Merge branch 'pm-cpufreq'
* pm-cpufreq: (94 commits) intel_pstate: Do not skip samples partially intel_pstate: Remove freq calculation from intel_pstate_calc_busy() intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance() intel_pstate: Optimize calculation for max/min_perf_adj intel_pstate: Remove extra conversions in pid calculation cpufreq: Move scheduler-related code to the sched directory Revert "cpufreq: postfix policy directory with the first CPU in related_cpus" cpufreq: Reduce cpufreq_update_util() overhead a bit cpufreq: Select IRQ_WORK if CPU_FREQ_GOV_COMMON is set cpufreq: Remove 'policy->governor_enabled' cpufreq: Rename __cpufreq_governor() to cpufreq_governor() cpufreq: Relocate handle_update() to kill its declaration cpufreq: governor: Drop unnecessary checks from show() and store() cpufreq: governor: Fix race in dbs_update_util_handler() cpufreq: governor: Make gov_set_update_util() static cpufreq: governor: Narrow down the dbs_data_mutex coverage cpufreq: governor: Make dbs_data_mutex static cpufreq: governor: Relocate definitions of tuners structures cpufreq: governor: Move per-CPU data to the common code cpufreq: governor: Make governor private data per-policy ...
This commit is contained in:
commit
4ed3900427
|
@ -25,7 +25,7 @@ callback, so cpufreq core can't request a transition to a specific frequency.
|
|||
The driver provides minimum and maximum frequency limits and callbacks to set a
|
||||
policy. The policy in cpufreq sysfs is referred to as the "scaling governor".
|
||||
The cpufreq core can request the driver to operate in any of the two policies:
|
||||
"performance: and "powersave". The driver decides which frequency to use based
|
||||
"performance" and "powersave". The driver decides which frequency to use based
|
||||
on the above policy selection considering minimum and maximum frequency limits.
|
||||
|
||||
The Intel P-State driver falls under the latter category, which implements the
|
||||
|
|
|
@ -19,6 +19,7 @@ config CPU_FREQ
|
|||
if CPU_FREQ
|
||||
|
||||
config CPU_FREQ_GOV_COMMON
|
||||
select IRQ_WORK
|
||||
bool
|
||||
|
||||
config CPU_FREQ_BOOST_SW
|
||||
|
|
|
@ -70,6 +70,8 @@ struct acpi_cpufreq_data {
|
|||
unsigned int cpu_feature;
|
||||
unsigned int acpi_perf_cpu;
|
||||
cpumask_var_t freqdomain_cpus;
|
||||
void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
|
||||
u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
|
||||
};
|
||||
|
||||
/* acpi_perf_data is a pointer to percpu data. */
|
||||
|
@ -243,125 +245,119 @@ static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
|
|||
}
|
||||
}
|
||||
|
||||
struct msr_addr {
|
||||
u32 reg;
|
||||
};
|
||||
u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
|
||||
{
|
||||
u32 val, dummy;
|
||||
|
||||
struct io_addr {
|
||||
u16 port;
|
||||
u8 bit_width;
|
||||
};
|
||||
rdmsr(MSR_IA32_PERF_CTL, val, dummy);
|
||||
return val;
|
||||
}
|
||||
|
||||
void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
|
||||
{
|
||||
u32 lo, hi;
|
||||
|
||||
rdmsr(MSR_IA32_PERF_CTL, lo, hi);
|
||||
lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
|
||||
wrmsr(MSR_IA32_PERF_CTL, lo, hi);
|
||||
}
|
||||
|
||||
u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
|
||||
{
|
||||
u32 val, dummy;
|
||||
|
||||
rdmsr(MSR_AMD_PERF_CTL, val, dummy);
|
||||
return val;
|
||||
}
|
||||
|
||||
void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
|
||||
{
|
||||
wrmsr(MSR_AMD_PERF_CTL, val, 0);
|
||||
}
|
||||
|
||||
u32 cpu_freq_read_io(struct acpi_pct_register *reg)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
acpi_os_read_port(reg->address, &val, reg->bit_width);
|
||||
return val;
|
||||
}
|
||||
|
||||
void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
|
||||
{
|
||||
acpi_os_write_port(reg->address, val, reg->bit_width);
|
||||
}
|
||||
|
||||
struct drv_cmd {
|
||||
unsigned int type;
|
||||
const struct cpumask *mask;
|
||||
union {
|
||||
struct msr_addr msr;
|
||||
struct io_addr io;
|
||||
} addr;
|
||||
struct acpi_pct_register *reg;
|
||||
u32 val;
|
||||
union {
|
||||
void (*write)(struct acpi_pct_register *reg, u32 val);
|
||||
u32 (*read)(struct acpi_pct_register *reg);
|
||||
} func;
|
||||
};
|
||||
|
||||
/* Called via smp_call_function_single(), on the target CPU */
|
||||
static void do_drv_read(void *_cmd)
|
||||
{
|
||||
struct drv_cmd *cmd = _cmd;
|
||||
u32 h;
|
||||
|
||||
switch (cmd->type) {
|
||||
case SYSTEM_INTEL_MSR_CAPABLE:
|
||||
case SYSTEM_AMD_MSR_CAPABLE:
|
||||
rdmsr(cmd->addr.msr.reg, cmd->val, h);
|
||||
break;
|
||||
case SYSTEM_IO_CAPABLE:
|
||||
acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
|
||||
&cmd->val,
|
||||
(u32)cmd->addr.io.bit_width);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
cmd->val = cmd->func.read(cmd->reg);
|
||||
}
|
||||
|
||||
static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
|
||||
{
|
||||
struct acpi_processor_performance *perf = to_perf_data(data);
|
||||
struct drv_cmd cmd = {
|
||||
.reg = &perf->control_register,
|
||||
.func.read = data->cpu_freq_read,
|
||||
};
|
||||
int err;
|
||||
|
||||
err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
|
||||
WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
|
||||
return cmd.val;
|
||||
}
|
||||
|
||||
/* Called via smp_call_function_many(), on the target CPUs */
|
||||
static void do_drv_write(void *_cmd)
|
||||
{
|
||||
struct drv_cmd *cmd = _cmd;
|
||||
u32 lo, hi;
|
||||
|
||||
switch (cmd->type) {
|
||||
case SYSTEM_INTEL_MSR_CAPABLE:
|
||||
rdmsr(cmd->addr.msr.reg, lo, hi);
|
||||
lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
|
||||
wrmsr(cmd->addr.msr.reg, lo, hi);
|
||||
break;
|
||||
case SYSTEM_AMD_MSR_CAPABLE:
|
||||
wrmsr(cmd->addr.msr.reg, cmd->val, 0);
|
||||
break;
|
||||
case SYSTEM_IO_CAPABLE:
|
||||
acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
|
||||
cmd->val,
|
||||
(u32)cmd->addr.io.bit_width);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
cmd->func.write(cmd->reg, cmd->val);
|
||||
}
|
||||
|
||||
static void drv_read(struct drv_cmd *cmd)
|
||||
{
|
||||
int err;
|
||||
cmd->val = 0;
|
||||
|
||||
err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
|
||||
WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
|
||||
}
|
||||
|
||||
static void drv_write(struct drv_cmd *cmd)
|
||||
static void drv_write(struct acpi_cpufreq_data *data,
|
||||
const struct cpumask *mask, u32 val)
|
||||
{
|
||||
struct acpi_processor_performance *perf = to_perf_data(data);
|
||||
struct drv_cmd cmd = {
|
||||
.reg = &perf->control_register,
|
||||
.val = val,
|
||||
.func.write = data->cpu_freq_write,
|
||||
};
|
||||
int this_cpu;
|
||||
|
||||
this_cpu = get_cpu();
|
||||
if (cpumask_test_cpu(this_cpu, cmd->mask))
|
||||
do_drv_write(cmd);
|
||||
smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
|
||||
if (cpumask_test_cpu(this_cpu, mask))
|
||||
do_drv_write(&cmd);
|
||||
|
||||
smp_call_function_many(mask, do_drv_write, &cmd, 1);
|
||||
put_cpu();
|
||||
}
|
||||
|
||||
static u32
|
||||
get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
|
||||
static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
|
||||
{
|
||||
struct acpi_processor_performance *perf;
|
||||
struct drv_cmd cmd;
|
||||
u32 val;
|
||||
|
||||
if (unlikely(cpumask_empty(mask)))
|
||||
return 0;
|
||||
|
||||
switch (data->cpu_feature) {
|
||||
case SYSTEM_INTEL_MSR_CAPABLE:
|
||||
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
||||
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
|
||||
break;
|
||||
case SYSTEM_AMD_MSR_CAPABLE:
|
||||
cmd.type = SYSTEM_AMD_MSR_CAPABLE;
|
||||
cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
|
||||
break;
|
||||
case SYSTEM_IO_CAPABLE:
|
||||
cmd.type = SYSTEM_IO_CAPABLE;
|
||||
perf = to_perf_data(data);
|
||||
cmd.addr.io.port = perf->control_register.address;
|
||||
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
val = drv_read(data, mask);
|
||||
|
||||
cmd.mask = mask;
|
||||
drv_read(&cmd);
|
||||
pr_debug("get_cur_val = %u\n", val);
|
||||
|
||||
pr_debug("get_cur_val = %u\n", cmd.val);
|
||||
|
||||
return cmd.val;
|
||||
return val;
|
||||
}
|
||||
|
||||
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
|
||||
|
@ -416,7 +412,7 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
|
|||
{
|
||||
struct acpi_cpufreq_data *data = policy->driver_data;
|
||||
struct acpi_processor_performance *perf;
|
||||
struct drv_cmd cmd;
|
||||
const struct cpumask *mask;
|
||||
unsigned int next_perf_state = 0; /* Index into perf table */
|
||||
int result = 0;
|
||||
|
||||
|
@ -434,42 +430,21 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
|
|||
} else {
|
||||
pr_debug("Already at target state (P%d)\n",
|
||||
next_perf_state);
|
||||
goto out;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
switch (data->cpu_feature) {
|
||||
case SYSTEM_INTEL_MSR_CAPABLE:
|
||||
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
||||
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
|
||||
cmd.val = (u32) perf->states[next_perf_state].control;
|
||||
break;
|
||||
case SYSTEM_AMD_MSR_CAPABLE:
|
||||
cmd.type = SYSTEM_AMD_MSR_CAPABLE;
|
||||
cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
|
||||
cmd.val = (u32) perf->states[next_perf_state].control;
|
||||
break;
|
||||
case SYSTEM_IO_CAPABLE:
|
||||
cmd.type = SYSTEM_IO_CAPABLE;
|
||||
cmd.addr.io.port = perf->control_register.address;
|
||||
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
||||
cmd.val = (u32) perf->states[next_perf_state].control;
|
||||
break;
|
||||
default:
|
||||
result = -ENODEV;
|
||||
goto out;
|
||||
}
|
||||
/*
|
||||
* The core won't allow CPUs to go away until the governor has been
|
||||
* stopped, so we can rely on the stability of policy->cpus.
