MM_SLICES
static unsigned int get_psize(struct mm_struct *mm, unsigned long addr)
static unsigned int get_paca_psize(unsigned long addr)
{
unsigned char *psizes;
unsigned long index, mask_index;
if (addr < SLICE_LOW_TOP) {
psizes = mm->context.low_slices_psize;
psizes = get_paca()->mm_ctx_low_slices_psize;
index = GET_LOW_SLICE_INDEX(addr);
} else {
psizes = mm->context.high_slices_psize;
psizes = get_paca()->mm_ctx_high_slices_psize;
index = GET_HIGH_SLICE_INDEX(addr);
}
mask_index = index & 0x1;
@ -1105,9 +1105,9 @@ static unsigned int get_psize(struct mm_struct *mm, unsigned long addr)
}
#else
unsigned int get_psize(struct mm_struct *mm, unsigned long addr)
unsigned int get_paca_psize(unsigned long addr)
{
return mm->context.user_psize;
return get_paca()->mm_ctx_user_psize;
}
#endif
@ -1118,11 +1118,15 @@ unsigned int get_psize(struct mm_struct *mm, unsigned long addr)
#ifdef CONFIG_PPC_64K_PAGES
void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
{
if (get_psize(mm, addr) == MMU_PAGE_4K)
if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
return;
slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
copro_flush_all_slbs(mm);
core_flush_all_slbs(mm);
if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
copy_mm_to_paca(mm);
slb_flush_and_rebolt();
}
}
#endif /* CONFIG_PPC_64K_PAGES */
@ -1187,6 +1191,22 @@ void hash_failure_debug(unsigned long ea, unsigned long access,
trap, vsid, ssize, psize, lpsize, pte);
}
static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
int psize, bool user_region)
{
if (user_region) {
if (psize != get_paca_psize(ea)) {
copy_mm_to_paca(mm);
slb_flush_and_rebolt();
}
} else if (get_paca()->vmalloc_sllp !=
mmu_psize_defs[mmu_vmalloc_psize].sllp) {
get_paca()->vmalloc_sllp =
mmu_psize_defs[mmu_vmalloc_psize].sllp;
slb_vmalloc_update();
}
}
/* Result code is:
* 0 - handled
* 1 - normal page fault
@ -1219,7 +1239,7 @@ int hash_page_mm(struct mm_struct *mm, unsigned long ea,
rc = 1;
goto bail;
}
psize = get_psize(mm, ea);
psize = get_slice_psize(mm, ea);
ssize = user_segment_size(ea);
vsid = get_user_vsid(&mm->context, ea, ssize);
break;
@ -1307,6 +1327,9 @@ int hash_page_mm(struct mm_struct *mm, unsigned long ea,
WARN_ON(1);
}
#endif
if (current->mm == mm)
check_paca_psize(ea, mm, psize, user_region);
goto bail;
}
@ -1341,14 +1364,15 @@ int hash_page_mm(struct mm_struct *mm, unsigned long ea,
"to 4kB pages because of "
"non-cacheable mapping\n");
psize = mmu_vmalloc_psize = MMU_PAGE_4K;
slb_vmalloc_update();
copro_flush_all_slbs(mm);
core_flush_all_slbs(mm);
}
}
#endif /* CONFIG_PPC_64K_PAGES */
if (current->mm == mm)
check_paca_psize(ea, mm, psize, user_region);
#ifdef CONFIG_PPC_64K_PAGES
if (psize == MMU_PAGE_64K)
rc = __hash_page_64K(ea, access, vsid, ptep, trap,
@ -1436,7 +1460,7 @@ int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
#ifdef CONFIG_PPC_MM_SLICES
static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
{
int psize = get_psize(mm, ea);
int psize = get_slice_psize(mm, ea);
/* We only prefault standard pages for now */
if (unlikely(psize != mm->context.user_psize))

View File

@ -54,7 +54,8 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
* MMU context id, which is then moved to SPRN_PID.
*
* For the hash MMU it is either the first load from slb_cache
* in switch_slb(), and/or load of MMU context id.
* in switch_slb(), and/or the store of paca->mm_ctx_id in
* copy_mm_to_paca().
