documentation: fpga: move fpga-mgr.txt to driver-api
Move Documentation/fpga/fpga-mgr.txt to driver-api/fpga/fpga-mgr.rst and: - Add to driver-api/fpga/index.rst - Format changes so documentation builds cleanly. - Minor rewrites that make the doc flow better as ReST documentation. - Such as moving API reference to end of doc - Change API reference section to refer to kernel-doc documentation in fpga-mgr.c driver code rather than statically defining each function. Signed-off-by: Alan Tull <atull@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
66c472cdb6
commit
547b822c22
|
@ -0,0 +1,220 @@
|
|||
FPGA Manager
|
||||
============
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
The FPGA manager core exports a set of functions for programming an FPGA with
|
||||
an image. The API is manufacturer agnostic. All manufacturer specifics are
|
||||
hidden away in a low level driver which registers a set of ops with the core.
|
||||
The FPGA image data itself is very manufacturer specific, but for our purposes
|
||||
it's just binary data. The FPGA manager core won't parse it.
|
||||
|
||||
The FPGA image to be programmed can be in a scatter gather list, a single
|
||||
contiguous buffer, or a firmware file. Because allocating contiguous kernel
|
||||
memory for the buffer should be avoided, users are encouraged to use a scatter
|
||||
gather list instead if possible.
|
||||
|
||||
The particulars for programming the image are presented in a structure (struct
|
||||
fpga_image_info). This struct contains parameters such as pointers to the
|
||||
FPGA image as well as image-specific particulars such as whether the image was
|
||||
built for full or partial reconfiguration.
|
||||
|
||||
How to support a new FPGA device
|
||||
--------------------------------
|
||||
|
||||
To add another FPGA manager, write a driver that implements a set of ops. The
|
||||
probe function calls fpga_mgr_register(), such as::
|
||||
|
||||
static const struct fpga_manager_ops socfpga_fpga_ops = {
|
||||
.write_init = socfpga_fpga_ops_configure_init,
|
||||
.write = socfpga_fpga_ops_configure_write,
|
||||
.write_complete = socfpga_fpga_ops_configure_complete,
|
||||
.state = socfpga_fpga_ops_state,
|
||||
};
|
||||
|
||||
static int socfpga_fpga_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct socfpga_fpga_priv *priv;
|
||||
struct fpga_manager *mgr;
|
||||
int ret;
|
||||
|
||||
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
|
||||
if (!priv)
|
||||
return -ENOMEM;
|
||||
|
||||
/*
|
||||
* do ioremaps, get interrupts, etc. and save
|
||||
* them in priv
|
||||
*/
|
||||
|
||||
mgr = fpga_mgr_create(dev, "Altera SOCFPGA FPGA Manager",
|
||||
&socfpga_fpga_ops, priv);
|
||||
if (!mgr)
|
||||
return -ENOMEM;
|
||||
|
||||
platform_set_drvdata(pdev, mgr);
|
||||
|
||||
ret = fpga_mgr_register(mgr);
|
||||
if (ret)
|
||||
fpga_mgr_free(mgr);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int socfpga_fpga_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct fpga_manager *mgr = platform_get_drvdata(pdev);
|
||||
|
||||
fpga_mgr_unregister(mgr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
The ops will implement whatever device specific register writes are needed to
|
||||
do the programming sequence for this particular FPGA. These ops return 0 for
|
||||
success or negative error codes otherwise.
|
||||
|
||||
The programming sequence is::
|
||||
1. .write_init
|
||||
2. .write or .write_sg (may be called once or multiple times)
|
||||
3. .write_complete
|
||||
|
||||
The .write_init function will prepare the FPGA to receive the image data. The
|
||||
buffer passed into .write_init will be atmost .initial_header_size bytes long,
|
||||
if the whole bitstream is not immediately available then the core code will
|
||||
buffer up at least this much before starting.
|
||||
|
||||
The .write function writes a buffer to the FPGA. The buffer may be contain the
|
||||
whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
|
||||
case, this function is called multiple times for successive chunks. This interface
|
||||
is suitable for drivers which use PIO.
