fsverity: support verification with tree block size < PAGE_SIZE
Add support for verifying data from verity files whose Merkle tree block size is less than the page size. The main use case for this is to allow a single Merkle tree block size to be used across all systems, so that only one set of fsverity file digests and signatures is needed. To do this, eliminate various assumptions that the Merkle tree block size and the page size are the same: - Make fsverity_verify_page() a wrapper around a new function fsverity_verify_blocks() which verifies one or more blocks in a page. - When a Merkle tree block is needed, get the corresponding page and only verify and use the needed portion. (The Merkle tree continues to be read and cached in page-sized chunks; that doesn't need to change.) - When the Merkle tree block size and page size differ, use a bitmap fsverity_info::hash_block_verified to keep track of which Merkle tree blocks have been verified, as PageChecked cannot be used directly. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Andrey Albershteyn <aalbersh@redhat.com> Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com> Link: https://lore.kernel.org/r/20221223203638.41293-7-ebiggers@kernel.org
This commit is contained in:
parent
f45555bf23
commit
5306892a50
|
@ -572,47 +572,44 @@ For filesystems using Linux's pagecache, the ``->read_folio()`` and
|
|||
are marked Uptodate. Merely hooking ``->read_iter()`` would be
|
||||
insufficient, since ``->read_iter()`` is not used for memory maps.
|
||||
|
||||
Therefore, fs/verity/ provides a function fsverity_verify_page() which
|
||||
verifies a page that has been read into the pagecache of a verity
|
||||
inode, but is still locked and not Uptodate, so it's not yet readable
|
||||
by userspace. As needed to do the verification,
|
||||
fsverity_verify_page() will call back into the filesystem to read
|
||||
Merkle tree pages via fsverity_operations::read_merkle_tree_page().
|
||||
Therefore, fs/verity/ provides the function fsverity_verify_blocks()
|
||||
which verifies data that has been read into the pagecache of a verity
|
||||
inode. The containing page must still be locked and not Uptodate, so
|
||||
it's not yet readable by userspace. As needed to do the verification,
|
||||
fsverity_verify_blocks() will call back into the filesystem to read
|
||||
hash blocks via fsverity_operations::read_merkle_tree_page().
|
||||
|
||||
fsverity_verify_page() returns false if verification failed; in this
|
||||
fsverity_verify_blocks() returns false if verification failed; in this
|
||||
case, the filesystem must not set the page Uptodate. Following this,
|
||||
as per the usual Linux pagecache behavior, attempts by userspace to
|
||||
read() from the part of the file containing the page will fail with
|
||||
EIO, and accesses to the page within a memory map will raise SIGBUS.
|
||||
|
||||
fsverity_verify_page() currently only supports the case where the
|
||||
Merkle tree block size is equal to PAGE_SIZE (often 4096 bytes).
|
||||
|
||||
In principle, fsverity_verify_page() verifies the entire path in the
|
||||
Merkle tree from the data page to the root hash. However, for
|
||||
efficiency the filesystem may cache the hash pages. Therefore,
|
||||
fsverity_verify_page() only ascends the tree reading hash pages until
|
||||
an already-verified hash page is seen, as indicated by the PageChecked
|
||||
bit being set. It then verifies the path to that page.
|
||||
In principle, verifying a data block requires verifying the entire
|
||||
path in the Merkle tree from the data block to the root hash.
|
||||
However, for efficiency the filesystem may cache the hash blocks.
|
||||
Therefore, fsverity_verify_blocks() only ascends the tree reading hash
|
||||
blocks until an already-verified hash block is seen. It then verifies
|
||||
the path to that block.
|
||||
|
||||
This optimization, which is also used by dm-verity, results in
|
||||
excellent sequential read performance. This is because usually (e.g.
|
||||
127 in 128 times for 4K blocks and SHA-256) the hash page from the
|
||||
127 in 128 times for 4K blocks and SHA-256) the hash block from the
|
||||
bottom level of the tree will already be cached and checked from
|
||||
reading a previous data page. However, random reads perform worse.
|
||||
reading a previous data block. However, random reads perform worse.
|
||||
|
||||
Block device based filesystems
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Block device based filesystems (e.g. ext4 and f2fs) in Linux also use
|
||||
the pagecache, so the above subsection applies too. However, they
|
||||
also usually read many pages from a file at once, grouped into a
|
||||
also usually read many data blocks from a file at once, grouped into a
|
||||
structure called a "bio". To make it easier for these types of
|
||||
filesystems to support fs-verity, fs/verity/ also provides a function
|
||||
fsverity_verify_bio() which verifies all pages in a bio.