*
* On the other side, the barrier is in mm/tlb-radix.c for
* radix which orders earlier stores to clear the PTEs vs

View File

@ -53,8 +53,6 @@ int hash__alloc_context_id(void)
}
EXPORT_SYMBOL_GPL(hash__alloc_context_id);
void slb_setup_new_exec(void);
static int hash__init_new_context(struct mm_struct *mm)
{
int index;
@ -86,13 +84,6 @@ static int hash__init_new_context(struct mm_struct *mm)
return index;
}
void hash__setup_new_exec(void)
{
slice_setup_new_exec();
slb_setup_new_exec();
}
static int radix__init_new_context(struct mm_struct *mm)
{
unsigned long rts_field;

View File

@ -14,7 +14,6 @@
* 2 of the License, or (at your option) any later version.
*/
#include <asm/asm-prototypes.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
@ -34,7 +33,7 @@ enum slb_index {
KSTACK_INDEX = 1, /* Kernel stack map */
};
static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
extern void slb_allocate(unsigned long ea);
#define slb_esid_mask(ssize) \
(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
@ -45,17 +44,11 @@ static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
}
static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
unsigned long flags)
{
return (vsid << slb_vsid_shift(ssize)) | flags |
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
}
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
unsigned long flags)
{
return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
}
static inline void slb_shadow_update(unsigned long ea, int ssize,
@ -122,9 +115,6 @@ void slb_restore_bolted_realmode(void)
{
__slb_restore_bolted_realmode();
get_paca()->slb_cache_ptr = 0;
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
}
/*
@ -132,6 +122,9 @@ void slb_restore_bolted_realmode(void)
*/
void slb_flush_all_realmode(void)
{
/*
* This flushes all SLB entries including 0, so it must be realmode.
*/
asm volatile("slbmte %0,%0; slbia" : : "r" (0));
}
@ -177,9 +170,6 @@ void slb_flush_and_rebolt(void)
: "memory");
get_paca()->slb_cache_ptr = 0;
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
}
void slb_save_contents(struct slb_entry *slb_ptr)
@ -212,7 +202,7 @@ void slb_dump_contents(struct slb_entry *slb_ptr)
return;
pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
pr_err("Last SLB entry inserted at slot %u\n", get_paca()->stab_rr);
pr_err("Last SLB entry inserted at slot %lld\n", get_paca()->stab_rr);
for (i = 0; i < mmu_slb_size; i++) {
e = slb_ptr->esid;
@ -257,119 +247,41 @@ void slb_vmalloc_update(void)
slb_flush_and_rebolt();
}
static bool preload_hit(struct thread_info *ti, unsigned long esid)
/* Helper function to compare esids. There are four cases to handle.
* 1. The system is not 1T segment size capable. Use the GET_ESID compare.
* 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
* 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
* 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
*/
static inline int esids_match(unsigned long addr1, unsigned long addr2)
{
u8 i;
int esid_1t_count;
for (i = 0; i < ti->slb_preload_nr; i++) {
u8 idx;
/* System is not 1T segment size capable. */
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
return (GET_ESID(addr1) == GET_ESID(addr2));
idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
if (esid == ti->slb_preload_esid[idx])
return true;
}
return false;
esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
((addr2 >> SID_SHIFT_1T) != 0));
/* both addresses are < 1T */
if (esid_1t_count == 0)
return (GET_ESID(addr1) == GET_ESID(addr2));
/* One address < 1T, the other > 1T. Not a match */
if (esid_1t_count == 1)
return 0;
/* Both addresses are > 1T. */
return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
}
static bool preload_add(struct thread_info *ti, unsigned long ea)
{
unsigned long esid;
u8 idx;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
/* EAs are stored >> 28 so 256MB segments don't need clearing */
if (ea & ESID_MASK_1T)
ea &= ESID_MASK_1T;
}
esid = ea >> SID_SHIFT;
if (preload_hit(ti, esid))
return false;
idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
ti->slb_preload_esid[idx] = esid;
if (ti->slb_preload_nr == SLB_PRELOAD_NR)
ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
else
ti->slb_preload_nr++;
return true;
}
static void preload_age(struct thread_info *ti)
{
if (!ti->slb_preload_nr)
return;
ti->slb_preload_nr--;
ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
}
void slb_setup_new_exec(void)
{
struct thread_info *ti = current_thread_info();
struct mm_struct *mm = current->mm;
unsigned long exec = 0x10000000;
/*
* We have no good place to clear the slb preload cache on exec,
* flush_thread is about the earliest arch hook but that happens
* after we switch to the mm and have aleady preloaded the SLBEs.
*
* For the most part that's probably okay to use entries from the
* previous exec, they will age out if unused. It may turn out to
* be an advantage to clear the cache before switching to it,
* however.