|
||||
*/
|
||||
mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
|
||||
cpumask_of(policy->cpu) : policy->cpus;
|
||||
|
||||
/* cpufreq holds the hotplug lock, so we are safe from here on */
|
||||
if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
|
||||
cmd.mask = policy->cpus;
|
||||
else
|
||||
cmd.mask = cpumask_of(policy->cpu);
|
||||
|
||||
drv_write(&cmd);
|
||||
drv_write(data, mask, perf->states[next_perf_state].control);
|
||||
|
||||
if (acpi_pstate_strict) {
|
||||
if (!check_freqs(cmd.mask, data->freq_table[index].frequency,
|
||||
if (!check_freqs(mask, data->freq_table[index].frequency,
|
||||
data)) {
|
||||
pr_debug("acpi_cpufreq_target failed (%d)\n",
|
||||
policy->cpu);
|
||||
|
@ -480,7 +455,6 @@ static int acpi_cpufreq_target(struct cpufreq_policy *policy,
|
|||
if (!result)
|
||||
perf->state = next_perf_state;
|
||||
|
||||
out:
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -740,15 +714,21 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|||
}
|
||||
pr_debug("SYSTEM IO addr space\n");
|
||||
data->cpu_feature = SYSTEM_IO_CAPABLE;
|
||||
data->cpu_freq_read = cpu_freq_read_io;
|
||||
data->cpu_freq_write = cpu_freq_write_io;
|
||||
break;
|
||||
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
||||
pr_debug("HARDWARE addr space\n");
|
||||
if (check_est_cpu(cpu)) {
|
||||
data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
|
||||
data->cpu_freq_read = cpu_freq_read_intel;
|
||||
data->cpu_freq_write = cpu_freq_write_intel;
|
||||
break;
|
||||
}
|
||||
if (check_amd_hwpstate_cpu(cpu)) {
|
||||
data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
|
||||
data->cpu_freq_read = cpu_freq_read_amd;
|
||||
data->cpu_freq_write = cpu_freq_write_amd;
|
||||
break;
|
||||
}
|
||||
result = -ENODEV;
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#include <asm/msr.h>
|
||||
#include <asm/cpufeature.h>
|
||||
|
||||
#include "cpufreq_governor.h"
|
||||
#include "cpufreq_ondemand.h"
|
||||
|
||||
#define MSR_AMD64_FREQ_SENSITIVITY_ACTUAL 0xc0010080
|
||||
#define MSR_AMD64_FREQ_SENSITIVITY_REFERENCE 0xc0010081
|
||||
|
@ -45,10 +45,10 @@ static unsigned int amd_powersave_bias_target(struct cpufreq_policy *policy,
|
|||
long d_actual, d_reference;
|
||||
struct msr actual, reference;
|
||||
struct cpu_data_t *data = &per_cpu(cpu_data, policy->cpu);
|
||||
struct dbs_data *od_data = policy->governor_data;
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct dbs_data *od_data = policy_dbs->dbs_data;
|
||||
struct od_dbs_tuners *od_tuners = od_data->tuners;
|
||||
struct od_cpu_dbs_info_s *od_info =
|
||||
od_data->cdata->get_cpu_dbs_info_s(policy->cpu);
|
||||
struct od_policy_dbs_info *od_info = to_dbs_info(policy_dbs);
|
||||
|
||||
if (!od_info->freq_table)
|
||||
return freq_next;
|
||||
|
|
|
@ -31,9 +31,8 @@
|
|||
|
||||
struct private_data {
|
||||
struct device *cpu_dev;
|
||||
struct regulator *cpu_reg;
|
||||
struct thermal_cooling_device *cdev;
|
||||
unsigned int voltage_tolerance; /* in percentage */
|
||||
const char *reg_name;
|
||||
};
|
||||
|
||||
static struct freq_attr *cpufreq_dt_attr[] = {
|
||||
|
@ -44,175 +43,128 @@ static struct freq_attr *cpufreq_dt_attr[] = {
|
|||
|
||||
static int set_target(struct cpufreq_policy *policy, unsigned int index)
|
||||
{
|
||||
struct dev_pm_opp *opp;
|
||||
struct cpufreq_frequency_table *freq_table = policy->freq_table;
|
||||
struct clk *cpu_clk = policy->clk;
|
||||
struct private_data *priv = policy->driver_data;
|
||||
struct device *cpu_dev = priv->cpu_dev;
|
||||
struct regulator *cpu_reg = priv->cpu_reg;
|
||||
unsigned long volt = 0, tol = 0;
|
||||
int volt_old = 0;
|
||||
unsigned int old_freq, new_freq;
|
||||
long freq_Hz, freq_exact;
|
||||
int ret;
|
||||
|
||||
freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
|
||||
if (freq_Hz <= 0)
|
||||
freq_Hz = freq_table[index].frequency * 1000;
|
||||
|
||||
freq_exact = freq_Hz;
|
||||
new_freq = freq_Hz / 1000;
|
||||
old_freq = clk_get_rate(cpu_clk) / 1000;
|
||||
|
||||
if (!IS_ERR(cpu_reg)) {
|
||||
unsigned long opp_freq;
|
||||
|
||||
rcu_read_lock();
|
||||
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
|
||||
if (IS_ERR(opp)) {
|
||||
rcu_read_unlock();
|
||||
dev_err(cpu_dev, "failed to find OPP for %ld\n",
|
||||
freq_Hz);
|
||||
return PTR_ERR(opp);
|
||||
}
|
||||
volt = dev_pm_opp_get_voltage(opp);
|
||||
opp_freq = dev_pm_opp_get_freq(opp);
|
||||
rcu_read_unlock();
|
||||
tol = volt * priv->voltage_tolerance / 100;
|
||||
volt_old = regulator_get_voltage(cpu_reg);
|
||||
dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
|
||||
opp_freq / 1000, volt);
|
||||
}
|
||||
|
||||
dev_dbg(cpu_dev, "%u MHz, %d mV --> %u MHz, %ld mV\n",
|
||||
old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
|
||||
new_freq / 1000, volt ? volt / 1000 : -1);
|
||||
|
||||
/* scaling up? scale voltage before frequency */
|
||||
if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
|
||||
ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
|
||||
if (ret) {
|
||||
dev_err(cpu_dev, "failed to scale voltage up: %d\n",
|
||||
ret);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
ret = clk_set_rate(cpu_clk, freq_exact);
|
||||
if (ret) {
|
||||
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
|
||||
if (!IS_ERR(cpu_reg) && volt_old > 0)
|
||||
regulator_set_voltage_tol(cpu_reg, volt_old, tol);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* scaling down? scale voltage after frequency */
|
||||
if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
|
||||
ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
|
||||
if (ret) {
|
||||
dev_err(cpu_dev, "failed to scale voltage down: %d\n",
|
||||
ret);
|
||||
clk_set_rate(cpu_clk, old_freq * 1000);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
return dev_pm_opp_set_rate(priv->cpu_dev,
|
||||
policy->freq_table[index].frequency * 1000);
|
||||
}
|
||||
|
||||
static int allocate_resources(int cpu, struct device **cdev,
|
||||
struct regulator **creg, struct clk **cclk)
|
||||
/*
|
||||
* An earlier version of opp-v1 bindings used to name the regulator
|
||||
* "cpu0-supply", we still need to handle that for backwards compatibility.
|
||||
*/
|
||||
static const char *find_supply_name(struct device *dev)
|
||||
{
|
||||
struct device_node *np;
|
||||
struct property *pp;
|
||||
int cpu = dev->id;
|
||||
const char *name = NULL;
|
||||
|
||||
np = of_node_get(dev->of_node);
|
||||
|
||||
/* This must be valid for sure */
|
||||
if (WARN_ON(!np))
|
||||
return NULL;
|
||||
|
||||
/* Try "cpu0" for older DTs */
|
||||
if (!cpu) {
|
||||
pp = of_find_property(np, "cpu0-supply", NULL);
|
||||
if (pp) {
|
||||
name = "cpu0";
|
||||
goto node_put;
|
||||
}
|
||||
}
|
||||
|
||||
pp = of_find_property(np, "cpu-supply", NULL);
|
||||
if (pp) {
|
||||
name = "cpu";
|
||||
goto node_put;
|
||||
}
|
||||
|
||||
dev_dbg(dev, "no regulator for cpu%d\n", cpu);
|
||||
node_put:
|
||||
of_node_put(np);
|
||||
return name;
|
||||
}
|
||||
|
||||
static int resources_available(void)
|
||||
{
|
||||
struct device *cpu_dev;
|
||||
struct regulator *cpu_reg;
|
||||
struct clk *cpu_clk;
|
||||
int ret = 0;
|
||||
char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
|
||||
const char *name;
|
||||
|
||||
cpu_dev = get_cpu_device(cpu);
|
||||
cpu_dev = get_cpu_device(0);
|
||||
if (!cpu_dev) {
|
||||
pr_err("failed to get cpu%d device\n", cpu);
|
||||
pr_err("failed to get cpu0 device\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* Try "cpu0" for older DTs */
|
||||
if (!cpu)
|
||||
reg = reg_cpu0;
|
||||
else
|
||||
reg = reg_cpu;
|
||||
cpu_clk = clk_get(cpu_dev, NULL);
|
||||
ret = PTR_ERR_OR_ZERO(cpu_clk);
|
||||
if (ret) {
|
||||
/*
|
||||
* If cpu's clk node is present, but clock is not yet
|
||||
* registered, we should try defering probe.
|
||||
*/
|
||||
if (ret == -EPROBE_DEFER)
|
||||
dev_dbg(cpu_dev, "clock not ready, retry\n");
|
||||
else
|
||||
dev_err(cpu_dev, "failed to get clock: %d\n", ret);
|
||||
|
||||
try_again:
|
||||
cpu_reg = regulator_get_optional(cpu_dev, reg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
clk_put(cpu_clk);
|
||||
|
||||
name = find_supply_name(cpu_dev);
|
||||
/* Platform doesn't require regulator */
|
||||
if (!name)
|
||||
return 0;
|
||||
|
||||
cpu_reg = regulator_get_optional(cpu_dev, name);
|
||||
ret = PTR_ERR_OR_ZERO(cpu_reg);
|
||||
if (ret) {
|
||||
/*
|
||||
* If cpu's regulator supply node is present, but regulator is
|
||||
* not yet registered, we should try defering probe.
|
||||
*/
|
||||
if (ret == -EPROBE_DEFER) {
|
||||
dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
|
||||
cpu);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Try with "cpu-supply" */
|
||||
if (reg == reg_cpu0) {
|
||||
reg = reg_cpu;
|
||||
goto try_again;
|
||||
}
|
||||
|
||||
dev_dbg(cpu_dev, "no regulator for cpu%d: %d\n", cpu, ret);
|
||||
}
|
||||
|
||||
cpu_clk = clk_get(cpu_dev, NULL);
|
||||
ret = PTR_ERR_OR_ZERO(cpu_clk);
|
||||
if (ret) {
|
||||
/* put regulator */
|
||||
if (!IS_ERR(cpu_reg))
|
||||
regulator_put(cpu_reg);
|
||||
|
||||
/*
|
||||
* If cpu's clk node is present, but clock is not yet
|
||||
* registered, we should try defering probe.