|
||||
fsverity_verify_bio() which verifies all data blocks in a bio.
|
||||
|
||||
ext4 and f2fs also support encryption. If a verity file is also
|
||||
encrypted, the pages must be decrypted before being verified. To
|
||||
encrypted, the data must be decrypted before being verified. To
|
||||
support this, these filesystems allocate a "post-read context" for
|
||||
each bio and store it in ``->bi_private``::
|
||||
|
||||
|
@ -631,10 +628,10 @@ verification. Finally, pages where no decryption or verity error
|
|||
occurred are marked Uptodate, and the pages are unlocked.
|
||||
|
||||
On many filesystems, files can contain holes. Normally,
|
||||
``->readahead()`` simply zeroes holes and sets the corresponding pages
|
||||
Uptodate; no bios are issued. To prevent this case from bypassing
|
||||
fs-verity, these filesystems use fsverity_verify_page() to verify hole
|
||||
pages.
|
||||
``->readahead()`` simply zeroes hole blocks and considers the
|
||||
corresponding data to be up-to-date; no bios are issued. To prevent
|
||||
this case from bypassing fs-verity, filesystems use
|
||||
fsverity_verify_blocks() to verify hole blocks.
|
||||
|
||||
Filesystems also disable direct I/O on verity files, since otherwise
|
||||
direct I/O would bypass fs-verity.
|
||||
|
|
|
@ -42,9 +42,11 @@ struct merkle_tree_params {
|
|||
unsigned int digest_size; /* same as hash_alg->digest_size */
|
||||
unsigned int block_size; /* size of data and tree blocks */
|
||||
unsigned int hashes_per_block; /* number of hashes per tree block */
|
||||
unsigned int blocks_per_page; /* PAGE_SIZE / block_size */
|
||||
u8 log_digestsize; /* log2(digest_size) */
|
||||
u8 log_blocksize; /* log2(block_size) */
|
||||
u8 log_arity; /* log2(hashes_per_block) */
|
||||
u8 log_blocks_per_page; /* log2(blocks_per_page) */
|
||||
unsigned int num_levels; /* number of levels in Merkle tree */
|
||||
u64 tree_size; /* Merkle tree size in bytes */
|
||||
unsigned long tree_pages; /* Merkle tree size in pages */
|
||||
|
@ -70,9 +72,10 @@ struct fsverity_info {
|
|||
u8 root_hash[FS_VERITY_MAX_DIGEST_SIZE];
|
||||
u8 file_digest[FS_VERITY_MAX_DIGEST_SIZE];
|
||||
const struct inode *inode;
|
||||
unsigned long *hash_block_verified;
|
||||
spinlock_t hash_page_init_lock;
|
||||
};
|
||||
|
||||
|
||||
#define FS_VERITY_MAX_SIGNATURE_SIZE (FS_VERITY_MAX_DESCRIPTOR_SIZE - \
|
||||
sizeof(struct fsverity_descriptor))
|
||||
|
||||
|
|
|
@ -56,7 +56,23 @@ int fsverity_init_merkle_tree_params(struct merkle_tree_params *params,
|
|||
goto out_err;
|
||||
}
|
||||
|
||||
if (log_blocksize != PAGE_SHIFT) {
|
||||
/*
|
||||
* fs/verity/ directly assumes that the Merkle tree block size is a
|
||||
* power of 2 less than or equal to PAGE_SIZE. Another restriction
|
||||
* arises from the interaction between fs/verity/ and the filesystems
|
||||
* themselves: filesystems expect to be able to verify a single
|
||||
* filesystem block of data at a time. Therefore, the Merkle tree block
|
||||
* size must also be less than or equal to the filesystem block size.
|
||||
*
|
||||
* The above are the only hard limitations, so in theory the Merkle tree
|
||||
* block size could be as small as twice the digest size. However,
|
||||
* that's not useful, and it would result in some unusually deep and
|
||||
* large Merkle trees. So we currently require that the Merkle tree
|
||||
* block size be at least 1024 bytes. That's small enough to test the
|
||||
* sub-page block case on systems with 4K pages, but not too small.