*/
/*
* preload some userspace segments into the SLB.
* Almost all 32 and 64bit PowerPC executables are linked at
* 0x10000000 so it makes sense to preload this segment.
*/
if (!is_kernel_addr(exec)) {
if (preload_add(ti, exec))
slb_allocate_user(mm, exec);
}
/* Libraries and mmaps. */
if (!is_kernel_addr(mm->mmap_base)) {
if (preload_add(ti, mm->mmap_base))
slb_allocate_user(mm, mm->mmap_base);
}
}
void preload_new_slb_context(unsigned long start, unsigned long sp)
{
struct thread_info *ti = current_thread_info();
struct mm_struct *mm = current->mm;
unsigned long heap = mm->start_brk;
/* Userspace entry address. */
if (!is_kernel_addr(start)) {
if (preload_add(ti, start))
slb_allocate_user(mm, start);
}
/* Top of stack, grows down. */
if (!is_kernel_addr(sp)) {
if (preload_add(ti, sp))
slb_allocate_user(mm, sp);
}
/* Bottom of heap, grows up. */
if (heap && !is_kernel_addr(heap)) {
if (preload_add(ti, heap))
slb_allocate_user(mm, heap);
}
}
/* Flush all user entries from the segment table of the current processor. */
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
{
struct thread_info *ti = task_thread_info(tsk);
u8 i;
unsigned long pc = KSTK_EIP(tsk);
unsigned long stack = KSTK_ESP(tsk);
unsigned long exec_base;
/*
* We need interrupts hard-disabled here, not just soft-disabled,
@ -392,6 +304,7 @@ void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
offset <= SLB_CACHE_ENTRIES) {
unsigned long slbie_data = 0;
int i;
asm volatile("isync" : : : "memory");
for (i = 0; i < offset; i++) {
@ -422,60 +335,67 @@ void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
"isync"
:: "r"(ksp_vsid_data),
"r"(ksp_esid_data));
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
}
get_paca()->slb_cache_ptr = 0;
}
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
copy_mm_to_paca(mm);
/*
* We gradually age out SLBs after a number of context switches to
* reduce reload overhead of unused entries (like we do with FP/VEC
* reload). Each time we wrap 256 switches, take an entry out of the
* SLB preload cache.
* preload some userspace segments into the SLB.
* Almost all 32 and 64bit PowerPC executables are linked at
* 0x10000000 so it makes sense to preload this segment.
*/
tsk->thread.load_slb++;
if (!tsk->thread.load_slb) {
unsigned long pc = KSTK_EIP(tsk);
exec_base = 0x10000000;
preload_age(ti);
preload_add(ti, pc);
}
if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
is_kernel_addr(exec_base))
return;
for (i = 0; i < ti->slb_preload_nr; i++) {
unsigned long ea;
u8 idx;
slb_allocate(pc);
idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
if (!esids_match(pc, stack))
slb_allocate(stack);
slb_allocate_user(mm, ea);
}
if (!esids_match(pc, exec_base) &&
!esids_match(stack, exec_base))
slb_allocate(exec_base);
}
static inline void patch_slb_encoding(unsigned int *insn_addr,
unsigned int immed)
{
/*
* This function patches either an li or a cmpldi instruction with
* a new immediate value. This relies on the fact that both li
* (which is actually addi) and cmpldi both take a 16-bit immediate
* value, and it is situated in the same location in the instruction,
* ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
* The signedness of the immediate operand differs between the two
* instructions however this code is only ever patching a small value,
* much less than 1 << 15, so we can get away with it.
* To patch the value we read the existing instruction, clear the
* immediate value, and or in our new value, then write the instruction
* back.