|
||||
|
||||
The .write_sg version behaves the same as .write except the input is a sg_table
|
||||
scatter list. This interface is suitable for drivers which use DMA.
|
||||
|
||||
The .write_complete function is called after all the image has been written
|
||||
to put the FPGA into operating mode.
|
||||
|
||||
The ops include a .state function which will read the hardware FPGA manager and
|
||||
return a code of type enum fpga_mgr_states. It doesn't result in a change in
|
||||
hardware state.
|
||||
|
||||
How to write an image buffer to a supported FPGA
|
||||
------------------------------------------------
|
||||
|
||||
Some sample code::
|
||||
|
||||
#include <linux/fpga/fpga-mgr.h>
|
||||
|
||||
struct fpga_manager *mgr;
|
||||
struct fpga_image_info *info;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Get a reference to FPGA manager. The manager is not locked, so you can
|
||||
* hold onto this reference without it preventing programming.
|
||||
*
|
||||
* This example uses the device node of the manager. Alternatively, use
|
||||
* fpga_mgr_get(dev) instead if you have the device.
|
||||
*/
|
||||
mgr = of_fpga_mgr_get(mgr_node);
|
||||
|
||||
/* struct with information about the FPGA image to program. */
|
||||
info = fpga_image_info_alloc(dev);
|
||||
|
||||
/* flags indicates whether to do full or partial reconfiguration */
|
||||
info->flags = FPGA_MGR_PARTIAL_RECONFIG;
|
||||
|
||||
/*
|
||||
* At this point, indicate where the image is. This is pseudo-code; you're
|
||||
* going to use one of these three.
|
||||
*/
|
||||
if (image is in a scatter gather table) {
|
||||
|
||||
info->sgt = [your scatter gather table]
|
||||
|
||||
} else if (image is in a buffer) {
|
||||
|
||||
info->buf = [your image buffer]
|
||||
info->count = [image buffer size]
|
||||
|
||||
} else if (image is in a firmware file) {
|
||||
|
||||
info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL);
|
||||
|
||||
}
|
||||
|
||||
/* Get exclusive control of FPGA manager */
|
||||
ret = fpga_mgr_lock(mgr);
|
||||
|
||||
/* Load the buffer to the FPGA */
|
||||
ret = fpga_mgr_buf_load(mgr, &info, buf, count);
|
||||
|
||||
/* Release the FPGA manager */
|
||||
fpga_mgr_unlock(mgr);
|
||||
fpga_mgr_put(mgr);
|
||||
|
||||
/* Deallocate the image info if you're done with it */
|
||||
fpga_image_info_free(info);
|
||||
|
||||
API for implementing a new FPGA Manager driver
|
||||
----------------------------------------------
|
||||
|
||||
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
|
||||
:functions: fpga_manager
|
||||
|
||||
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
|
||||
:functions: fpga_manager_ops
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_create
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_free
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_register
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_unregister
|
||||
|
||||
API for programming a FPGA
|
||||
--------------------------
|
||||
|
||||
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
|
||||
:functions: fpga_image_info
|
||||
|
||||
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
|
||||
:functions: fpga_mgr_states
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_image_info_alloc
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_image_info_free
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: of_fpga_mgr_get
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_get
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_put
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_lock
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_unlock
|
||||
|
||||
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
|
||||
:functions: fpga_mgr_states
|
||||
|
||||
Note - use :c:func:`fpga_region_program_fpga()` instead of :c:func:`fpga_mgr_load()`
|
||||
|
||||
.. kernel-doc:: drivers/fpga/fpga-mgr.c
|
||||
:functions: fpga_mgr_load
|
|
@ -8,3 +8,4 @@ FPGA Subsystem
|
|||
:maxdepth: 2
|
||||
|
||||
intro
|
||||
fpga-mgr
|
||||
|
|
|
@ -1,218 +0,0 @@
|
|||
FPGA Manager Core
|
||||
|
||||
Alan Tull 2015
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
The FPGA manager core exports a set of functions for programming an FPGA with
|
||||
an image. The API is manufacturer agnostic. All manufacturer specifics are
|
||||
hidden away in a low level driver which registers a set of ops with the core.