|
||||
*/
|
||||
if (log_blocksize < 10 || log_blocksize > PAGE_SHIFT ||
|
||||
log_blocksize > inode->i_blkbits) {
|
||||
fsverity_warn(inode, "Unsupported log_blocksize: %u",
|
||||
log_blocksize);
|
||||
err = -EINVAL;
|
||||
|
@ -64,6 +80,8 @@ int fsverity_init_merkle_tree_params(struct merkle_tree_params *params,
|
|||
}
|
||||
params->log_blocksize = log_blocksize;
|
||||
params->block_size = 1 << log_blocksize;
|
||||
params->log_blocks_per_page = PAGE_SHIFT - log_blocksize;
|
||||
params->blocks_per_page = 1 << params->log_blocks_per_page;
|
||||
|
||||
if (WARN_ON(!is_power_of_2(params->digest_size))) {
|
||||
err = -EINVAL;
|
||||
|
@ -108,11 +126,19 @@ int fsverity_init_merkle_tree_params(struct merkle_tree_params *params,
|
|||
}
|
||||
|
||||
/*
|
||||
* Since the data, and thus also the Merkle tree, cannot have more than
|
||||
* ULONG_MAX pages, hash block indices can always fit in an
|
||||
* 'unsigned long'. To be safe, explicitly check for it too.
|
||||
* With block_size != PAGE_SIZE, an in-memory bitmap will need to be
|
||||
* allocated to track the "verified" status of hash blocks. Don't allow
|
||||
* this bitmap to get too large. For now, limit it to 1 MiB, which
|
||||
* limits the file size to about 4.4 TB with SHA-256 and 4K blocks.
|
||||
*
|
||||
* Together with the fact that the data, and thus also the Merkle tree,
|
||||
* cannot have more than ULONG_MAX pages, this implies that hash block
|
||||
* indices can always fit in an 'unsigned long'. But to be safe, we
|
||||
* explicitly check for that too. Note, this is only for hash block
|
||||
* indices; data block indices might not fit in an 'unsigned long'.
|
||||
*/
|
||||
if (offset > ULONG_MAX) {
|
||||
if ((params->block_size != PAGE_SIZE && offset > 1 << 23) ||
|
||||
offset > ULONG_MAX) {
|
||||
fsverity_err(inode, "Too many blocks in Merkle tree");
|
||||
err = -EFBIG;
|
||||
goto out_err;
|
||||
|
@ -170,7 +196,7 @@ struct fsverity_info *fsverity_create_info(const struct inode *inode,
|
|||
fsverity_err(inode,
|
||||
"Error %d initializing Merkle tree parameters",
|
||||
err);
|
||||
goto out;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
memcpy(vi->root_hash, desc->root_hash, vi->tree_params.digest_size);
|
||||
|
@ -179,17 +205,48 @@ struct fsverity_info *fsverity_create_info(const struct inode *inode,
|
|||
vi->file_digest);
|
||||
if (err) {
|
||||
fsverity_err(inode, "Error %d computing file digest", err);
|
||||
goto out;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
err = fsverity_verify_signature(vi, desc->signature,
|
||||
le32_to_cpu(desc->sig_size));
|
||||
out:
|
||||
if (err) {
|
||||
fsverity_free_info(vi);
|
||||
vi = ERR_PTR(err);
|
||||
if (err)
|
||||
goto fail;
|
||||
|
||||
if (vi->tree_params.block_size != PAGE_SIZE) {
|
||||
/*
|
||||
* When the Merkle tree block size and page size differ, we use
|
||||
* a bitmap to keep track of which hash blocks have been
|
||||
* verified. This bitmap must contain one bit per hash block,
|
||||
* including alignment to a page boundary at the end.
|
||||
*
|
||||
* Eventually, to support extremely large files in an efficient
|
||||
* way, it might be necessary to make pages of this bitmap
|
||||
* reclaimable. But for now, simply allocating the whole bitmap
|
||||
* is a simple solution that works well on the files on which
|
||||
* fsverity is realistically used. E.g., with SHA-256 and 4K
|
||||
* blocks, a 100MB file only needs a 24-byte bitmap, and the
|
||||
* bitmap for any file under 17GB fits in a 4K page.