*/
unsigned int insn = (*insn_addr & 0xffff0000) | immed;
patch_instruction(insn_addr, insn);
}
extern u32 slb_miss_kernel_load_linear[];
extern u32 slb_miss_kernel_load_io[];
extern u32 slb_compare_rr_to_size[];
extern u32 slb_miss_kernel_load_vmemmap[];
void slb_set_size(u16 size)
{
mmu_slb_size = size;
}
static void cpu_flush_slb(void *parm)
{
struct mm_struct *mm = parm;
unsigned long flags;
if (mm != current->active_mm)
if (mmu_slb_size == size)
return;
local_irq_save(flags);
slb_flush_and_rebolt();
local_irq_restore(flags);
}
void core_flush_all_slbs(struct mm_struct *mm)
{
on_each_cpu(cpu_flush_slb, mm, 1);
mmu_slb_size = size;
patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
}
void slb_initialize(void)
@ -497,16 +417,24 @@ void slb_initialize(void)
#endif
if (!slb_encoding_inited) {
slb_encoding_inited = 1;
patch_slb_encoding(slb_miss_kernel_load_linear,
SLB_VSID_KERNEL | linear_llp);
patch_slb_encoding(slb_miss_kernel_load_io,
SLB_VSID_KERNEL | io_llp);
patch_slb_encoding(slb_compare_rr_to_size,
mmu_slb_size);
pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
pr_devel("SLB: io LLP = %04lx\n", io_llp);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
patch_slb_encoding(slb_miss_kernel_load_vmemmap,
SLB_VSID_KERNEL | vmemmap_llp);
pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
#endif
}
get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
lflags = SLB_VSID_KERNEL | linear_llp;
@ -530,13 +458,52 @@ void slb_initialize(void)
asm volatile("isync":::"memory");
}
static void slb_cache_update(unsigned long esid_data)
static void insert_slb_entry(unsigned long vsid, unsigned long ea,
int bpsize, int ssize)
{
unsigned long flags, vsid_data, esid_data;
enum slb_index index;
int slb_cache_index;
if (cpu_has_feature(CPU_FTR_ARCH_300))
return; /* ISAv3.0B and later does not use slb_cache */
/*
* We are irq disabled, hence should be safe to access PACA.
*/
VM_WARN_ON(!irqs_disabled());
/*
* We can't take a PMU exception in the following code, so hard
* disable interrupts.
*/
hard_irq_disable();
index = get_paca()->stab_rr;
/*
* simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
*/
if (index < (mmu_slb_size - 1))
index++;
else
index = SLB_NUM_BOLTED;
get_paca()->stab_rr = index;
flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
esid_data = mk_esid_data(ea, ssize, index);
/*
* No need for an isync before or after this slbmte. The exception
* we enter with and the rfid we exit with are context synchronizing.
* Also we only handle user segments here.
*/
asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
: "memory");
/*
* Now update slb cache entries
*/
@ -558,196 +525,58 @@ static void slb_cache_update(unsigned long esid_data)
}
}
static enum slb_index alloc_slb_index(bool kernel)
{
enum slb_index index;
/*
* The allocation bitmaps can become out of synch with the SLB
* when the _switch code does slbie when bolting a new stack
* segment and it must not be anywhere else in the SLB. This leaves
* a kernel allocated entry that is unused in the SLB. With very
* large systems or small segment sizes, the bitmaps could slowly
* fill with these entries. They will eventually be cleared out
* by the round robin allocator in that case, so it's probably not
* worth accounting for.
*/
/*
* SLBs beyond 32 entries are allocated with stab_rr only
* POWER7/8/9 have 32 SLB entries, this could be expanded if a
* future CPU has more.
*/
if (get_paca()->slb_used_bitmap != U32_MAX) {
index = ffz(get_paca()->slb_used_bitmap);
get_paca()->slb_used_bitmap |= 1U << index;
if (kernel)
get_paca()->slb_kern_bitmap |= 1U << index;
} else {
/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
index = get_paca()->stab_rr;
if (index < (mmu_slb_size - 1))
index++;
else
index = SLB_NUM_BOLTED;
get_paca()->stab_rr = index;
if (index < 32) {
if (kernel)
get_paca()->slb_kern_bitmap |= 1U << index;
else
get_paca()->slb_kern_bitmap &= ~(1U << index);
}
}
BUG_ON(index < SLB_NUM_BOLTED);
return index;
}
static long slb_insert_entry(unsigned long ea, unsigned long context,
unsigned long flags, int ssize, bool kernel)
static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
{
struct mm_struct *mm = current->mm;
unsigned long vsid;
unsigned long vsid_data, esid_data;
enum slb_index index;
vsid = get_vsid(context, ea, ssize);
if (!vsid)
return -EFAULT;
index = alloc_slb_index(kernel);
vsid_data = __mk_vsid_data(vsid, ssize, flags);
esid_data = mk_esid_data(ea, ssize, index);
int bpsize;
/*
* No need for an isync before or after this slbmte. The exception
* we enter with and the rfid we exit with are context synchronizing.
* Also we only handle user segments here.
* We are always above 1TB, hence use high user segment size.
