drm/amdgpu/pm: rework i2c xfers on sienna cichlid (v4)

Make it generic so we can support more than just EEPROMs.

v2: fix restart handling between transactions.
v3: handle 7 to 8 bit addr conversion
v4: Fix &req --> req. (Luben T)

Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Luben Tuikov <luben.tuikov@amd.com>
Reviewed-by: Luben Tuikov <luben.tuikov@amd.com>
This commit is contained in:
Alex Deucher 2021-01-21 14:08:29 -05:00
parent 6963d6c176
commit 5125c96a9d
1 changed files with 63 additions and 176 deletions

View File

@ -3442,197 +3442,84 @@ static void sienna_cichlid_dump_pptable(struct smu_context *smu)
dev_info(smu->adev->dev, "MmHubPadding[7] = 0x%x\n", pptable->MmHubPadding[7]);
}
static void sienna_cichlid_fill_i2c_req(SwI2cRequest_t *req, bool write,
uint8_t address, uint32_t numbytes,
uint8_t *data)
{
int i;
req->I2CcontrollerPort = 1;
req->I2CSpeed = 2;
req->SlaveAddress = address;
req->NumCmds = numbytes;
for (i = 0; i < numbytes; i++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[i];
/* First 2 bytes are always write for lower 2b EEPROM address */
if (i < 2)
cmd->CmdConfig = CMDCONFIG_READWRITE_MASK;
else
cmd->CmdConfig = write ? CMDCONFIG_READWRITE_MASK : 0;
/* Add RESTART for read after address filled */
cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0;
/* Add STOP in the end */
cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0;
/* Fill with data regardless if read or write to simplify code */
cmd->ReadWriteData = data[i];
}
}
static int sienna_cichlid_i2c_read_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t i, ret = 0;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
struct smu_table_context *smu_table = &adev->smu.smu_table;
struct smu_table *table = &smu_table->driver_table;
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
sienna_cichlid_fill_i2c_req(&req, false, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
/* Now read data starting with that address */
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req,
true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr;
/* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */
for (i = 0; i < numbytes; i++)
data[i] = res->SwI2cCmds[i].ReadWriteData;
dev_dbg(adev->dev, "sienna_cichlid_i2c_read_data, address = %x, bytes = %d, data :",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
} else
dev_err(adev->dev, "sienna_cichlid_i2c_read_data - error occurred :%x", ret);
return ret;
}
static int sienna_cichlid_i2c_write_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t ret;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
sienna_cichlid_fill_i2c_req(&req, true, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
dev_dbg(adev->dev, "sienna_cichlid_i2c_write(), address = %x, bytes = %d , data: ",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
/*
* According to EEPROM spec there is a MAX of 10 ms required for
* EEPROM to flush internal RX buffer after STOP was issued at the
* end of write transaction. During this time the EEPROM will not be
* responsive to any more commands - so wait a bit more.
*/
msleep(10);
} else
dev_err(adev->dev, "sienna_cichlid_i2c_write- error occurred :%x", ret);
return ret;
}
static int sienna_cichlid_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0;
uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 };
struct amdgpu_device *adev = to_amdgpu_device(i2c_adap);
struct smu_table_context *smu_table = &adev->smu.smu_table;
struct smu_table *table = &smu_table->driver_table;
SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr;
u16 bytes_to_transfer, remaining_bytes, msg_bytes;
u16 available_bytes = MAX_SW_I2C_COMMANDS;
int i, j, r, c;
u8 slave;
/* only support a single slave addr per transaction */
slave = msgs[0].addr;
for (i = 0; i < num; i++) {
/*
* SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at
* once and hence the data needs to be spliced into chunks and sent each
* chunk separately
*/
data_size = msgs[i].len - 2;
data_chunk_size = MAX_SW_I2C_COMMANDS - 2;
next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff);
data_ptr = msgs[i].buf + 2;
for (j = 0; j < data_size / data_chunk_size; j++) {
/* Insert the EEPROM dest addess, bits 0-15 */
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = sienna_cichlid_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
memcpy(data_ptr, data_chunk + 2, data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_chunk_size);
ret = sienna_cichlid_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
if (slave != msgs[i].addr)
return -EINVAL;
bytes_to_transfer += min(msgs[i].len, available_bytes);
available_bytes -= bytes_to_transfer;
}
if (ret) {
num = -EIO;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
req->I2CcontrollerPort = 1;
req->I2CSpeed = I2C_SPEED_FAST_400K;
req->SlaveAddress = slave << 1; /* 8 bit addresses */
req->NumCmds = bytes_to_transfer;
remaining_bytes = bytes_to_transfer;
c = 0;
for (i = 0; i < num; i++) {
struct i2c_msg *msg = &msgs[i];
msg_bytes = min(msg->len, remaining_bytes);
for (j = 0; j < msg_bytes; j++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[c++];
remaining_bytes--;
if (!(msg[i].flags & I2C_M_RD)) {
/* write */
cmd->CmdConfig |= CMDCONFIG_READWRITE_MASK;
cmd->ReadWriteData = msg->buf[j];
}
if ((msg[i].flags & I2C_M_STOP) ||
(!remaining_bytes))
cmd->CmdConfig |= CMDCONFIG_STOP_MASK;
if ((i > 0) && !(msg[i].flags & I2C_M_NOSTART))
cmd->CmdConfig |= CMDCONFIG_RESTART_BIT;
}
}
mutex_lock(&adev->smu.mutex);
r = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, req, true);
mutex_unlock(&adev->smu.mutex);
if (r)
goto fail;
}
next_eeprom_addr += data_chunk_size;
data_ptr += data_chunk_size;
}
remaining_bytes = bytes_to_transfer;
c = 0;
for (i = 0; i < num; i++) {
struct i2c_msg *msg = &msgs[i];
if (data_size % data_chunk_size) {
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
msg_bytes = min(msg->len, remaining_bytes);
for (j = 0; j < msg_bytes; j++) {
SwI2cCmd_t *cmd = &res->SwI2cCmds[c++];
if (msgs[i].flags & I2C_M_RD) {
ret = sienna_cichlid_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size);
ret = sienna_cichlid_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
}
if (ret) {
num = -EIO;
goto fail;
}
remaining_bytes--;
if (msg[i].flags & I2C_M_RD)
msg->buf[j] = cmd->ReadWriteData;
}
}
r = bytes_to_transfer;
fail:
return num;
kfree(req);
return r;
}
static u32 sienna_cichlid_i2c_func(struct i2c_adapter *adap)