codel: use Newton method instead of sqrt() and divides
As Van pointed out, interval/sqrt(count) can be implemented using multiplies only. http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots This patch implements the Newton method and reciprocal divide. Total cost is 15 cycles instead of 120 on my Corei5 machine (64bit kernel). There is a small 'error' for count values < 5, but we don't really care. I reuse a hole in struct codel_vars : - pack the dropping boolean into one bit - use 31bit to store the reciprocal value of sqrt(count). Suggested-by: Van Jacobson <van@pollere.net> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Dave Taht <dave.taht@bufferbloat.net> Cc: Kathleen Nichols <nichols@pollere.com> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
470f16c83c
commit
536edd6710
|
@ -46,6 +46,7 @@
|
|||
#include <linux/skbuff.h>
|
||||
#include <net/pkt_sched.h>
|
||||
#include <net/inet_ecn.h>
|
||||
#include <linux/reciprocal_div.h>
|
||||
|
||||
/* Controlling Queue Delay (CoDel) algorithm
|
||||
* =========================================
|
||||
|
@ -123,6 +124,7 @@ struct codel_params {
|
|||
* entered dropping state
|
||||
* @lastcount: count at entry to dropping state
|
||||
* @dropping: set to true if in dropping state
|
||||
* @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
|
||||
* @first_above_time: when we went (or will go) continuously above target
|
||||
* for interval
|
||||
* @drop_next: time to drop next packet, or when we dropped last
|
||||
|
@ -131,7 +133,8 @@ struct codel_params {
|
|||
struct codel_vars {
|
||||
u32 count;
|
||||
u32 lastcount;
|
||||
bool dropping;
|
||||
bool dropping:1;
|
||||
u32 rec_inv_sqrt:31;
|
||||
codel_time_t first_above_time;
|
||||
codel_time_t drop_next;
|
||||
codel_time_t ldelay;
|
||||
|
@ -158,11 +161,7 @@ static void codel_params_init(struct codel_params *params)
|
|||
|
||||
static void codel_vars_init(struct codel_vars *vars)
|
||||
{
|
||||
vars->drop_next = 0;
|
||||
vars->first_above_time = 0;
|
||||
vars->dropping = false; /* exit dropping state */
|
||||
vars->count = 0;
|
||||
vars->lastcount = 0;
|
||||
memset(vars, 0, sizeof(*vars));
|
||||
}
|
||||
|
||||
static void codel_stats_init(struct codel_stats *stats)
|
||||
|
@ -170,38 +169,37 @@ static void codel_stats_init(struct codel_stats *stats)
|
|||
stats->maxpacket = 256;
|
||||
}
|
||||
|
||||
/* return interval/sqrt(x) with good precision
|
||||
* relies on int_sqrt(unsigned long x) kernel implementation
|
||||
/*
|
||||
* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots
|
||||
* new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
|
||||
*
|
||||
* Here, invsqrt is a fixed point number (< 1.0), 31bit mantissa)
|
||||
*/
|
||||
static u32 codel_inv_sqrt(u32 _interval, u32 _x)
|
||||
static void codel_Newton_step(struct codel_vars *vars)
|
||||
{
|
||||
u64 interval = _interval;
|
||||
unsigned long x = _x;
|
||||
u32 invsqrt = vars->rec_inv_sqrt;
|
||||
u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 31;
|
||||
u64 val = (3LL << 31) - ((u64)vars->count * invsqrt2);
|
||||
|
||||
/* Scale operands for max precision */
|
||||
val = (val * invsqrt) >> 32;
|
||||
|
||||
#if BITS_PER_LONG == 64
|
||||
x <<= 32; /* On 64bit arches, we can prescale x by 32bits */
|
||||
interval <<= 16;
|
||||
#endif
|
||||
|
||||
while (x < (1UL << (BITS_PER_LONG - 2))) {
|
||||
x <<= 2;
|
||||
interval <<= 1;
|
||||
}
|
||||
do_div(interval, int_sqrt(x));
|
||||
return (u32)interval;
|
||||
vars->rec_inv_sqrt = val;
|
||||
}
|
||||
|
||||
/*
|
||||
* CoDel control_law is t + interval/sqrt(count)
|
||||
* We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
|
||||
* both sqrt() and divide operation.
|
||||
*/
|
||||
static codel_time_t codel_control_law(codel_time_t t,
|
||||
codel_time_t interval,
|
||||
u32 count)
|
||||
u32 rec_inv_sqrt)
|
||||
{
|
||||
return t + codel_inv_sqrt(interval, count);
|
||||
return t + reciprocal_divide(interval, rec_inv_sqrt << 1);
|
||||
}
|
||||
|
||||
|
||||
static bool codel_should_drop(struct sk_buff *skb,
|
||||
static bool codel_should_drop(const struct sk_buff *skb,
|
||||
unsigned int *backlog,
|
||||
struct codel_vars *vars,
|
||||
struct codel_params *params,
|
||||
|
@ -274,14 +272,16 @@ static struct sk_buff *codel_dequeue(struct Qdisc *sch,
|
|||
*/
|
||||
while (vars->dropping &&
|
||||
codel_time_after_eq(now, vars->drop_next)) {
|
||||
if (++vars->count == 0) /* avoid zero divides */
|
||||
vars->count = ~0U;
|
||||
vars->count++; /* dont care of possible wrap
|
||||
* since there is no more divide
|
||||
*/
|
||||
codel_Newton_step(vars);
|
||||
if (params->ecn && INET_ECN_set_ce(skb)) {
|
||||
stats->ecn_mark++;
|
||||
vars->drop_next =
|
||||
codel_control_law(vars->drop_next,
|
||||
params->interval,
|
||||
vars->count);
|
||||
vars->rec_inv_sqrt);
|
||||
goto end;
|
||||
}
|
||||
qdisc_drop(skb, sch);
|
||||
|
@ -296,7 +296,7 @@ static struct sk_buff *codel_dequeue(struct Qdisc *sch,
|
|||
vars->drop_next =
|
||||
codel_control_law(vars->drop_next,
|
||||
params->interval,
|
||||
vars->count);
|
||||
vars->rec_inv_sqrt);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -319,12 +319,18 @@ static struct sk_buff *codel_dequeue(struct Qdisc *sch,
|
|||
if (codel_time_before(now - vars->drop_next,
|
||||
16 * params->interval)) {
|
||||
vars->count = (vars->count - vars->lastcount) | 1;
|
||||
/* we dont care if rec_inv_sqrt approximation
|
||||
* is not very precise :
|
||||
* Next Newton steps will correct it quadratically.
|
||||
*/
|
||||
codel_Newton_step(vars);
|
||||
} else {
|
||||
vars->count = 1;
|
||||
vars->rec_inv_sqrt = 0x7fffffff;
|
||||
}
|
||||
vars->lastcount = vars->count;
|
||||
vars->drop_next = codel_control_law(now, params->interval,
|
||||
vars->count);
|
||||
vars->rec_inv_sqrt);
|
||||
}
|
||||
end:
|
||||
return skb;
|
||||
|
|
Loading…
Reference in New Issue