*/
asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
if (!kernel)
slb_cache_update(esid_data);
return 0;
vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
bpsize = get_slice_psize(mm, ea);
insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
}
static long slb_allocate_kernel(unsigned long ea, unsigned long id)
void slb_miss_large_addr(struct pt_regs *regs)
{
unsigned long context;
unsigned long flags;
int ssize;
enum ctx_state prev_state = exception_enter();
unsigned long ea = regs->dar;
int context;
if ((ea & ~REGION_MASK) >= (1ULL << MAX_EA_BITS_PER_CONTEXT))
return -EFAULT;
if (REGION_ID(ea) != USER_REGION_ID)
goto slb_bad_addr;
if (id == KERNEL_REGION_ID) {
flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
} else if (id == VMEMMAP_REGION_ID) {
flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
#endif
} else if (id == VMALLOC_REGION_ID) {
if (ea < H_VMALLOC_END)
flags = get_paca()->vmalloc_sllp;
else
flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
} else {
return -EFAULT;
}
/*
* Are we beyound what the page table layout supports ?
*/
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
goto slb_bad_addr;
ssize = MMU_SEGSIZE_1T;
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
ssize = MMU_SEGSIZE_256M;
context = id - KERNEL_REGION_CONTEXT_OFFSET;
return slb_insert_entry(ea, context, flags, ssize, true);
}
static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
{
unsigned long context;
unsigned long flags;
int bpsize;
int ssize;
/* Lower address should have been handled by asm code */
if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
goto slb_bad_addr;
/*
* consider this as bad access if we take a SLB miss
* on an address above addr limit.
*/
if (ea >= mm->context.slb_addr_limit)
return -EFAULT;
if (ea >= current->mm->context.slb_addr_limit)
goto slb_bad_addr;
context = get_ea_context(&mm->context, ea);
context = get_ea_context(&current->mm->context, ea);
if (!context)
return -EFAULT;
goto slb_bad_addr;
if (unlikely(ea >= H_PGTABLE_RANGE)) {
WARN_ON(1);
return -EFAULT;
}
handle_multi_context_slb_miss(context, ea);
exception_exit(prev_state);
return;
ssize = user_segment_size(ea);
bpsize = get_slice_psize(mm, ea);
flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
return slb_insert_entry(ea, context, flags, ssize, false);
}
long do_slb_fault(struct pt_regs *regs, unsigned long ea)
{
unsigned long id = REGION_ID(ea);
/* IRQs are not reconciled here, so can't check irqs_disabled */
VM_WARN_ON(mfmsr() & MSR_EE);
if (unlikely(!(regs->msr & MSR_RI)))
return -EINVAL;
/*
* SLB kernel faults must be very careful not to touch anything
* that is not bolted. E.g., PACA and global variables are okay,
* mm->context stuff is not.
*
* SLB user faults can access all of kernel memory, but must be
* careful not to touch things like IRQ state because it is not
* "reconciled" here. The difficulty is that we must use
* fast_exception_return to return from kernel SLB faults without
* looking at possible non-bolted memory. We could test user vs
* kernel faults in the interrupt handler asm and do a full fault,
* reconcile, ret_from_except for user faults which would make them
* first class kernel code. But for performance it's probably nicer
* if they go via fast_exception_return too.
*/
if (id >= KERNEL_REGION_ID) {
return slb_allocate_kernel(ea, id);
} else {
struct mm_struct *mm = current->mm;
long err;
if (unlikely(!mm))
return -EFAULT;
err = slb_allocate_user(mm, ea);
if (!err)
preload_add(current_thread_info(), ea);
return err;
}
}
void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
{
if (err == -EFAULT) {
if (user_mode(regs))
_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
else
bad_page_fault(regs, ea, SIGSEGV);
} else if (err == -EINVAL) {
unrecoverable_exception(regs);
} else {
BUG();
}
slb_bad_addr:
if (user_mode(regs))
_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
else
bad_page_fault(regs, ea, SIGSEGV);
exception_exit(prev_state);
}

335
arch/powerpc/mm/slb_low.S Normal file
View File

@ -0,0 +1,335 @@
/*
* Low-level SLB routines
*
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
*
* Based on earlier C version:
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
* Copyright (c) 2001 Dave Engebretsen
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/processor.h>
#include <asm/ppc_asm.h>
#include <asm/asm-offsets.h>
#include <asm/cputable.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/firmware.h>
#include <asm/feature-fixups.h>
/*
* This macro generates asm code to compute the VSID scramble
* function. Used in slb_allocate() and do_stab_bolted. The function
* computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
*
* rt = register containing the proto-VSID and into which the
* VSID will be stored
* rx = scratch register (clobbered)
* rf = flags
*
* - rt and rx must be different registers
* - The answer will end up in the low VSID_BITS bits of rt. The higher
* bits may contain other garbage, so you may need to mask the
* result.