|
||||
*/
|
||||
unsigned long num_bits =
|
||||
vi->tree_params.tree_pages <<
|
||||
vi->tree_params.log_blocks_per_page;
|
||||
|
||||
vi->hash_block_verified = kvcalloc(BITS_TO_LONGS(num_bits),
|
||||
sizeof(unsigned long),
|
||||
GFP_KERNEL);
|
||||
if (!vi->hash_block_verified) {
|
||||
err = -ENOMEM;
|
||||
goto fail;
|
||||
}
|
||||
spin_lock_init(&vi->hash_page_init_lock);
|
||||
}
|
||||
|
||||
return vi;
|
||||
|
||||
fail:
|
||||
fsverity_free_info(vi);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
void fsverity_set_info(struct inode *inode, struct fsverity_info *vi)
|
||||
|
@ -216,6 +273,7 @@ void fsverity_free_info(struct fsverity_info *vi)
|
|||
if (!vi)
|
||||
return;
|
||||
kfree(vi->tree_params.hashstate);
|
||||
kvfree(vi->hash_block_verified);
|
||||
kmem_cache_free(fsverity_info_cachep, vi);
|
||||
}
|
||||
|
||||
|
|
|
@ -12,35 +12,9 @@
|
|||
|
||||
static struct workqueue_struct *fsverity_read_workqueue;
|
||||
|
||||
/**
|
||||
* hash_at_level() - compute the location of the block's hash at the given level
|
||||
*
|
||||
* @params: (in) the Merkle tree parameters
|
||||
* @dindex: (in) the index of the data block being verified
|
||||
* @level: (in) the level of hash we want (0 is leaf level)
|
||||
* @hindex: (out) the index of the hash block containing the wanted hash
|
||||
* @hoffset: (out) the byte offset to the wanted hash within the hash block
|
||||
*/
|
||||
static void hash_at_level(const struct merkle_tree_params *params,
|
||||
pgoff_t dindex, unsigned int level, pgoff_t *hindex,
|
||||
unsigned int *hoffset)
|
||||
{
|
||||
pgoff_t position;
|
||||
|
||||
/* Offset of the hash within the level's region, in hashes */
|
||||
position = dindex >> (level * params->log_arity);
|
||||
|
||||
/* Index of the hash block in the tree overall */
|
||||
*hindex = params->level_start[level] + (position >> params->log_arity);
|
||||
|
||||
/* Offset of the wanted hash (in bytes) within the hash block */
|
||||
*hoffset = (position & ((1 << params->log_arity) - 1)) <<
|
||||
params->log_digestsize;
|
||||
}
|
||||
|
||||
static inline int cmp_hashes(const struct fsverity_info *vi,
|
||||
const u8 *want_hash, const u8 *real_hash,
|
||||
pgoff_t index, int level)
|
||||
u64 data_pos, int level)
|
||||
{
|
||||
const unsigned int hsize = vi->tree_params.digest_size;
|
||||
|
||||
|
@ -48,148 +22,310 @@ static inline int cmp_hashes(const struct fsverity_info *vi,
|
|||
return 0;
|
||||
|
||||
fsverity_err(vi->inode,
|
||||
"FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
|
||||
index, level,
|
||||
"FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
|
||||
data_pos, level,
|
||||
vi->tree_params.hash_alg->name, hsize, want_hash,
|
||||
vi->tree_params.hash_alg->name, hsize, real_hash);
|
||||
return -EBADMSG;
|
||||
}
|
||||
|
||||
static bool data_is_zeroed(struct inode *inode, struct page *page,
|
||||
unsigned int len, unsigned int offset)
|
||||
{
|
||||
void *virt = kmap_local_page(page);
|
||||
|
||||
if (memchr_inv(virt + offset, 0, len)) {
|
||||
kunmap_local(virt);
|
||||
fsverity_err(inode,
|
||||
"FILE CORRUPTED! Data past EOF is not zeroed");
|
||||
return false;
|
||||
}
|
||||
kunmap_local(virt);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify a single data page against the file's Merkle tree.
|
||||
* Returns true if the hash block with index @hblock_idx in the tree, located in
|
||||
* @hpage, has already been verified.
|
||||
*/
|
||||
static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage,
|
||||
unsigned long hblock_idx)
|
||||
{
|
||||
bool verified;
|
||||
unsigned int blocks_per_page;
|
||||
unsigned int i;
|
||||
|
||||
/*
|
||||
* When the Merkle tree block size and page size are the same, then the
|
||||
* ->hash_block_verified bitmap isn't allocated, and we use PG_checked
|
||||
* to directly indicate whether the page's block has been verified.