|
||||
*/
|
||||
if (ret == -EPROBE_DEFER)
|
||||
dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
|
||||
dev_dbg(cpu_dev, "cpu0 regulator not ready, retry\n");
|
||||
else
|
||||
dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
|
||||
ret);
|
||||
} else {
|
||||
*cdev = cpu_dev;
|
||||
*creg = cpu_reg;
|
||||
*cclk = cpu_clk;
|
||||
dev_dbg(cpu_dev, "no regulator for cpu0: %d\n", ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
regulator_put(cpu_reg);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cpufreq_init(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cpufreq_frequency_table *freq_table;
|
||||
struct device_node *np;
|
||||
struct private_data *priv;
|
||||
struct device *cpu_dev;
|
||||
struct regulator *cpu_reg;
|
||||
struct clk *cpu_clk;
|
||||
struct dev_pm_opp *suspend_opp;
|
||||
unsigned long min_uV = ~0, max_uV = 0;
|
||||
unsigned int transition_latency;
|
||||
bool need_update = false;
|
||||
bool opp_v1 = false;
|
||||
const char *name;
|
||||
int ret;
|
||||
|
||||
ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
|
||||
if (ret) {
|
||||
pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
|
||||
return ret;
|
||||
cpu_dev = get_cpu_device(policy->cpu);
|
||||
if (!cpu_dev) {
|
||||
pr_err("failed to get cpu%d device\n", policy->cpu);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
np = of_node_get(cpu_dev->of_node);
|
||||
if (!np) {
|
||||
dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
|
||||
ret = -ENOENT;
|
||||
goto out_put_reg_clk;
|
||||
cpu_clk = clk_get(cpu_dev, NULL);
|
||||
if (IS_ERR(cpu_clk)) {
|
||||
ret = PTR_ERR(cpu_clk);
|
||||
dev_err(cpu_dev, "%s: failed to get clk: %d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Get OPP-sharing information from "operating-points-v2" bindings */
|
||||
|
@ -223,9 +175,23 @@ static int cpufreq_init(struct cpufreq_policy *policy)
|
|||
* finding shared-OPPs for backward compatibility.
|
||||
*/
|
||||
if (ret == -ENOENT)
|
||||
need_update = true;
|
||||
opp_v1 = true;
|
||||
else
|
||||
goto out_node_put;
|
||||
goto out_put_clk;
|
||||
}
|
||||
|
||||
/*
|
||||
* OPP layer will be taking care of regulators now, but it needs to know
|
||||
* the name of the regulator first.
|
||||
*/
|
||||
name = find_supply_name(cpu_dev);
|
||||
if (name) {
|
||||
ret = dev_pm_opp_set_regulator(cpu_dev, name);
|
||||
if (ret) {
|
||||
dev_err(cpu_dev, "Failed to set regulator for cpu%d: %d\n",
|
||||
policy->cpu, ret);
|
||||
goto out_put_clk;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -246,12 +212,12 @@ static int cpufreq_init(struct cpufreq_policy *policy)
|
|||
*/
|
||||
ret = dev_pm_opp_get_opp_count(cpu_dev);
|
||||
if (ret <= 0) {
|
||||
pr_debug("OPP table is not ready, deferring probe\n");
|
||||
dev_dbg(cpu_dev, "OPP table is not ready, deferring probe\n");
|
||||
ret = -EPROBE_DEFER;
|
||||
goto out_free_opp;
|
||||
}
|
||||
|
||||
if (need_update) {
|
||||
if (opp_v1) {
|
||||
struct cpufreq_dt_platform_data *pd = cpufreq_get_driver_data();
|
||||
|
||||
if (!pd || !pd->independent_clocks)
|
||||
|
@ -265,10 +231,6 @@ static int cpufreq_init(struct cpufreq_policy *policy)
|
|||
if (ret)
|
||||
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
|
||||
__func__, ret);
|
||||
|
||||
of_property_read_u32(np, "clock-latency", &transition_latency);
|
||||
} else {
|
||||
transition_latency = dev_pm_opp_get_max_clock_latency(cpu_dev);
|
||||
}
|
||||
|
||||
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
||||
|
@ -277,62 +239,16 @@ static int cpufreq_init(struct cpufreq_policy *policy)
|
|||
goto out_free_opp;
|
||||
}
|
||||
|
||||
of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
|
||||
|
||||
if (!transition_latency)
|
||||
transition_latency = CPUFREQ_ETERNAL;
|
||||
|
||||
if (!IS_ERR(cpu_reg)) {
|
||||
unsigned long opp_freq = 0;
|
||||
|
||||
/*
|
||||
* Disable any OPPs where the connected regulator isn't able to
|
||||
* provide the specified voltage and record minimum and maximum
|
||||
* voltage levels.
|
||||
*/
|
||||
while (1) {
|
||||
struct dev_pm_opp *opp;
|
||||
unsigned long opp_uV, tol_uV;
|
||||
|
||||
rcu_read_lock();
|
||||
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
|
||||
if (IS_ERR(opp)) {
|
||||
rcu_read_unlock();
|
||||
break;
|
||||
}
|
||||
opp_uV = dev_pm_opp_get_voltage(opp);
|
||||
rcu_read_unlock();
|
||||
|
||||
tol_uV = opp_uV * priv->voltage_tolerance / 100;
|
||||
if (regulator_is_supported_voltage(cpu_reg,
|
||||
opp_uV - tol_uV,
|
||||
opp_uV + tol_uV)) {
|
||||
if (opp_uV < min_uV)
|
||||
min_uV = opp_uV;
|
||||
if (opp_uV > max_uV)
|
||||
max_uV = opp_uV;
|
||||
} else {
|
||||
dev_pm_opp_disable(cpu_dev, opp_freq);
|
||||
}
|
||||
|
||||
opp_freq++;
|
||||
}
|
||||
|
||||
ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
|
||||
if (ret > 0)
|
||||
transition_latency += ret * 1000;
|
||||
}
|
||||
priv->reg_name = name;
|
||||
|
||||
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
|
||||
if (ret) {
|
||||
pr_err("failed to init cpufreq table: %d\n", ret);
|
||||
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
|
||||
goto out_free_priv;
|
||||
}
|
||||
|
||||
priv->cpu_dev = cpu_dev;
|
||||
priv->cpu_reg = cpu_reg;
|
||||
policy->driver_data = priv;
|
||||
|
||||
policy->clk = cpu_clk;
|
||||
|
||||
rcu_read_lock();
|
||||
|
@ -357,9 +273,11 @@ static int cpufreq_init(struct cpufreq_policy *policy)
|
|||
cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
|
||||
}
|
||||
|
||||
policy->cpuinfo.transition_latency = transition_latency;
|
||||
transition_latency = dev_pm_opp_get_max_transition_latency(cpu_dev);
|
||||
if (!transition_latency)
|
||||
transition_latency = CPUFREQ_ETERNAL;
|
||||
|
||||
of_node_put(np);
|
||||
policy->cpuinfo.transition_latency = transition_latency;
|
||||
|
||||
return 0;
|
||||
|
||||
|
@ -369,12 +287,10 @@ out_free_priv:
|
|||
kfree(priv);
|
||||
out_free_opp:
|
||||
dev_pm_opp_of_cpumask_remove_table(policy->cpus);
|
||||
out_node_put:
|
||||
of_node_put(np);
|
||||
out_put_reg_clk:
|
||||
if (name)
|
||||
dev_pm_opp_put_regulator(cpu_dev);
|
||||
out_put_clk:
|
||||
clk_put(cpu_clk);
|
||||
if (!IS_ERR(cpu_reg))
|
||||
regulator_put(cpu_reg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -386,9 +302,10 @@ static int cpufreq_exit(struct cpufreq_policy *policy)
|
|||
cpufreq_cooling_unregister(priv->cdev);
|
||||
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
|
||||
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
|
||||
if (priv->reg_name)
|
||||
dev_pm_opp_put_regulator(priv->cpu_dev);
|
||||
|
||||
clk_put(policy->clk);
|
||||
if (!IS_ERR(priv->cpu_reg))
|
||||
regulator_put(priv->cpu_reg);
|
||||
kfree(priv);
|
||||
|
||||
return 0;
|
||||
|
@ -441,9 +358,6 @@ static struct cpufreq_driver dt_cpufreq_driver = {
|
|||
|
||||
static int dt_cpufreq_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct device *cpu_dev;
|
||||
struct regulator *cpu_reg;
|
||||
struct clk *cpu_clk;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
|
@ -453,19 +367,15 @@ static int dt_cpufreq_probe(struct platform_device *pdev)
|
|||
*
|
||||
* FIXME: Is checking this only for CPU0 sufficient ?