*/
#define ASM_VSID_SCRAMBLE(rt, rx, rf, size) \
lis rx,VSID_MULTIPLIER_##size@h; \
ori rx,rx,VSID_MULTIPLIER_##size@l; \
mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
/* \
* powermac get slb fault before feature fixup, so make 65 bit part \
* the default part of feature fixup \
*/ \
BEGIN_MMU_FTR_SECTION \
srdi rx,rt,VSID_BITS_65_##size; \
clrldi rt,rt,(64-VSID_BITS_65_##size); \
add rt,rt,rx; \
addi rx,rt,1; \
srdi rx,rx,VSID_BITS_65_##size; \
add rt,rt,rx; \
rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_65_##size)); \
MMU_FTR_SECTION_ELSE \
srdi rx,rt,VSID_BITS_##size; \
clrldi rt,rt,(64-VSID_BITS_##size); \
add rt,rt,rx; /* add high and low bits */ \
addi rx,rt,1; \
srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
add rt,rt,rx; \
rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_##size)); \
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_68_BIT_VA)
/* void slb_allocate(unsigned long ea);
*
* Create an SLB entry for the given EA (user or kernel).
* r3 = faulting address, r13 = PACA
* r9, r10, r11 are clobbered by this function
* r3 is preserved.
* No other registers are examined or changed.
*/
_GLOBAL(slb_allocate)
/*
* Check if the address falls within the range of the first context, or
* if we may need to handle multi context. For the first context we
* allocate the slb entry via the fast path below. For large address we
* branch out to C-code and see if additional contexts have been
* allocated.
* The test here is:
* (ea & ~REGION_MASK) >= (1ull << MAX_EA_BITS_PER_CONTEXT)
*/
rldicr. r9,r3,4,(63 - MAX_EA_BITS_PER_CONTEXT - 4)
bne- 8f
srdi r9,r3,60 /* get region */
srdi r10,r3,SID_SHIFT /* get esid */
cmpldi cr7,r9,0xc /* cmp PAGE_OFFSET for later use */
/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
blt cr7,0f /* user or kernel? */
/* Check if hitting the linear mapping or some other kernel space
*/
bne cr7,1f
/* Linear mapping encoding bits, the "li" instruction below will
* be patched by the kernel at boot
*/
.globl slb_miss_kernel_load_linear
slb_miss_kernel_load_linear:
li r11,0
/*
* context = (ea >> 60) - (0xc - 1)
* r9 = region id.
*/
subi r9,r9,KERNEL_REGION_CONTEXT_OFFSET
BEGIN_FTR_SECTION
b .Lslb_finish_load
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
b .Lslb_finish_load_1T
1:
#ifdef CONFIG_SPARSEMEM_VMEMMAP
cmpldi cr0,r9,0xf
bne 1f
/* Check virtual memmap region. To be patched at kernel boot */
.globl slb_miss_kernel_load_vmemmap
slb_miss_kernel_load_vmemmap:
li r11,0
b 6f
1:
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* r10 contains the ESID, which is the original faulting EA shifted
* right by 28 bits. We need to compare that with (H_VMALLOC_END >> 28)
* which is 0xd00038000. That can't be used as an immediate, even if we
* ignored the 0xd, so we have to load it into a register, and we only
* have one register free. So we must load all of (H_VMALLOC_END >> 28)
* into a register and compare ESID against that.
*/
lis r11,(H_VMALLOC_END >> 32)@h // r11 = 0xffffffffd0000000
ori r11,r11,(H_VMALLOC_END >> 32)@l // r11 = 0xffffffffd0003800
// Rotate left 4, then mask with 0xffffffff0
rldic r11,r11,4,28 // r11 = 0xd00038000
cmpld r10,r11 // if r10 >= r11
bge 5f // goto io_mapping
/*
* vmalloc mapping gets the encoding from the PACA as the mapping
* can be demoted from 64K -> 4K dynamically on some machines.
*/
lhz r11,PACAVMALLOCSLLP(r13)
b 6f
5:
/* IO mapping */
.globl slb_miss_kernel_load_io
slb_miss_kernel_load_io:
li r11,0
6:
/*
* context = (ea >> 60) - (0xc - 1)
* r9 = region id.