|
||||
*
|
||||
* Using PG_checked also guarantees that we re-verify hash pages that
|
||||
* get evicted and re-instantiated from the backing storage, as new
|
||||
* pages always start out with PG_checked cleared.
|
||||
*/
|
||||
if (!vi->hash_block_verified)
|
||||
return PageChecked(hpage);
|
||||
|
||||
/*
|
||||
* When the Merkle tree block size and page size differ, we use a bitmap
|
||||
* to indicate whether each hash block has been verified.
|
||||
*
|
||||
* However, we still need to ensure that hash pages that get evicted and
|
||||
* re-instantiated from the backing storage are re-verified. To do
|
||||
* this, we use PG_checked again, but now it doesn't really mean
|
||||
* "checked". Instead, now it just serves as an indicator for whether
|
||||
* the hash page is newly instantiated or not.
|
||||
*
|
||||
* The first thread that sees PG_checked=0 must clear the corresponding
|
||||
* bitmap bits, then set PG_checked=1. This requires a spinlock. To
|
||||
* avoid having to take this spinlock in the common case of
|
||||
* PG_checked=1, we start with an opportunistic lockless read.
|
||||
*/
|
||||
if (PageChecked(hpage)) {
|
||||
/*
|
||||
* A read memory barrier is needed here to give ACQUIRE
|
||||
* semantics to the above PageChecked() test.
|
||||
*/
|
||||
smp_rmb();
|
||||
return test_bit(hblock_idx, vi->hash_block_verified);
|
||||
}
|
||||
spin_lock(&vi->hash_page_init_lock);
|
||||
if (PageChecked(hpage)) {
|
||||
verified = test_bit(hblock_idx, vi->hash_block_verified);
|
||||
} else {
|
||||
blocks_per_page = vi->tree_params.blocks_per_page;
|
||||
hblock_idx = round_down(hblock_idx, blocks_per_page);
|
||||
for (i = 0; i < blocks_per_page; i++)
|
||||
clear_bit(hblock_idx + i, vi->hash_block_verified);
|
||||
/*
|
||||
* A write memory barrier is needed here to give RELEASE
|
||||
* semantics to the below SetPageChecked() operation.
|
||||
*/
|
||||
smp_wmb();
|
||||
SetPageChecked(hpage);
|
||||
verified = false;
|
||||
}
|
||||
spin_unlock(&vi->hash_page_init_lock);
|
||||
return verified;
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify a single data block against the file's Merkle tree.
|
||||
*
|
||||
* In principle, we need to verify the entire path to the root node. However,
|
||||
* for efficiency the filesystem may cache the hash pages. Therefore we need
|
||||
* only ascend the tree until an already-verified page is seen, as indicated by
|
||||
* the PageChecked bit being set; then verify the path to that page.
|
||||
* for efficiency the filesystem may cache the hash blocks. Therefore we need
|
||||
* only ascend the tree until an already-verified hash block is seen, and then
|
||||
* verify the path to that block.
|
||||
*
|
||||
* This code currently only supports the case where the verity block size is
|
||||
* equal to PAGE_SIZE. Doing otherwise would be possible but tricky, since we
|
||||
* wouldn't be able to use the PageChecked bit.
|
||||
*
|
||||
* Note that multiple processes may race to verify a hash page and mark it
|
||||
* Checked, but it doesn't matter; the result will be the same either way.
|
||||
*
|
||||
* Return: true if the page is valid, else false.
|
||||
* Return: %true if the data block is valid, else %false.
|
||||
*/
|
||||
static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
|
||||
struct ahash_request *req, struct page *data_page,
|
||||
unsigned long max_ra_pages)
|
||||
static bool
|
||||
verify_data_block(struct inode *inode, struct fsverity_info *vi,
|
||||
struct ahash_request *req, struct page *data_page,
|
||||
u64 data_pos, unsigned int dblock_offset_in_page,
|
||||
unsigned long max_ra_pages)
|
||||
{
|
||||
const struct merkle_tree_params *params = &vi->tree_params;
|
||||
const unsigned int hsize = params->digest_size;
|
||||
const pgoff_t index = data_page->index;
|
||||
int level;
|
||||
u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
|
||||
const u8 *want_hash;
|
||||
u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
|
||||
struct page *hpages[FS_VERITY_MAX_LEVELS];
|
||||
unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
|
||||
/* The hash blocks that are traversed, indexed by level */
|
||||
struct {
|
||||
/* Page containing the hash block */
|
||||
struct page *page;
|
||||
/* Index of the hash block in the tree overall */
|
||||
unsigned long index;
|
||||
/* Byte offset of the hash block within @page */
|
||||
unsigned int offset_in_page;
|
||||
/* Byte offset of the wanted hash within @page */
|
||||
unsigned int hoffset;
|
||||
} hblocks[FS_VERITY_MAX_LEVELS];
|
||||
/*
|
||||
* The index of the previous level's block within that level; also the
|
||||
* index of that block's hash within the current level.