|
||||
*/
|
||||
ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
|
||||
ret = resources_available();
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
clk_put(cpu_clk);
|
||||
if (!IS_ERR(cpu_reg))
|
||||
regulator_put(cpu_reg);
|
||||
|
||||
dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
|
||||
|
||||
ret = cpufreq_register_driver(&dt_cpufreq_driver);
|
||||
if (ret)
|
||||
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
||||
dev_err(&pdev->dev, "failed register driver: %d\n", ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -38,48 +38,10 @@ static inline bool policy_is_inactive(struct cpufreq_policy *policy)
|
|||
return cpumask_empty(policy->cpus);
|
||||
}
|
||||
|
||||
static bool suitable_policy(struct cpufreq_policy *policy, bool active)
|
||||
{
|
||||
return active == !policy_is_inactive(policy);
|
||||
}
|
||||
|
||||
/* Finds Next Acive/Inactive policy */
|
||||
static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
|
||||
bool active)
|
||||
{
|
||||
do {
|
||||
/* No more policies in the list */
|
||||
if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
|
||||
return NULL;
|
||||
|
||||
policy = list_next_entry(policy, policy_list);
|
||||
} while (!suitable_policy(policy, active));
|
||||
|
||||
return policy;
|
||||
}
|
||||
|
||||
static struct cpufreq_policy *first_policy(bool active)
|
||||
{
|
||||
struct cpufreq_policy *policy;
|
||||
|
||||
/* No policies in the list */
|
||||
if (list_empty(&cpufreq_policy_list))
|
||||
return NULL;
|
||||
|
||||
policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
|
||||
policy_list);
|
||||
|
||||
if (!suitable_policy(policy, active))
|
||||
policy = next_policy(policy, active);
|
||||
|
||||
return policy;
|
||||
}
|
||||
|
||||
/* Macros to iterate over CPU policies */
|
||||
#define for_each_suitable_policy(__policy, __active) \
|
||||
for (__policy = first_policy(__active); \
|
||||
__policy; \
|
||||
__policy = next_policy(__policy, __active))
|
||||
#define for_each_suitable_policy(__policy, __active) \
|
||||
list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
|
||||
if ((__active) == !policy_is_inactive(__policy))
|
||||
|
||||
#define for_each_active_policy(__policy) \
|
||||
for_each_suitable_policy(__policy, true)
|
||||
|
@ -102,7 +64,6 @@ static LIST_HEAD(cpufreq_governor_list);
|
|||
static struct cpufreq_driver *cpufreq_driver;
|
||||
static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
|
||||
static DEFINE_RWLOCK(cpufreq_driver_lock);
|
||||
DEFINE_MUTEX(cpufreq_governor_lock);
|
||||
|
||||
/* Flag to suspend/resume CPUFreq governors */
|
||||
static bool cpufreq_suspended;
|
||||
|
@ -113,10 +74,8 @@ static inline bool has_target(void)
|
|||
}
|
||||
|
||||
/* internal prototypes */
|
||||
static int __cpufreq_governor(struct cpufreq_policy *policy,
|
||||
unsigned int event);
|
||||
static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
|
||||
static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
|
||||
static void handle_update(struct work_struct *work);
|
||||
|
||||
/**
|
||||
* Two notifier lists: the "policy" list is involved in the
|
||||
|
@ -818,12 +777,7 @@ static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
|
|||
ssize_t ret;
|
||||
|
||||
down_read(&policy->rwsem);
|
||||
|
||||
if (fattr->show)
|
||||
ret = fattr->show(policy, buf);
|
||||
else
|
||||
ret = -EIO;
|
||||
|
||||
ret = fattr->show(policy, buf);
|
||||
up_read(&policy->rwsem);
|
||||
|
||||
return ret;
|
||||
|
@ -838,18 +792,12 @@ static ssize_t store(struct kobject *kobj, struct attribute *attr,
|
|||
|
||||
get_online_cpus();
|
||||
|
||||
if (!cpu_online(policy->cpu))
|
||||
goto unlock;
|
||||
|
||||
down_write(&policy->rwsem);
|
||||
|
||||
if (fattr->store)
|
||||
if (cpu_online(policy->cpu)) {
|
||||
down_write(&policy->rwsem);
|
||||
ret = fattr->store(policy, buf, count);
|
||||
else
|
||||
ret = -EIO;
|
||||
up_write(&policy->rwsem);
|
||||
}
|
||||
|
||||
up_write(&policy->rwsem);
|
||||
unlock:
|
||||
put_online_cpus();
|
||||
|
||||
return ret;
|
||||
|
@ -959,6 +907,11 @@ static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
|
|||
return cpufreq_add_dev_symlink(policy);
|
||||
}
|
||||
|
||||
__weak struct cpufreq_governor *cpufreq_default_governor(void)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int cpufreq_init_policy(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cpufreq_governor *gov = NULL;
|
||||
|
@ -968,11 +921,14 @@ static int cpufreq_init_policy(struct cpufreq_policy *policy)
|
|||
|
||||
/* Update governor of new_policy to the governor used before hotplug */
|
||||
gov = find_governor(policy->last_governor);
|
||||
if (gov)
|
||||
if (gov) {
|
||||
pr_debug("Restoring governor %s for cpu %d\n",
|
||||
policy->governor->name, policy->cpu);
|
||||
else
|
||||
gov = CPUFREQ_DEFAULT_GOVERNOR;
|
||||
} else {
|
||||
gov = cpufreq_default_governor();
|
||||
if (!gov)
|
||||
return -ENODATA;
|
||||
}
|
||||
|
||||
new_policy.governor = gov;
|
||||
|
||||
|
@ -996,36 +952,45 @@ static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cp
|
|||
if (cpumask_test_cpu(cpu, policy->cpus))
|
||||
return 0;
|
||||
|
||||
down_write(&policy->rwsem);
|
||||
if (has_target()) {
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
if (ret) {
|
||||
pr_err("%s: Failed to stop governor\n", __func__);
|
||||
return ret;
|
||||
goto unlock;
|
||||
}
|
||||
}
|
||||
|
||||
down_write(&policy->rwsem);
|
||||
cpumask_set_cpu(cpu, policy->cpus);
|
||||
up_write(&policy->rwsem);
|
||||
|
||||
if (has_target()) {
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
if (!ret)
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
|
||||
if (ret) {
|
||||
if (ret)
|
||||
pr_err("%s: Failed to start governor\n", __func__);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
unlock:
|
||||
up_write(&policy->rwsem);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void handle_update(struct work_struct *work)
|
||||
{
|
||||
struct cpufreq_policy *policy =
|
||||
container_of(work, struct cpufreq_policy, update);
|
||||
unsigned int cpu = policy->cpu;
|
||||
pr_debug("handle_update for cpu %u called\n", cpu);
|
||||
cpufreq_update_policy(cpu);
|
||||
}
|
||||
|
||||
static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
|
||||
{
|
||||
struct device *dev = get_cpu_device(cpu);
|
||||
struct cpufreq_policy *policy;
|
||||
int ret;
|
||||
|
||||
if (WARN_ON(!dev))
|
||||
return NULL;
|
||||
|
@ -1043,7 +1008,13 @@ static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
|
|||
if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
|
||||
goto err_free_rcpumask;
|
||||
|
||||
kobject_init(&policy->kobj, &ktype_cpufreq);
|
||||
ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
|
||||
cpufreq_global_kobject, "policy%u", cpu);
|
||||
if (ret) {
|
||||
pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
|
||||
goto err_free_real_cpus;
|
||||
}
|
||||
|
||||
INIT_LIST_HEAD(&policy->policy_list);
|
||||
init_rwsem(&policy->rwsem);
|
||||
spin_lock_init(&policy->transition_lock);
|
||||
|
@ -1054,6 +1025,8 @@ static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
|
|||
policy->cpu = cpu;
|
||||
return policy;
|
||||
|
||||
err_free_real_cpus:
|
||||
free_cpumask_var(policy->real_cpus);
|
||||
err_free_rcpumask:
|
||||
free_cpumask_var(policy->related_cpus);
|
||||
err_free_cpumask:
|
||||
|
@ -1158,16 +1131,6 @@ static int cpufreq_online(unsigned int cpu)
|
|||
cpumask_copy(policy->related_cpus, policy->cpus);
|
||||
/* Remember CPUs present at the policy creation time. */
|
||||
cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
|
||||
|
||||
/* Name and add the kobject */
|
||||
ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
|
||||
"policy%u",
|
||||
cpumask_first(policy->related_cpus));
|
||||
if (ret) {
|
||||
pr_err("%s: failed to add policy->kobj: %d\n", __func__,
|
||||
ret);
|
||||
goto out_exit_policy;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1309,9 +1272,10 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void cpufreq_offline_prepare(unsigned int cpu)
|
||||
static void cpufreq_offline(unsigned int cpu)
|
||||
{
|
||||
struct cpufreq_policy *policy;
|
||||
int ret;
|
||||
|
||||
pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
|
||||
|
||||
|
@ -1321,13 +1285,13 @@ static void cpufreq_offline_prepare(unsigned int cpu)
|
|||
return;
|
||||
}
|
||||
|
||||
down_write(&policy->rwsem);
|
||||
if (has_target()) {
|
||||
int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
if (ret)
|
||||
pr_err("%s: Failed to stop governor\n", __func__);
|
||||
}
|
||||
|
||||
down_write(&policy->rwsem);
|
||||
cpumask_clear_cpu(cpu, policy->cpus);
|
||||
|
||||
if (policy_is_inactive(policy)) {
|
||||
|
@ -1340,39 +1304,27 @@ static void cpufreq_offline_prepare(unsigned int cpu)
|
|||
/* Nominate new CPU */
|
||||
policy->cpu = cpumask_any(policy->cpus);
|
||||
}
|
||||
up_write(&policy->rwsem);
|
||||
|
||||
/* Start governor again for active policy */
|
||||
if (!policy_is_inactive(policy)) {
|
||||
if (has_target()) {
|
||||
int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
if (!ret)
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
|
||||
if (ret)
|
||||
pr_err("%s: Failed to start governor\n", __func__);
|
||||
}
|
||||
} else if (cpufreq_driver->stop_cpu) {
|
||||
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
if (cpufreq_driver->stop_cpu)
|
||||
cpufreq_driver->stop_cpu(policy);
|
||||
}
|
||||
}
|
||||
|
||||
static void cpufreq_offline_finish(unsigned int cpu)
|
||||
{
|
||||
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
|
||||
|
||||
if (!policy) {
|
||||
pr_debug("%s: No cpu_data found\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Only proceed for inactive policies */
|
||||
if (!policy_is_inactive(policy))
|
||||
return;
|
||||
|
||||
/* If cpu is last user of policy, free policy */
|
||||
if (has_target()) {
|
||||
int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
|
||||
if (ret)
|
||||
pr_err("%s: Failed to exit governor\n", __func__);
|
||||
}
|
||||
|
@ -1386,6 +1338,9 @@ static void cpufreq_offline_finish(unsigned int cpu)
|
|||
cpufreq_driver->exit(policy);
|
||||
policy->freq_table = NULL;
|
||||
}
|
||||
|
||||
unlock:
|
||||
up_write(&policy->rwsem);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1401,10 +1356,8 @@ static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
|
|||
if (!policy)
|
||||
return;
|
||||
|
||||
if (cpu_online(cpu)) {
|
||||
cpufreq_offline_prepare(cpu);
|
||||
cpufreq_offline_finish(cpu);
|
||||
}
|
||||
if (cpu_online(cpu))
|
||||
cpufreq_offline(cpu);
|
||||
|
||||
cpumask_clear_cpu(cpu, policy->real_cpus);
|
||||
remove_cpu_dev_symlink(policy, cpu);
|
||||
|
@ -1413,15 +1366,6 @@ static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
|
|||
cpufreq_policy_free(policy, true);
|
||||
}
|
||||
|
||||
static void handle_update(struct work_struct *work)
|
||||
{
|
||||
struct cpufreq_policy *policy =
|
||||
container_of(work, struct cpufreq_policy, update);
|
||||
unsigned int cpu = policy->cpu;
|
||||
pr_debug("handle_update for cpu %u called\n", cpu);
|
||||
cpufreq_update_policy(cpu);
|
||||
}
|
||||
|
||||
/**
|
||||
* cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
|
||||
* in deep trouble.