*/
subi r9,r9,KERNEL_REGION_CONTEXT_OFFSET
BEGIN_FTR_SECTION
b .Lslb_finish_load
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
b .Lslb_finish_load_1T
0: /*
* For userspace addresses, make sure this is region 0.
*/
cmpdi r9, 0
bne- 8f
/*
* user space make sure we are within the allowed limit
*/
ld r11,PACA_SLB_ADDR_LIMIT(r13)
cmpld r3,r11
bge- 8f
/* when using slices, we extract the psize off the slice bitmaps
* and then we need to get the sllp encoding off the mmu_psize_defs
* array.
*
* XXX This is a bit inefficient especially for the normal case,
* so we should try to implement a fast path for the standard page
* size using the old sllp value so we avoid the array. We cannot
* really do dynamic patching unfortunately as processes might flip
* between 4k and 64k standard page size
*/
#ifdef CONFIG_PPC_MM_SLICES
/* r10 have esid */
cmpldi r10,16
/* below SLICE_LOW_TOP */
blt 5f
/*
* Handle hpsizes,
* r9 is get_paca()->context.high_slices_psize[index], r11 is mask_index
*/
srdi r11,r10,(SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT + 1) /* index */
addi r9,r11,PACAHIGHSLICEPSIZE
lbzx r9,r13,r9 /* r9 is hpsizes[r11] */
/* r11 = (r10 >> (SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT)) & 0x1 */
rldicl r11,r10,(64 - (SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT)),63
b 6f
5:
/*
* Handle lpsizes
* r9 is get_paca()->context.low_slices_psize[index], r11 is mask_index
*/
srdi r11,r10,1 /* index */
addi r9,r11,PACALOWSLICESPSIZE
lbzx r9,r13,r9 /* r9 is lpsizes[r11] */
rldicl r11,r10,0,63 /* r11 = r10 & 0x1 */
6:
sldi r11,r11,2 /* index * 4 */
/* Extract the psize and multiply to get an array offset */
srd r9,r9,r11
andi. r9,r9,0xf
mulli r9,r9,MMUPSIZEDEFSIZE
/* Now get to the array and obtain the sllp
*/
ld r11,PACATOC(r13)
ld r11,mmu_psize_defs@got(r11)
add r11,r11,r9
ld r11,MMUPSIZESLLP(r11)
ori r11,r11,SLB_VSID_USER
#else
/* paca context sllp already contains the SLB_VSID_USER bits */
lhz r11,PACACONTEXTSLLP(r13)
#endif /* CONFIG_PPC_MM_SLICES */
ld r9,PACACONTEXTID(r13)
BEGIN_FTR_SECTION
cmpldi r10,0x1000
bge .Lslb_finish_load_1T
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
b .Lslb_finish_load
8: /* invalid EA - return an error indication */
crset 4*cr0+eq /* indicate failure */
blr
/*
* Finish loading of an SLB entry and return
*
* r3 = EA, r9 = context, r10 = ESID, r11 = flags, clobbers r9, cr7 = <> PAGE_OFFSET
*/
.Lslb_finish_load:
rldimi r10,r9,ESID_BITS,0
ASM_VSID_SCRAMBLE(r10,r9,r11,256M)
/* r3 = EA, r11 = VSID data */
/*
* Find a slot, round robin. Previously we tried to find a
* free slot first but that took too long. Unfortunately we
* dont have any LRU information to help us choose a slot.
*/
mr r9,r3
/* slb_finish_load_1T continues here. r9=EA with non-ESID bits clear */
7: ld r10,PACASTABRR(r13)
addi r10,r10,1
/* This gets soft patched on boot. */
.globl slb_compare_rr_to_size
slb_compare_rr_to_size:
cmpldi r10,0
blt+ 4f
li r10,SLB_NUM_BOLTED
4:
std r10,PACASTABRR(r13)
3:
rldimi r9,r10,0,36 /* r9 = EA[0:35] | entry */
oris r10,r9,SLB_ESID_V@h /* r10 = r9 | SLB_ESID_V */
/* r9 = ESID data, r11 = VSID data */
/*
* No need for an isync before or after this slbmte. The exception
* we enter with and the rfid we exit with are context synchronizing.