|
||||
*/
|
||||
u64 hidx = data_pos >> params->log_blocksize;
|
||||
int err;
|
||||
|
||||
if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
|
||||
return false;
|
||||
if (unlikely(data_pos >= inode->i_size)) {
|
||||
/*
|
||||
* This can happen in the data page spanning EOF when the Merkle
|
||||
* tree block size is less than the page size. The Merkle tree
|
||||
* doesn't cover data blocks fully past EOF. But the entire
|
||||
* page spanning EOF can be visible to userspace via a mmap, and
|
||||
* any part past EOF should be all zeroes. Therefore, we need
|
||||
* to verify that any data blocks fully past EOF are all zeroes.
|
||||
*/
|
||||
return data_is_zeroed(inode, data_page, params->block_size,
|
||||
dblock_offset_in_page);
|
||||
}
|
||||
|
||||
/*
|
||||
* Starting at the leaf level, ascend the tree saving hash pages along
|
||||
* the way until we find a verified hash page, indicated by PageChecked;
|
||||
* or until we reach the root.
|
||||
* Starting at the leaf level, ascend the tree saving hash blocks along
|
||||
* the way until we find a hash block that has already been verified, or
|
||||
* until we reach the root.
|
||||
*/
|
||||
for (level = 0; level < params->num_levels; level++) {
|
||||
pgoff_t hindex;
|
||||
unsigned long next_hidx;
|
||||
unsigned long hblock_idx;
|
||||
pgoff_t hpage_idx;
|
||||
unsigned int hblock_offset_in_page;
|
||||
unsigned int hoffset;
|
||||
struct page *hpage;
|
||||
|
||||
hash_at_level(params, index, level, &hindex, &hoffset);
|
||||
/*
|
||||
* The index of the block in the current level; also the index
|
||||
* of that block's hash within the next level.
|
||||
*/
|
||||
next_hidx = hidx >> params->log_arity;
|
||||
|
||||
hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
|
||||
level == 0 ? min(max_ra_pages,
|
||||
params->tree_pages - hindex) : 0);
|
||||
/* Index of the hash block in the tree overall */
|
||||
hblock_idx = params->level_start[level] + next_hidx;
|
||||
|
||||
/* Index of the hash page in the tree overall */
|
||||
hpage_idx = hblock_idx >> params->log_blocks_per_page;
|
||||
|
||||
/* Byte offset of the hash block within the page */
|
||||
hblock_offset_in_page =
|
||||
(hblock_idx << params->log_blocksize) & ~PAGE_MASK;
|
||||
|
||||
/* Byte offset of the hash within the page */
|
||||
hoffset = hblock_offset_in_page +
|
||||
((hidx << params->log_digestsize) &
|
||||
(params->block_size - 1));
|
||||
|
||||
hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode,
|
||||
hpage_idx, level == 0 ? min(max_ra_pages,
|
||||
params->tree_pages - hpage_idx) : 0);
|
||||
if (IS_ERR(hpage)) {
|
||||
err = PTR_ERR(hpage);
|
||||
fsverity_err(inode,
|
||||
"Error %d reading Merkle tree page %lu",
|
||||
err, hindex);
|
||||
err, hpage_idx);
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (PageChecked(hpage)) {
|
||||
if (is_hash_block_verified(vi, hpage, hblock_idx)) {
|
||||
memcpy_from_page(_want_hash, hpage, hoffset, hsize);
|
||||
want_hash = _want_hash;
|
||||
put_page(hpage);
|
||||
goto descend;
|
||||
}
|
||||
hpages[level] = hpage;
|
||||
hoffsets[level] = hoffset;
|
||||
hblocks[level].page = hpage;
|
||||
hblocks[level].index = hblock_idx;
|
||||
hblocks[level].offset_in_page = hblock_offset_in_page;
|
||||
hblocks[level].hoffset = hoffset;
|
||||
hidx = next_hidx;
|
||||
}
|
||||
|
||||
want_hash = vi->root_hash;
|
||||
descend:
|
||||
/* Descend the tree verifying hash blocks. */
|
||||