|
||||
|
@ -1584,6 +1528,7 @@ EXPORT_SYMBOL(cpufreq_generic_suspend);
|
|||
void cpufreq_suspend(void)
|
||||
{
|
||||
struct cpufreq_policy *policy;
|
||||
int ret;
|
||||
|
||||
if (!cpufreq_driver)
|
||||
return;
|
||||
|
@ -1594,7 +1539,11 @@ void cpufreq_suspend(void)
|
|||
pr_debug("%s: Suspending Governors\n", __func__);
|
||||
|
||||
for_each_active_policy(policy) {
|
||||
if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
|
||||
down_write(&policy->rwsem);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
up_write(&policy->rwsem);
|
||||
|
||||
if (ret)
|
||||
pr_err("%s: Failed to stop governor for policy: %p\n",
|
||||
__func__, policy);
|
||||
else if (cpufreq_driver->suspend
|
||||
|
@ -1616,6 +1565,7 @@ suspend:
|
|||
void cpufreq_resume(void)
|
||||
{
|
||||
struct cpufreq_policy *policy;
|
||||
int ret;
|
||||
|
||||
if (!cpufreq_driver)
|
||||
return;
|
||||
|
@ -1628,13 +1578,20 @@ void cpufreq_resume(void)
|
|||
pr_debug("%s: Resuming Governors\n", __func__);
|
||||
|
||||
for_each_active_policy(policy) {
|
||||
if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
|
||||
if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
|
||||
pr_err("%s: Failed to resume driver: %p\n", __func__,
|
||||
policy);
|
||||
else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
|
||||
|| __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
|
||||
pr_err("%s: Failed to start governor for policy: %p\n",
|
||||
__func__, policy);
|
||||
} else {
|
||||
down_write(&policy->rwsem);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
if (!ret)
|
||||
cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
up_write(&policy->rwsem);
|
||||
|
||||
if (ret)
|
||||
pr_err("%s: Failed to start governor for policy: %p\n",
|
||||
__func__, policy);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1846,7 +1803,8 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
|
|||
unsigned int relation)
|
||||
{
|
||||
unsigned int old_target_freq = target_freq;
|
||||
int retval = -EINVAL;
|
||||
struct cpufreq_frequency_table *freq_table;
|
||||
int index, retval;
|
||||
|
||||
if (cpufreq_disabled())
|
||||
return -ENODEV;
|
||||
|
@ -1873,34 +1831,28 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
|
|||
policy->restore_freq = policy->cur;
|
||||
|
||||
if (cpufreq_driver->target)
|
||||
retval = cpufreq_driver->target(policy, target_freq, relation);
|
||||
else if (cpufreq_driver->target_index) {
|
||||
struct cpufreq_frequency_table *freq_table;
|
||||
int index;
|
||||
return cpufreq_driver->target(policy, target_freq, relation);
|
||||
|
||||
freq_table = cpufreq_frequency_get_table(policy->cpu);
|
||||
if (unlikely(!freq_table)) {
|
||||
pr_err("%s: Unable to find freq_table\n", __func__);
|
||||
goto out;
|
||||
}
|
||||
if (!cpufreq_driver->target_index)
|
||||
return -EINVAL;
|
||||
|
||||
retval = cpufreq_frequency_table_target(policy, freq_table,
|
||||
target_freq, relation, &index);
|
||||
if (unlikely(retval)) {
|
||||
pr_err("%s: Unable to find matching freq\n", __func__);
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (freq_table[index].frequency == policy->cur) {
|
||||
retval = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
retval = __target_index(policy, freq_table, index);
|
||||
freq_table = cpufreq_frequency_get_table(policy->cpu);
|
||||
if (unlikely(!freq_table)) {
|
||||
pr_err("%s: Unable to find freq_table\n", __func__);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
out:
|
||||
return retval;
|
||||
retval = cpufreq_frequency_table_target(policy, freq_table, target_freq,
|
||||
relation, &index);
|
||||
if (unlikely(retval)) {
|
||||
pr_err("%s: Unable to find matching freq\n", __func__);
|
||||
return retval;
|
||||
}
|
||||
|
||||
if (freq_table[index].frequency == policy->cur)
|
||||
return 0;
|
||||
|
||||
return __target_index(policy, freq_table, index);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
|
||||
|
||||
|
@ -1920,21 +1872,15 @@ int cpufreq_driver_target(struct cpufreq_policy *policy,
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(cpufreq_driver_target);
|
||||
|
||||
static int __cpufreq_governor(struct cpufreq_policy *policy,
|
||||
unsigned int event)
|
||||
__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* Only must be defined when default governor is known to have latency
|
||||
restrictions, like e.g. conservative or ondemand.
|
||||
That this is the case is already ensured in Kconfig
|
||||
*/
|
||||
#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
|
||||
struct cpufreq_governor *gov = &cpufreq_gov_performance;
|
||||
#else
|
||||
struct cpufreq_governor *gov = NULL;
|
||||
#endif
|
||||
|
||||
/* Don't start any governor operations if we are entering suspend */
|
||||
if (cpufreq_suspended)
|
||||
return 0;
|
||||
|
@ -1948,12 +1894,14 @@ static int __cpufreq_governor(struct cpufreq_policy *policy,
|
|||
if (policy->governor->max_transition_latency &&
|
||||
policy->cpuinfo.transition_latency >
|
||||
policy->governor->max_transition_latency) {
|
||||
if (!gov)
|
||||
return -EINVAL;
|
||||
else {
|
||||
struct cpufreq_governor *gov = cpufreq_fallback_governor();
|
||||
|
||||
if (gov) {
|
||||
pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
|
||||
policy->governor->name, gov->name);
|
||||
policy->governor = gov;
|
||||
} else {
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1963,21 +1911,6 @@ static int __cpufreq_governor(struct cpufreq_policy *policy,
|
|||
|
||||
pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
|
||||
|
||||
mutex_lock(&cpufreq_governor_lock);
|
||||
if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
|
||||
|| (!policy->governor_enabled
|
||||
&& (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
|
||||
mutex_unlock(&cpufreq_governor_lock);
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
if (event == CPUFREQ_GOV_STOP)
|
||||
policy->governor_enabled = false;
|
||||
else if (event == CPUFREQ_GOV_START)
|
||||
policy->governor_enabled = true;
|
||||
|
||||
mutex_unlock(&cpufreq_governor_lock);
|
||||
|
||||
ret = policy->governor->governor(policy, event);
|
||||
|
||||
if (!ret) {
|
||||
|
@ -1985,14 +1918,6 @@ static int __cpufreq_governor(struct cpufreq_policy *policy,
|
|||
policy->governor->initialized++;
|
||||
else if (event == CPUFREQ_GOV_POLICY_EXIT)
|
||||
policy->governor->initialized--;
|
||||
} else {
|
||||
/* Restore original values */
|
||||
mutex_lock(&cpufreq_governor_lock);
|
||||
if (event == CPUFREQ_GOV_STOP)
|
||||
policy->governor_enabled = true;
|
||||
else if (event == CPUFREQ_GOV_START)
|
||||
policy->governor_enabled = false;
|
||||
mutex_unlock(&cpufreq_governor_lock);
|
||||
}
|
||||
|
||||
if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
|
||||
|
@ -2147,7 +2072,7 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
|
|||
old_gov = policy->governor;
|
||||
/* end old governor */
|
||||
if (old_gov) {
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
|
||||
if (ret) {
|
||||
/* This can happen due to race with other operations */
|
||||
pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
|
||||
|
@ -2155,10 +2080,7 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
|
|||
return ret;
|
||||
}
|
||||
|
||||
up_write(&policy->rwsem);
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
|
||||
down_write(&policy->rwsem);
|
||||
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
|
||||
if (ret) {
|
||||
pr_err("%s: Failed to Exit Governor: %s (%d)\n",
|
||||
__func__, old_gov->name, ret);
|
||||
|
@ -2168,32 +2090,30 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
|
|||
|
||||
/* start new governor */
|
||||
policy->governor = new_policy->governor;
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
|
||||
if (!ret) {
|
||||
ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
if (!ret)
|
||||
goto out;
|
||||
|
||||
up_write(&policy->rwsem);
|
||||
__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
|
||||
down_write(&policy->rwsem);
|
||||
cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
|
||||
}
|
||||
|
||||
/* new governor failed, so re-start old one */
|
||||
pr_debug("starting governor %s failed\n", policy->governor->name);
|
||||
if (old_gov) {
|
||||
policy->governor = old_gov;
|
||||
if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
|
||||
if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
|
||||
policy->governor = NULL;
|
||||
else
|
||||
__cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
cpufreq_governor(policy, CPUFREQ_GOV_START);
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
out:
|
||||
pr_debug("governor: change or update limits\n");
|
||||
return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -2260,11 +2180,7 @@ static int cpufreq_cpu_callback(struct notifier_block *nfb,
|
|||
break;
|
||||
|
||||
case CPU_DOWN_PREPARE:
|
||||
cpufreq_offline_prepare(cpu);
|
||||
break;
|
||||
|
||||
case CPU_POST_DEAD:
|
||||
cpufreq_offline_finish(cpu);
|
||||
cpufreq_offline(cpu);
|
||||
break;
|
||||
|
||||
case CPU_DOWN_FAILED:
|
||||
|
@ -2297,8 +2213,11 @@ static int cpufreq_boost_set_sw(int state)
|
|||
__func__);
|
||||
break;
|
||||
}
|
||||
|
||||
down_write(&policy->rwsem);
|
||||
policy->user_policy.max = policy->max;
|
||||
__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
|
||||
up_write(&policy->rwsem);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2384,7 +2303,7 @@ EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
|
|||
* submitted by the CPU Frequency driver.
|
||||
*
|
||||
* Registers a CPU Frequency driver to this core code. This code
|
||||
* returns zero on success, -EBUSY when another driver got here first
|
||||
* returns zero on success, -EEXIST when another driver got here first
|
||||
* (and isn't unregistered in the meantime).