*/
slbmte r11,r10
/* we're done for kernel addresses */
crclr 4*cr0+eq /* set result to "success" */
bgelr cr7
/* Update the slb cache */
lhz r9,PACASLBCACHEPTR(r13) /* offset = paca->slb_cache_ptr */
cmpldi r9,SLB_CACHE_ENTRIES
bge 1f
/* still room in the slb cache */
sldi r11,r9,2 /* r11 = offset * sizeof(u32) */
srdi r10,r10,28 /* get the 36 bits of the ESID */
add r11,r11,r13 /* r11 = (u32 *)paca + offset */
stw r10,PACASLBCACHE(r11) /* paca->slb_cache[offset] = esid */
addi r9,r9,1 /* offset++ */
b 2f
1: /* offset >= SLB_CACHE_ENTRIES */
li r9,SLB_CACHE_ENTRIES+1
2:
sth r9,PACASLBCACHEPTR(r13) /* paca->slb_cache_ptr = offset */
crclr 4*cr0+eq /* set result to "success" */
blr
/*
* Finish loading of a 1T SLB entry (for the kernel linear mapping) and return.
*
* r3 = EA, r9 = context, r10 = ESID(256MB), r11 = flags, clobbers r9
*/
.Lslb_finish_load_1T:
srdi r10,r10,(SID_SHIFT_1T - SID_SHIFT) /* get 1T ESID */
rldimi r10,r9,ESID_BITS_1T,0
ASM_VSID_SCRAMBLE(r10,r9,r11,1T)
li r10,MMU_SEGSIZE_1T
rldimi r11,r10,SLB_VSID_SSIZE_SHIFT,0 /* insert segment size */
/* r3 = EA, r11 = VSID data */
clrrdi r9,r3,SID_SHIFT_1T /* clear out non-ESID bits */
b 7b
_ASM_NOKPROBE_SYMBOL(slb_allocate)
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_linear)
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_io)
_ASM_NOKPROBE_SYMBOL(slb_compare_rr_to_size)
#ifdef CONFIG_SPARSEMEM_VMEMMAP
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_vmemmap)
#endif

View File

@ -207,6 +207,23 @@ static bool slice_check_range_fits(struct mm_struct *mm,
return true;
}
static void slice_flush_segments(void *parm)
{
#ifdef CONFIG_PPC64
struct mm_struct *mm = parm;
unsigned long flags;
if (mm != current->active_mm)
return;
copy_mm_to_paca(current->active_mm);
local_irq_save(flags);
slb_flush_and_rebolt();
local_irq_restore(flags);
#endif
}
static void slice_convert(struct mm_struct *mm,
const struct slice_mask *mask, int psize)
{
@ -272,9 +289,6 @@ static void slice_convert(struct mm_struct *mm,
spin_unlock_irqrestore(&slice_convert_lock, flags);
copro_flush_all_slbs(mm);
#ifdef CONFIG_PPC64
core_flush_all_slbs(mm);
#endif
}
/*
@ -488,9 +502,8 @@ unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
* be already initialised beyond the old address limit.
*/
mm->context.slb_addr_limit = high_limit;
#ifdef CONFIG_PPC64
core_flush_all_slbs(mm);
#endif
on_each_cpu(slice_flush_segments, mm, 1);
}
/* Sanity checks */
@ -652,10 +665,8 @@ unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
(SLICE_NUM_HIGH &&
!bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
slice_convert(mm, &potential_mask, psize);
#ifdef CONFIG_PPC64
if (psize > MMU_PAGE_BASE)
core_flush_all_slbs(mm);
#endif
on_each_cpu(slice_flush_segments, mm, 1);
}
return newaddr;
@ -746,20 +757,6 @@ void slice_init_new_context_exec(struct mm_struct *mm)
bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
}
#ifdef CONFIG_PPC_BOOK3S_64
void slice_setup_new_exec(void)
{
struct mm_struct *mm = current->mm;
slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
if (!is_32bit_task())
return;
mm->context.slb_addr_limit = DEFAULT_MAP_WINDOW;
}
#endif
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long len, unsigned int psize)
{

View File

@ -2394,9 +2394,7 @@ static void dump_one_paca(int cpu)
}
}
DUMP(p, vmalloc_sllp, "%#-*x");
DUMP(p, stab_rr, "%#-*x");
DUMP(p, slb_used_bitmap, "%#-*x");
DUMP(p, slb_kern_bitmap, "%#-*x");
DUMP(p, stab_rr, "%#-*llx");
if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
DUMP(p, slb_cache_ptr, "%#-*x");