|
||||
The FPGA image data itself is very manufacturer specific, but for our purposes
|
||||
it's just binary data. The FPGA manager core won't parse it.
|
||||
|
||||
The FPGA image to be programmed can be in a scatter gather list, a single
|
||||
contiguous buffer, or a firmware file. Because allocating contiguous kernel
|
||||
memory for the buffer should be avoided, users are encouraged to use a scatter
|
||||
gather list instead if possible.
|
||||
|
||||
The particulars for programming the image are presented in a structure (struct
|
||||
fpga_image_info). This struct contains parameters such as pointers to the
|
||||
FPGA image as well as image-specific particulars such as whether the image was
|
||||
built for full or partial reconfiguration.
|
||||
|
||||
API Functions:
|
||||
==============
|
||||
|
||||
To program the FPGA:
|
||||
--------------------
|
||||
|
||||
int fpga_mgr_load(struct fpga_manager *mgr,
|
||||
struct fpga_image_info *info);
|
||||
|
||||
Load the FPGA from an image which is indicated in the info. If successful,
|
||||
the FPGA ends up in operating mode. Return 0 on success or a negative error
|
||||
code.
|
||||
|
||||
To allocate or free a struct fpga_image_info:
|
||||
---------------------------------------------
|
||||
|
||||
struct fpga_image_info *fpga_image_info_alloc(struct device *dev);
|
||||
|
||||
void fpga_image_info_free(struct fpga_image_info *info);
|
||||
|
||||
To get/put a reference to a FPGA manager:
|
||||
-----------------------------------------
|
||||
|
||||
struct fpga_manager *of_fpga_mgr_get(struct device_node *node);
|
||||
struct fpga_manager *fpga_mgr_get(struct device *dev);
|
||||
void fpga_mgr_put(struct fpga_manager *mgr);
|
||||
|
||||
Given a DT node or device, get a reference to a FPGA manager. This pointer
|
||||
can be saved until you are ready to program the FPGA. fpga_mgr_put releases
|
||||
the reference.
|
||||
|
||||
|
||||
To get exclusive control of a FPGA manager:
|
||||
-------------------------------------------
|
||||
|
||||
int fpga_mgr_lock(struct fpga_manager *mgr);
|
||||
void fpga_mgr_unlock(struct fpga_manager *mgr);
|
||||
|
||||
The user should call fpga_mgr_lock and verify that it returns 0 before
|
||||
attempting to program the FPGA. Likewise, the user should call
|
||||
fpga_mgr_unlock when done programming the FPGA.
|
||||
|
||||
To alloc/free a FPGA manager struct:
|
||||
------------------------------------
|
||||
|
||||
struct fpga_manager *fpga_mgr_create(struct device *dev,
|
||||
const char *name,
|
||||
const struct fpga_manager_ops *mops,
|
||||
void *priv);
|
||||
void fpga_mgr_free(struct fpga_manager *mgr);
|
||||
|
||||
To register or unregister the low level FPGA-specific driver:
|
||||
-------------------------------------------------------------
|
||||
|
||||
int fpga_mgr_register(struct fpga_manager *mgr);
|
||||
|
||||
void fpga_mgr_unregister(struct fpga_manager *mgr);
|
||||
|
||||
Use of these functions is described below in "How To Support a new FPGA
|
||||
device."
|
||||
|
||||
|
||||
How to write an image buffer to a supported FPGA
|
||||
================================================
|
||||
#include <linux/fpga/fpga-mgr.h>
|
||||
|
||||
struct fpga_manager *mgr;
|
||||
struct fpga_image_info *info;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Get a reference to FPGA manager. The manager is not locked, so you can
|
||||
* hold onto this reference without it preventing programming.
|
||||
*
|
||||
* This example uses the device node of the manager. Alternatively, use
|
||||
* fpga_mgr_get(dev) instead if you have the device.
|
||||
*/
|
||||
mgr = of_fpga_mgr_get(mgr_node);
|
||||
|
||||
/* struct with information about the FPGA image to program. */
|
||||
info = fpga_image_info_alloc(dev);
|
||||
|
||||
/* flags indicates whether to do full or partial reconfiguration */
|
||||
info->flags = FPGA_MGR_PARTIAL_RECONFIG;
|
||||
|
||||
/*
|
||||
* At this point, indicate where the image is. This is pseudo-code; you're
|
||||
* going to use one of these three.