|
||||
*
|
||||
*/
|
||||
|
|
|
@ -14,6 +14,22 @@
|
|||
#include <linux/slab.h>
|
||||
#include "cpufreq_governor.h"
|
||||
|
||||
struct cs_policy_dbs_info {
|
||||
struct policy_dbs_info policy_dbs;
|
||||
unsigned int down_skip;
|
||||
unsigned int requested_freq;
|
||||
};
|
||||
|
||||
static inline struct cs_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
|
||||
{
|
||||
return container_of(policy_dbs, struct cs_policy_dbs_info, policy_dbs);
|
||||
}
|
||||
|
||||
struct cs_dbs_tuners {
|
||||
unsigned int down_threshold;
|
||||
unsigned int freq_step;
|
||||
};
|
||||
|
||||
/* Conservative governor macros */
|
||||
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
||||
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
|
||||
|
@ -21,21 +37,6 @@
|
|||
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
||||
#define MAX_SAMPLING_DOWN_FACTOR (10)
|
||||
|
||||
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
|
||||
|
||||
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
||||
unsigned int event);
|
||||
|
||||
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
||||
static
|
||||
#endif
|
||||
struct cpufreq_governor cpufreq_gov_conservative = {
|
||||
.name = "conservative",
|
||||
.governor = cs_cpufreq_governor_dbs,
|
||||
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
|
||||
struct cpufreq_policy *policy)
|
||||
{
|
||||
|
@ -57,27 +58,28 @@ static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
|
|||
* Any frequency increase takes it to the maximum frequency. Frequency reduction
|
||||
* happens at minimum steps of 5% (default) of maximum frequency
|
||||
*/
|
||||
static void cs_check_cpu(int cpu, unsigned int load)
|
||||
static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
|
||||
struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
unsigned int load = dbs_update(policy);
|
||||
|
||||
/*
|
||||
* break out if we 'cannot' reduce the speed as the user might
|
||||
* want freq_step to be zero
|
||||
*/
|
||||
if (cs_tuners->freq_step == 0)
|
||||
return;
|
||||
goto out;
|
||||
|
||||
/* Check for frequency increase */
|
||||
if (load > cs_tuners->up_threshold) {
|
||||
if (load > dbs_data->up_threshold) {
|
||||
dbs_info->down_skip = 0;
|
||||
|
||||
/* if we are already at full speed then break out early */
|
||||
if (dbs_info->requested_freq == policy->max)
|
||||
return;
|
||||
goto out;
|
||||
|
||||
dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
|
||||
|
||||
|
@ -86,12 +88,12 @@ static void cs_check_cpu(int cpu, unsigned int load)
|
|||
|
||||
__cpufreq_driver_target(policy, dbs_info->requested_freq,
|
||||
CPUFREQ_RELATION_H);
|
||||
return;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* if sampling_down_factor is active break out early */
|
||||
if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
|
||||
return;
|
||||
if (++dbs_info->down_skip < dbs_data->sampling_down_factor)
|
||||
goto out;
|
||||
dbs_info->down_skip = 0;
|
||||
|
||||
/* Check for frequency decrease */
|
||||
|
@ -101,7 +103,7 @@ static void cs_check_cpu(int cpu, unsigned int load)
|
|||
* if we cannot reduce the frequency anymore, break out early
|
||||
*/
|
||||
if (policy->cur == policy->min)
|
||||
return;
|
||||
goto out;
|
||||
|
||||
freq_target = get_freq_target(cs_tuners, policy);
|
||||
if (dbs_info->requested_freq > freq_target)
|
||||
|
@ -111,58 +113,25 @@ static void cs_check_cpu(int cpu, unsigned int load)
|
|||
|
||||
__cpufreq_driver_target(policy, dbs_info->requested_freq,
|
||||
CPUFREQ_RELATION_L);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
static unsigned int cs_dbs_timer(struct cpufreq_policy *policy, bool modify_all)
|
||||
{
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
|
||||
if (modify_all)
|
||||
dbs_check_cpu(dbs_data, policy->cpu);
|
||||
|
||||
return delay_for_sampling_rate(cs_tuners->sampling_rate);
|
||||
out:
|
||||
return dbs_data->sampling_rate;
|
||||
}
|
||||
|
||||
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
struct cs_cpu_dbs_info_s *dbs_info =
|
||||
&per_cpu(cs_cpu_dbs_info, freq->cpu);
|
||||
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
|
||||
|
||||
if (!policy)
|
||||
return 0;
|
||||
|
||||
/* policy isn't governed by conservative governor */
|
||||
if (policy->governor != &cpufreq_gov_conservative)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* we only care if our internally tracked freq moves outside the 'valid'
|
||||
* ranges of frequency available to us otherwise we do not change it
|
||||
*/
|
||||
if (dbs_info->requested_freq > policy->max
|
||||
|| dbs_info->requested_freq < policy->min)
|
||||
dbs_info->requested_freq = freq->new;
|
||||
|
||||
return 0;
|
||||
}
|
||||
void *data);
|
||||
|
||||
static struct notifier_block cs_cpufreq_notifier_block = {
|
||||
.notifier_call = dbs_cpufreq_notifier,
|
||||
};
|
||||
|
||||
/************************** sysfs interface ************************/
|
||||
static struct common_dbs_data cs_dbs_cdata;
|
||||
static struct dbs_governor cs_dbs_gov;
|
||||
|
||||
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
|
||||
const char *buf, size_t count)
|
||||
{
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
|
@ -170,22 +139,7 @@ static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
|
|||
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
||||
return -EINVAL;
|
||||
|
||||
cs_tuners->sampling_down_factor = input;
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
|
||||
if (ret != 1)
|
||||
return -EINVAL;
|
||||
|
||||
cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
|
||||
dbs_data->sampling_down_factor = input;
|
||||
return count;
|
||||
}
|
||||
|
||||
|
@ -200,7 +154,7 @@ static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
|
|||
if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
|
||||
return -EINVAL;
|
||||
|
||||
cs_tuners->up_threshold = input;
|
||||
dbs_data->up_threshold = input;
|
||||
return count;
|
||||
}
|
||||
|
||||
|
@ -214,7 +168,7 @@ static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
|
|||
|
||||
/* cannot be lower than 11 otherwise freq will not fall */
|
||||
if (ret != 1 || input < 11 || input > 100 ||
|
||||
input >= cs_tuners->up_threshold)
|
||||
input >= dbs_data->up_threshold)
|
||||
return -EINVAL;
|
||||
|
||||
cs_tuners->down_threshold = input;
|
||||
|
@ -224,8 +178,7 @@ static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
|
|||
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
|
||||
const char *buf, size_t count)
|
||||
{
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
unsigned int input, j;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
|
@ -235,21 +188,14 @@ static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
|
|||
if (input > 1)
|
||||
input = 1;
|
||||
|
||||
if (input == cs_tuners->ignore_nice_load) /* nothing to do */
|
||||
if (input == dbs_data->ignore_nice_load) /* nothing to do */
|
||||
return count;
|
||||
|
||||
cs_tuners->ignore_nice_load = input;
|
||||
dbs_data->ignore_nice_load = input;
|
||||
|
||||
/* we need to re-evaluate prev_cpu_idle */
|
||||
for_each_online_cpu(j) {
|
||||
struct cs_cpu_dbs_info_s *dbs_info;
|
||||
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
|
||||
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
||||
&dbs_info->cdbs.prev_cpu_wall, 0);
|
||||
if (cs_tuners->ignore_nice_load)
|
||||
dbs_info->cdbs.prev_cpu_nice =
|
||||
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
||||
}
|
||||
gov_update_cpu_data(dbs_data);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
|
@ -275,56 +221,48 @@ static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
|
|||
return count;
|
||||
}
|
||||
|
||||
show_store_one(cs, sampling_rate);
|
||||
show_store_one(cs, sampling_down_factor);
|
||||
show_store_one(cs, up_threshold);
|
||||
show_store_one(cs, down_threshold);
|
||||
show_store_one(cs, ignore_nice_load);
|
||||
show_store_one(cs, freq_step);
|
||||
declare_show_sampling_rate_min(cs);
|
||||
gov_show_one_common(sampling_rate);
|
||||
gov_show_one_common(sampling_down_factor);
|
||||
gov_show_one_common(up_threshold);
|
||||
gov_show_one_common(ignore_nice_load);
|
||||
gov_show_one_common(min_sampling_rate);
|
||||
gov_show_one(cs, down_threshold);
|
||||
gov_show_one(cs, freq_step);
|
||||
|
||||
gov_sys_pol_attr_rw(sampling_rate);
|
||||
gov_sys_pol_attr_rw(sampling_down_factor);
|
||||
gov_sys_pol_attr_rw(up_threshold);
|
||||
gov_sys_pol_attr_rw(down_threshold);
|
||||
gov_sys_pol_attr_rw(ignore_nice_load);
|
||||
gov_sys_pol_attr_rw(freq_step);
|
||||
gov_sys_pol_attr_ro(sampling_rate_min);
|
||||
gov_attr_rw(sampling_rate);
|
||||
gov_attr_rw(sampling_down_factor);
|
||||
gov_attr_rw(up_threshold);
|
||||
gov_attr_rw(ignore_nice_load);
|
||||
gov_attr_ro(min_sampling_rate);
|
||||
gov_attr_rw(down_threshold);
|
||||
gov_attr_rw(freq_step);
|
||||
|
||||
static struct attribute *dbs_attributes_gov_sys[] = {
|
||||
&sampling_rate_min_gov_sys.attr,
|
||||
&sampling_rate_gov_sys.attr,
|
||||
&sampling_down_factor_gov_sys.attr,
|
||||
&up_threshold_gov_sys.attr,
|
||||
&down_threshold_gov_sys.attr,
|
||||
&ignore_nice_load_gov_sys.attr,
|
||||
&freq_step_gov_sys.attr,
|
||||
static struct attribute *cs_attributes[] = {
|
||||
&min_sampling_rate.attr,
|
||||
&sampling_rate.attr,
|
||||
&sampling_down_factor.attr,
|
||||
&up_threshold.attr,
|
||||
&down_threshold.attr,
|
||||
&ignore_nice_load.attr,
|
||||
&freq_step.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static struct attribute_group cs_attr_group_gov_sys = {
|
||||
.attrs = dbs_attributes_gov_sys,
|
||||
.name = "conservative",
|
||||
};
|
||||
|
||||
static struct attribute *dbs_attributes_gov_pol[] = {
|
||||
&sampling_rate_min_gov_pol.attr,
|
||||
&sampling_rate_gov_pol.attr,
|
||||
&sampling_down_factor_gov_pol.attr,
|
||||
&up_threshold_gov_pol.attr,
|
||||
&down_threshold_gov_pol.attr,
|
||||
&ignore_nice_load_gov_pol.attr,
|
||||
&freq_step_gov_pol.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static struct attribute_group cs_attr_group_gov_pol = {
|
||||
.attrs = dbs_attributes_gov_pol,
|
||||
.name = "conservative",
|
||||
};
|
||||
|
||||
/************************** sysfs end ************************/
|
||||
|
||||
static struct policy_dbs_info *cs_alloc(void)
|
||||
{
|
||||
struct cs_policy_dbs_info *dbs_info;
|
||||
|
||||
dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
|
||||
return dbs_info ? &dbs_info->policy_dbs : NULL;
|
||||
}
|
||||
|
||||
static void cs_free(struct policy_dbs_info *policy_dbs)
|
||||
{
|
||||
kfree(to_dbs_info(policy_dbs));
|
||||
}
|
||||
|
||||
static int cs_init(struct dbs_data *dbs_data, bool notify)
|
||||
{
|
||||
struct cs_dbs_tuners *tuners;
|
||||
|
@ -335,11 +273,11 @@ static int cs_init(struct dbs_data *dbs_data, bool notify)
|
|||
return -ENOMEM;
|
||||
}
|
||||
|
||||
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
|
||||
tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
|
||||
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