for (; level > 0; level--) {
|
||||
struct page *hpage = hpages[level - 1];
|
||||
unsigned int hoffset = hoffsets[level - 1];
|
||||
struct page *hpage = hblocks[level - 1].page;
|
||||
unsigned long hblock_idx = hblocks[level - 1].index;
|
||||
unsigned int hblock_offset_in_page =
|
||||
hblocks[level - 1].offset_in_page;
|
||||
unsigned int hoffset = hblocks[level - 1].hoffset;
|
||||
|
||||
err = fsverity_hash_block(params, inode, req, hpage, 0,
|
||||
real_hash);
|
||||
err = fsverity_hash_block(params, inode, req, hpage,
|
||||
hblock_offset_in_page, real_hash);
|
||||
if (err)
|
||||
goto out;
|
||||
err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
|
||||
err = cmp_hashes(vi, want_hash, real_hash, data_pos, level - 1);
|
||||
if (err)
|
||||
goto out;
|
||||
SetPageChecked(hpage);
|
||||
/*
|
||||
* Mark the hash block as verified. This must be atomic and
|
||||
* idempotent, as the same hash block might be verified by
|
||||
* multiple threads concurrently.
|
||||
*/
|
||||
if (vi->hash_block_verified)
|
||||
set_bit(hblock_idx, vi->hash_block_verified);
|
||||
else
|
||||
SetPageChecked(hpage);
|
||||
memcpy_from_page(_want_hash, hpage, hoffset, hsize);
|
||||
want_hash = _want_hash;
|
||||
put_page(hpage);
|
||||
}
|
||||
|
||||
/* Finally, verify the data block. */
|
||||
err = fsverity_hash_block(params, inode, req, data_page, 0, real_hash);
|
||||
err = fsverity_hash_block(params, inode, req, data_page,
|
||||
dblock_offset_in_page, real_hash);
|
||||
if (err)
|
||||
goto out;
|
||||
err = cmp_hashes(vi, want_hash, real_hash, index, -1);
|
||||
err = cmp_hashes(vi, want_hash, real_hash, data_pos, -1);
|
||||
out:
|
||||
for (; level > 0; level--)
|
||||
put_page(hpages[level - 1]);
|
||||
put_page(hblocks[level - 1].page);
|
||||
|
||||
return err == 0;
|
||||
}
|
||||
|
||||
static bool
|
||||
verify_data_blocks(struct inode *inode, struct fsverity_info *vi,
|
||||
struct ahash_request *req, struct page *data_page,
|
||||
unsigned int len, unsigned int offset,
|
||||
unsigned long max_ra_pages)
|
||||
{
|
||||
const unsigned int block_size = vi->tree_params.block_size;
|
||||
u64 pos = (u64)data_page->index << PAGE_SHIFT;
|
||||
|
||||
if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size)))
|
||||
return false;
|
||||
if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
|
||||
return false;
|
||||
do {
|
||||
if (!verify_data_block(inode, vi, req, data_page,
|
||||
pos + offset, offset, max_ra_pages))
|
||||
return false;
|
||||
offset += block_size;
|
||||
len -= block_size;
|
||||
} while (len);
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsverity_verify_page() - verify a data page
|
||||
* @page: the page to verity
|
||||
* fsverity_verify_blocks() - verify data in a page
|
||||
* @page: the page containing the data to verify
|
||||
* @len: the length of the data to verify in the page
|
||||
* @offset: the offset of the data to verify in the page
|
||||
*
|
||||
* Verify a page that has just been read from a verity file. The page must be a
|
||||
* pagecache page that is still locked and not yet uptodate.
|
||||
* Verify data that has just been read from a verity file. The data must be
|
||||
* located in a pagecache page that is still locked and not yet uptodate. The
|
||||
* length and offset of the data must be Merkle tree block size aligned.
|
||||
*
|
||||
* Return: true if the page is valid, else false.
|
||||
* Return: %true if the data is valid, else %false.