|
||||
*/
|
||||
if (image is in a scatter gather table) {
|
||||
|
||||
info->sgt = [your scatter gather table]
|
||||
|
||||
} else if (image is in a buffer) {
|
||||
|
||||
info->buf = [your image buffer]
|
||||
info->count = [image buffer size]
|
||||
|
||||
} else if (image is in a firmware file) {
|
||||
|
||||
info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL);
|
||||
|
||||
}
|
||||
|
||||
/* Get exclusive control of FPGA manager */
|
||||
ret = fpga_mgr_lock(mgr);
|
||||
|
||||
/* Load the buffer to the FPGA */
|
||||
ret = fpga_mgr_buf_load(mgr, &info, buf, count);
|
||||
|
||||
/* Release the FPGA manager */
|
||||
fpga_mgr_unlock(mgr);
|
||||
fpga_mgr_put(mgr);
|
||||
|
||||
/* Deallocate the image info if you're done with it */
|
||||
fpga_image_info_free(info);
|
||||
|
||||
How to support a new FPGA device
|
||||
================================
|
||||
To add another FPGA manager, write a driver that implements a set of ops. The
|
||||
probe function calls fpga_mgr_register(), such as:
|
||||
|
||||
static const struct fpga_manager_ops socfpga_fpga_ops = {
|
||||
.write_init = socfpga_fpga_ops_configure_init,
|
||||
.write = socfpga_fpga_ops_configure_write,
|
||||
.write_complete = socfpga_fpga_ops_configure_complete,
|
||||
.state = socfpga_fpga_ops_state,
|
||||
};
|
||||
|
||||
static int socfpga_fpga_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct socfpga_fpga_priv *priv;
|
||||
struct fpga_manager *mgr;
|
||||
int ret;
|
||||
|
||||
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
|
||||
if (!priv)
|
||||
return -ENOMEM;
|
||||
|
||||
/* ... do ioremaps, get interrupts, etc. and save
|
||||
them in priv... */
|
||||
|
||||
mgr = fpga_mgr_create(dev, "Altera SOCFPGA FPGA Manager",
|
||||
&socfpga_fpga_ops, priv);
|
||||
if (!mgr)
|
||||
return -ENOMEM;
|
||||
|
||||
platform_set_drvdata(pdev, mgr);
|
||||
|
||||
ret = fpga_mgr_register(mgr);
|
||||
if (ret)
|
||||
fpga_mgr_free(mgr);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int socfpga_fpga_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct fpga_manager *mgr = platform_get_drvdata(pdev);
|
||||
|
||||
fpga_mgr_unregister(mgr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
The ops will implement whatever device specific register writes are needed to
|
||||
do the programming sequence for this particular FPGA. These ops return 0 for
|
||||
success or negative error codes otherwise.
|
||||
|
||||
The programming sequence is:
|
||||
1. .write_init
|
||||
2. .write or .write_sg (may be called once or multiple times)
|
||||
3. .write_complete
|
||||
|
||||
The .write_init function will prepare the FPGA to receive the image data. The
|
||||
buffer passed into .write_init will be atmost .initial_header_size bytes long,
|
||||
if the whole bitstream is not immediately available then the core code will
|
||||
buffer up at least this much before starting.
|
||||
|
||||
The .write function writes a buffer to the FPGA. The buffer may be contain the
|
||||
whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
|
||||
case, this function is called multiple times for successive chunks. This interface
|
||||
is suitable for drivers which use PIO.
|
||||
|
||||
The .write_sg version behaves the same as .write except the input is a sg_table
|
||||
scatter list. This interface is suitable for drivers which use DMA.
|
||||
|
||||
The .write_complete function is called after all the image has been written
|
||||
to put the FPGA into operating mode.
|
||||
|
||||
The ops include a .state function which will read the hardware FPGA manager and
|
||||
return a code of type enum fpga_mgr_states. It doesn't result in a change in
|
||||
hardware state.
|
Loading…
Reference in New Issue