|
||||
tuners->ignore_nice_load = 0;
|
||||
tuners->freq_step = DEF_FREQUENCY_STEP;
|
||||
dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
|
||||
dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
|
||||
dbs_data->ignore_nice_load = 0;
|
||||
|
||||
dbs_data->tuners = tuners;
|
||||
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
|
||||
|
@ -361,35 +299,66 @@ static void cs_exit(struct dbs_data *dbs_data, bool notify)
|
|||
kfree(dbs_data->tuners);
|
||||
}
|
||||
|
||||
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
|
||||
static void cs_start(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
|
||||
|
||||
static struct common_dbs_data cs_dbs_cdata = {
|
||||
.governor = GOV_CONSERVATIVE,
|
||||
.attr_group_gov_sys = &cs_attr_group_gov_sys,
|
||||
.attr_group_gov_pol = &cs_attr_group_gov_pol,
|
||||
.get_cpu_cdbs = get_cpu_cdbs,
|
||||
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
|
||||
dbs_info->down_skip = 0;
|
||||
dbs_info->requested_freq = policy->cur;
|
||||
}
|
||||
|
||||
static struct dbs_governor cs_dbs_gov = {
|
||||
.gov = {
|
||||
.name = "conservative",
|
||||
.governor = cpufreq_governor_dbs,
|
||||
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
||||
.owner = THIS_MODULE,
|
||||
},
|
||||
.kobj_type = { .default_attrs = cs_attributes },
|
||||
.gov_dbs_timer = cs_dbs_timer,
|
||||
.gov_check_cpu = cs_check_cpu,
|
||||
.alloc = cs_alloc,
|
||||
.free = cs_free,
|
||||
.init = cs_init,
|
||||
.exit = cs_exit,
|
||||
.mutex = __MUTEX_INITIALIZER(cs_dbs_cdata.mutex),
|
||||
.start = cs_start,
|
||||
};
|
||||
|
||||
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
||||
unsigned int event)
|
||||
#define CPU_FREQ_GOV_CONSERVATIVE (&cs_dbs_gov.gov)
|
||||
|
||||
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
|
||||
struct cpufreq_freqs *freq = data;
|
||||
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
|
||||
struct cs_policy_dbs_info *dbs_info;
|
||||
|
||||
if (!policy)
|
||||
return 0;
|
||||
|
||||
/* policy isn't governed by conservative governor */
|
||||
if (policy->governor != CPU_FREQ_GOV_CONSERVATIVE)
|
||||
return 0;
|
||||
|
||||
dbs_info = to_dbs_info(policy->governor_data);
|
||||
/*
|
||||
* we only care if our internally tracked freq moves outside the 'valid'
|
||||
* ranges of frequency available to us otherwise we do not change it
|
||||
*/
|
||||
if (dbs_info->requested_freq > policy->max
|
||||
|| dbs_info->requested_freq < policy->min)
|
||||
dbs_info->requested_freq = freq->new;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __init cpufreq_gov_dbs_init(void)
|
||||
{
|
||||
return cpufreq_register_governor(&cpufreq_gov_conservative);
|
||||
return cpufreq_register_governor(CPU_FREQ_GOV_CONSERVATIVE);
|
||||
}
|
||||
|
||||
static void __exit cpufreq_gov_dbs_exit(void)
|
||||
{
|
||||
cpufreq_unregister_governor(&cpufreq_gov_conservative);
|
||||
cpufreq_unregister_governor(CPU_FREQ_GOV_CONSERVATIVE);
|
||||
}
|
||||
|
||||
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
|
||||
|
@ -399,6 +368,11 @@ MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
|
|||
MODULE_LICENSE("GPL");
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
||||
struct cpufreq_governor *cpufreq_default_governor(void)
|
||||
{
|
||||
return CPU_FREQ_GOV_CONSERVATIVE;
|
||||
}
|
||||
|
||||
fs_initcall(cpufreq_gov_dbs_init);
|
||||
#else
|
||||
module_init(cpufreq_gov_dbs_init);
|
||||
|
|
|
@ -18,95 +18,193 @@
|
|||
|
||||
#include <linux/export.h>
|
||||
#include <linux/kernel_stat.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include "cpufreq_governor.h"
|
||||
|
||||
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
|
||||
static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
|
||||
|
||||
static DEFINE_MUTEX(gov_dbs_data_mutex);
|
||||
|
||||
/* Common sysfs tunables */
|
||||
/**
|
||||
* store_sampling_rate - update sampling rate effective immediately if needed.
|
||||
*
|
||||
* If new rate is smaller than the old, simply updating
|
||||
* dbs.sampling_rate might not be appropriate. For example, if the
|
||||
* original sampling_rate was 1 second and the requested new sampling rate is 10
|
||||
* ms because the user needs immediate reaction from ondemand governor, but not
|
||||
* sure if higher frequency will be required or not, then, the governor may
|
||||
* change the sampling rate too late; up to 1 second later. Thus, if we are
|
||||
* reducing the sampling rate, we need to make the new value effective
|
||||
* immediately.
|
||||
*
|
||||
* This must be called with dbs_data->mutex held, otherwise traversing
|
||||
* policy_dbs_list isn't safe.
|
||||
*/
|
||||
ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
if (have_governor_per_policy())
|
||||
return dbs_data->cdata->attr_group_gov_pol;
|
||||
else
|
||||
return dbs_data->cdata->attr_group_gov_sys;
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
unsigned int rate;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &rate);
|
||||
if (ret != 1)
|
||||
return -EINVAL;
|
||||
|
||||
dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
|
||||
|
||||
/*
|
||||
* We are operating under dbs_data->mutex and so the list and its
|
||||
* entries can't be freed concurrently.
|
||||
*/
|
||||
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
|
||||
mutex_lock(&policy_dbs->timer_mutex);
|
||||
/*
|
||||
* On 32-bit architectures this may race with the
|
||||
* sample_delay_ns read in dbs_update_util_handler(), but that
|
||||
* really doesn't matter. If the read returns a value that's
|
||||
* too big, the sample will be skipped, but the next invocation
|
||||
* of dbs_update_util_handler() (when the update has been
|
||||
* completed) will take a sample.
|
||||
*
|
||||
* If this runs in parallel with dbs_work_handler(), we may end
|
||||
* up overwriting the sample_delay_ns value that it has just
|
||||
* written, but it will be corrected next time a sample is
|
||||
* taken, so it shouldn't be significant.
|
||||
*/
|
||||
gov_update_sample_delay(policy_dbs, 0);
|
||||
mutex_unlock(&policy_dbs->timer_mutex);
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(store_sampling_rate);
|
||||
|
||||
/**
|
||||
* gov_update_cpu_data - Update CPU load data.
|
||||
* @dbs_data: Top-level governor data pointer.
|
||||
*
|
||||
* Update CPU load data for all CPUs in the domain governed by @dbs_data
|
||||
* (that may be a single policy or a bunch of them if governor tunables are
|
||||
* system-wide).
|
||||
*
|
||||
* Call under the @dbs_data mutex.
|
||||
*/
|
||||
void gov_update_cpu_data(struct dbs_data *dbs_data)
|
||||
{
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
|
||||
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
|
||||
unsigned int j;
|
||||
|
||||
for_each_cpu(j, policy_dbs->policy->cpus) {
|
||||
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
||||
|
||||
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall,
|
||||
dbs_data->io_is_busy);
|
||||
if (dbs_data->ignore_nice_load)
|
||||
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
||||
}
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(gov_update_cpu_data);
|
||||
|
||||
static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
|
||||
{
|
||||
return container_of(kobj, struct dbs_data, kobj);
|
||||
}
|
||||
|
||||
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
|
||||
static inline struct governor_attr *to_gov_attr(struct attribute *attr)
|
||||
{
|
||||
struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
struct cpufreq_policy *policy = cdbs->shared->policy;
|
||||
unsigned int sampling_rate;
|
||||
return container_of(attr, struct governor_attr, attr);
|
||||
}
|
||||
|
||||
static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct dbs_data *dbs_data = to_dbs_data(kobj);
|
||||
struct governor_attr *gattr = to_gov_attr(attr);
|
||||
|
||||
return gattr->show(dbs_data, buf);
|
||||
}
|
||||
|
||||
static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
|
||||
const char *buf, size_t count)
|
||||
{
|
||||
struct dbs_data *dbs_data = to_dbs_data(kobj);
|
||||
struct governor_attr *gattr = to_gov_attr(attr);
|
||||
int ret = -EBUSY;
|
||||
|
||||
mutex_lock(&dbs_data->mutex);
|
||||
|
||||
if (dbs_data->usage_count)
|
||||
ret = gattr->store(dbs_data, buf, count);
|
||||
|
||||
mutex_unlock(&dbs_data->mutex);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Sysfs Ops for accessing governor attributes.
|
||||
*
|
||||
* All show/store invocations for governor specific sysfs attributes, will first
|
||||
* call the below show/store callbacks and the attribute specific callback will
|
||||
* be called from within it.
|
||||
*/
|
||||
static const struct sysfs_ops governor_sysfs_ops = {
|
||||
.show = governor_show,
|
||||
.store = governor_store,
|
||||
};
|
||||
|
||||
unsigned int dbs_update(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
unsigned int ignore_nice = dbs_data->ignore_nice_load;
|
||||
unsigned int max_load = 0;
|
||||
unsigned int ignore_nice;
|
||||
unsigned int j;
|
||||
unsigned int sampling_rate, io_busy, j;
|
||||
|
||||
if (dbs_data->cdata->governor == GOV_ONDEMAND) {
|
||||
struct od_cpu_dbs_info_s *od_dbs_info =
|
||||
dbs_data->cdata->get_cpu_dbs_info_s(cpu);
|
||||
|
||||
/*
|
||||
* Sometimes, the ondemand governor uses an additional
|
||||
* multiplier to give long delays. So apply this multiplier to
|
||||
* the 'sampling_rate', so as to keep the wake-up-from-idle
|
||||
* detection logic a bit conservative.
|
||||
*/
|
||||
sampling_rate = od_tuners->sampling_rate;
|
||||
sampling_rate *= od_dbs_info->rate_mult;
|
||||
|
||||
ignore_nice = od_tuners->ignore_nice_load;
|
||||
} else {
|
||||
sampling_rate = cs_tuners->sampling_rate;
|
||||
ignore_nice = cs_tuners->ignore_nice_load;
|
||||
}
|
||||
/*
|
||||
* Sometimes governors may use an additional multiplier to increase
|
||||
* sample delays temporarily. Apply that multiplier to sampling_rate
|
||||
* so as to keep the wake-up-from-idle detection logic a bit
|
||||
* conservative.
|
||||
*/
|
||||
sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
|
||||
/*
|
||||
* For the purpose of ondemand, waiting for disk IO is an indication
|
||||
* that you're performance critical, and not that the system is actually
|
||||
* idle, so do not add the iowait time to the CPU idle time then.
|
||||
*/
|
||||
io_busy = dbs_data->io_is_busy;
|
||||
|
||||
/* Get Absolute Load */
|
||||
for_each_cpu(j, policy->cpus) {
|
||||
struct cpu_dbs_info *j_cdbs;
|
||||
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
||||
u64 cur_wall_time, cur_idle_time;
|
||||
unsigned int idle_time, wall_time;
|
||||
unsigned int load;
|
||||
int io_busy = 0;
|
||||
|
||||
j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
|
||||
|
||||
/*
|
||||
* For the purpose of ondemand, waiting for disk IO is
|
||||
* an indication that you're performance critical, and
|
||||
* not that the system is actually idle. So do not add
|
||||
* the iowait time to the cpu idle time.