|
||||
*/
|
||||
bool fsverity_verify_page(struct page *page)
|
||||
bool fsverity_verify_blocks(struct page *page, unsigned int len,
|
||||
unsigned int offset)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
const struct fsverity_info *vi = inode->i_verity_info;
|
||||
struct fsverity_info *vi = inode->i_verity_info;
|
||||
struct ahash_request *req;
|
||||
bool valid;
|
||||
|
||||
/* This allocation never fails, since it's mempool-backed. */
|
||||
req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
|
||||
|
||||
valid = verify_page(inode, vi, req, page, 0);
|
||||
valid = verify_data_blocks(inode, vi, req, page, len, offset, 0);
|
||||
|
||||
fsverity_free_hash_request(vi->tree_params.hash_alg, req);
|
||||
|
||||
return valid;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fsverity_verify_page);
|
||||
EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
|
||||
|
||||
#ifdef CONFIG_BLOCK
|
||||
/**
|
||||
* fsverity_verify_bio() - verify a 'read' bio that has just completed
|
||||
* @bio: the bio to verify
|
||||
*
|
||||
* Verify a set of pages that have just been read from a verity file. The pages
|
||||
* must be pagecache pages that are still locked and not yet uptodate. If a
|
||||
* page fails verification, then bio->bi_status is set to an error status.
|
||||
* Verify the bio's data against the file's Merkle tree. All bio data segments
|
||||
* must be aligned to the file's Merkle tree block size. If any data fails
|
||||
* verification, then bio->bi_status is set to an error status.
|
||||
*
|
||||
* This is a helper function for use by the ->readahead() method of filesystems
|
||||
* that issue bios to read data directly into the page cache. Filesystems that
|
||||
|
@ -200,7 +336,7 @@ EXPORT_SYMBOL_GPL(fsverity_verify_page);
|
|||
void fsverity_verify_bio(struct bio *bio)
|
||||
{
|
||||
struct inode *inode = bio_first_page_all(bio)->mapping->host;
|
||||
const struct fsverity_info *vi = inode->i_verity_info;
|
||||
struct fsverity_info *vi = inode->i_verity_info;
|
||||
struct ahash_request *req;
|
||||
struct bio_vec *bv;
|
||||
struct bvec_iter_all iter_all;
|
||||
|
@ -223,7 +359,8 @@ void fsverity_verify_bio(struct bio *bio)
|
|||
}
|
||||
|
||||
bio_for_each_segment_all(bv, bio, iter_all) {
|
||||
if (!verify_page(inode, vi, req, bv->bv_page, max_ra_pages)) {
|
||||
if (!verify_data_blocks(inode, vi, req, bv->bv_page, bv->bv_len,
|
||||
bv->bv_offset, max_ra_pages)) {
|
||||
bio->bi_status = BLK_STS_IOERR;
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -170,7 +170,8 @@ int fsverity_ioctl_read_metadata(struct file *filp, const void __user *uarg);
|
|||
|
||||
/* verify.c */
|
||||
|
||||
bool fsverity_verify_page(struct page *page);
|
||||
bool fsverity_verify_blocks(struct page *page, unsigned int len,
|
||||
unsigned int offset);
|
||||
void fsverity_verify_bio(struct bio *bio);
|
||||
void fsverity_enqueue_verify_work(struct work_struct *work);
|
||||
|
||||
|
@ -230,7 +231,8 @@ static inline int fsverity_ioctl_read_metadata(struct file *filp,
|
|||
|
||||
/* verify.c */
|
||||
|
||||
static inline bool fsverity_verify_page(struct page *page)
|
||||
static inline bool fsverity_verify_blocks(struct page *page, unsigned int len,
|
||||
unsigned int offset)
|
||||
{
|
||||
WARN_ON(1);
|
||||
return false;
|
||||
|
@ -248,6 +250,11 @@ static inline void fsverity_enqueue_verify_work(struct work_struct *work)
|
|||
|
||||
#endif /* !CONFIG_FS_VERITY */
|
||||
|
||||
static inline bool fsverity_verify_page(struct page *page)
|
||||
{
|
||||
return fsverity_verify_blocks(page, PAGE_SIZE, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* fsverity_active() - do reads from the inode need to go through fs-verity?
|
||||
* @inode: inode to check
|
||||
|
|
Loading…
Reference in New Issue