|
||||
*/
|
||||
if (dbs_data->cdata->governor == GOV_ONDEMAND)
|
||||
io_busy = od_tuners->io_is_busy;
|
||||
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
|
||||
|
||||
wall_time = (unsigned int)
|
||||
(cur_wall_time - j_cdbs->prev_cpu_wall);
|
||||
wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
|
||||
j_cdbs->prev_cpu_wall = cur_wall_time;
|
||||
|
||||
if (cur_idle_time < j_cdbs->prev_cpu_idle)
|
||||
cur_idle_time = j_cdbs->prev_cpu_idle;
|
||||
|
||||
idle_time = (unsigned int)
|
||||
(cur_idle_time - j_cdbs->prev_cpu_idle);
|
||||
j_cdbs->prev_cpu_idle = cur_idle_time;
|
||||
if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
|
||||
idle_time = 0;
|
||||
} else {
|
||||
idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
|
||||
j_cdbs->prev_cpu_idle = cur_idle_time;
|
||||
}
|
||||
|
||||
if (ignore_nice) {
|
||||
u64 cur_nice;
|
||||
unsigned long cur_nice_jiffies;
|
||||
u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
||||
|
||||
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
|
||||
cdbs->prev_cpu_nice;
|
||||
/*
|
||||
* Assumption: nice time between sampling periods will
|
||||
* be less than 2^32 jiffies for 32 bit sys
|
||||
*/
|
||||
cur_nice_jiffies = (unsigned long)
|
||||
cputime64_to_jiffies64(cur_nice);
|
||||
|
||||
cdbs->prev_cpu_nice =
|
||||
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
||||
idle_time += jiffies_to_usecs(cur_nice_jiffies);
|
||||
idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
|
||||
j_cdbs->prev_cpu_nice = cur_nice;
|
||||
}
|
||||
|
||||
if (unlikely(!wall_time || wall_time < idle_time))
|
||||
|
@ -128,10 +226,10 @@ void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
|
|||
* dropped down. So we perform the copy only once, upon the
|
||||
* first wake-up from idle.)
|
||||
*
|
||||
* Detecting this situation is easy: the governor's deferrable
|
||||
* timer would not have fired during CPU-idle periods. Hence
|
||||
* an unusually large 'wall_time' (as compared to the sampling
|
||||
* rate) indicates this scenario.
|
||||
* Detecting this situation is easy: the governor's utilization
|
||||
* update handler would not have run during CPU-idle periods.
|
||||
* Hence, an unusually large 'wall_time' (as compared to the
|
||||
* sampling rate) indicates this scenario.
|
||||
*
|
||||
* prev_load can be zero in two cases and we must recalculate it
|
||||
* for both cases:
|
||||
|
@ -156,222 +254,224 @@ void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
|
|||
if (load > max_load)
|
||||
max_load = load;
|
||||
}
|
||||
|
||||
dbs_data->cdata->gov_check_cpu(cpu, max_load);
|
||||
return max_load;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(dbs_check_cpu);
|
||||
EXPORT_SYMBOL_GPL(dbs_update);
|
||||
|
||||
void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
|
||||
static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
|
||||
unsigned int delay_us)
|
||||
{
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
struct cpu_dbs_info *cdbs;
|
||||
struct cpufreq_policy *policy = policy_dbs->policy;
|
||||
int cpu;
|
||||
|
||||
gov_update_sample_delay(policy_dbs, delay_us);
|
||||
policy_dbs->last_sample_time = 0;
|
||||
|
||||
for_each_cpu(cpu, policy->cpus) {
|
||||
cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
|
||||
cdbs->timer.expires = jiffies + delay;
|
||||
add_timer_on(&cdbs->timer, cpu);
|
||||
struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
|
||||
|
||||
cpufreq_set_update_util_data(cpu, &cdbs->update_util);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(gov_add_timers);
|
||||
|
||||
static inline void gov_cancel_timers(struct cpufreq_policy *policy)
|
||||
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
struct cpu_dbs_info *cdbs;
|
||||
int i;
|
||||
|
||||
for_each_cpu(i, policy->cpus) {
|
||||
cdbs = dbs_data->cdata->get_cpu_cdbs(i);
|
||||
del_timer_sync(&cdbs->timer);
|
||||
}
|
||||
for_each_cpu(i, policy->cpus)
|
||||
cpufreq_set_update_util_data(i, NULL);
|
||||
|
||||
synchronize_sched();
|
||||
}
|
||||
|
||||
void gov_cancel_work(struct cpu_common_dbs_info *shared)
|
||||
static void gov_cancel_work(struct cpufreq_policy *policy)
|
||||
{
|
||||
/* Tell dbs_timer_handler() to skip queuing up work items. */
|
||||
atomic_inc(&shared->skip_work);
|
||||
/*
|
||||
* If dbs_timer_handler() is already running, it may not notice the
|
||||
* incremented skip_work, so wait for it to complete to prevent its work
|
||||
* item from being queued up after the cancel_work_sync() below.
|
||||
*/
|
||||
gov_cancel_timers(shared->policy);
|
||||
/*
|
||||
* In case dbs_timer_handler() managed to run and spawn a work item
|
||||
* before the timers have been canceled, wait for that work item to
|
||||
* complete and then cancel all of the timers set up by it. If
|
||||
* dbs_timer_handler() runs again at that point, it will see the
|
||||
* positive value of skip_work and won't spawn any more work items.
|
||||
*/
|
||||
cancel_work_sync(&shared->work);
|
||||
gov_cancel_timers(shared->policy);
|
||||
atomic_set(&shared->skip_work, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(gov_cancel_work);
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
|
||||
/* Will return if we need to evaluate cpu load again or not */
|
||||
static bool need_load_eval(struct cpu_common_dbs_info *shared,
|
||||
unsigned int sampling_rate)
|
||||
{
|
||||
if (policy_is_shared(shared->policy)) {
|
||||
ktime_t time_now = ktime_get();
|
||||
s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
|
||||
|
||||
/* Do nothing if we recently have sampled */
|
||||
if (delta_us < (s64)(sampling_rate / 2))
|
||||
return false;
|
||||
else
|
||||
shared->time_stamp = time_now;
|
||||
}
|
||||
|
||||
return true;
|
||||
gov_clear_update_util(policy_dbs->policy);
|
||||
irq_work_sync(&policy_dbs->irq_work);
|
||||
cancel_work_sync(&policy_dbs->work);
|
||||
atomic_set(&policy_dbs->work_count, 0);
|
||||
policy_dbs->work_in_progress = false;
|
||||
}
|
||||
|
||||
static void dbs_work_handler(struct work_struct *work)
|
||||
{
|
||||
struct cpu_common_dbs_info *shared = container_of(work, struct
|
||||
cpu_common_dbs_info, work);
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
struct cpufreq_policy *policy;
|
||||
struct dbs_governor *gov;
|
||||
|
||||
policy_dbs = container_of(work, struct policy_dbs_info, work);
|
||||
policy = policy_dbs->policy;
|
||||
gov = dbs_governor_of(policy);
|
||||
|
||||
/*
|
||||
* Make sure cpufreq_governor_limits() isn't evaluating load or the
|
||||
* ondemand governor isn't updating the sampling rate in parallel.
|
||||
*/
|
||||
mutex_lock(&policy_dbs->timer_mutex);
|
||||
gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
|
||||
mutex_unlock(&policy_dbs->timer_mutex);
|
||||
|
||||
/* Allow the utilization update handler to queue up more work. */
|
||||
atomic_set(&policy_dbs->work_count, 0);
|
||||
/*
|
||||
* If the update below is reordered with respect to the sample delay
|
||||
* modification, the utilization update handler may end up using a stale
|
||||
* sample delay value.
|
||||
*/
|
||||
smp_wmb();
|
||||
policy_dbs->work_in_progress = false;
|
||||
}
|
||||
|
||||
static void dbs_irq_work(struct irq_work *irq_work)
|
||||
{
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
|
||||
policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
|
||||
schedule_work(&policy_dbs->work);
|
||||
}
|
||||
|
||||
static void dbs_update_util_handler(struct update_util_data *data, u64 time,
|
||||
unsigned long util, unsigned long max)
|
||||
{
|
||||
struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
|
||||
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
|
||||
u64 delta_ns, lst;
|
||||
|
||||
/*
|
||||
* The work may not be allowed to be queued up right now.
|
||||
* Possible reasons:
|
||||
* - Work has already been queued up or is in progress.
|
||||
* - It is too early (too little time from the previous sample).
|
||||
*/
|
||||
if (policy_dbs->work_in_progress)
|
||||
return;
|
||||
|
||||
/*
|
||||
* If the reads below are reordered before the check above, the value
|
||||
* of sample_delay_ns used in the computation may be stale.
|
||||
*/
|
||||
smp_rmb();
|
||||
lst = READ_ONCE(policy_dbs->last_sample_time);
|
||||
delta_ns = time - lst;
|
||||
if ((s64)delta_ns < policy_dbs->sample_delay_ns)
|
||||
return;
|
||||
|
||||
/*
|
||||
* If the policy is not shared, the irq_work may be queued up right away
|
||||
* at this point. Otherwise, we need to ensure that only one of the
|
||||
* CPUs sharing the policy will do that.
|
||||
*/
|
||||
if (policy_dbs->is_shared) {
|
||||
if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
|
||||
return;
|
||||
|
||||
/*
|
||||
* If another CPU updated last_sample_time in the meantime, we
|
||||
* shouldn't be here, so clear the work counter and bail out.
|
||||
*/
|
||||
if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
|
||||
atomic_set(&policy_dbs->work_count, 0);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
policy_dbs->last_sample_time = time;
|
||||
policy_dbs->work_in_progress = true;
|
||||
irq_work_queue(&policy_dbs->irq_work);
|
||||
}
|
||||
|
||||
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
|
||||
struct dbs_governor *gov)
|
||||
{
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
int j;
|
||||
|
||||
/* Allocate memory for per-policy governor data. */
|
||||
policy_dbs = gov->alloc();
|
||||
if (!policy_dbs)
|
||||
return NULL;
|
||||
|
||||
policy_dbs->policy = policy;
|
||||
mutex_init(&policy_dbs->timer_mutex);
|
||||
atomic_set(&policy_dbs->work_count, 0);
|
||||
init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
|
||||
INIT_WORK(&policy_dbs->work, dbs_work_handler);
|
||||
|
||||
/* Set policy_dbs for all CPUs, online+offline */
|
||||
for_each_cpu(j, policy->related_cpus) {
|
||||
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
||||
|
||||
j_cdbs->policy_dbs = policy_dbs;
|
||||
j_cdbs->update_util.func = dbs_update_util_handler;
|
||||
}
|
||||
return policy_dbs;
|
||||
}
|
||||
|
||||
static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
|
||||
struct dbs_governor *gov)
|
||||
{
|
||||
int j;
|
||||
|
||||
mutex_destroy(&policy_dbs->timer_mutex);
|
||||
|
||||
for_each_cpu(j, policy_dbs->policy->related_cpus) {
|
||||
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
||||
|
||||
j_cdbs->policy_dbs = NULL;
|
||||
j_cdbs->update_util.func = NULL;
|
||||
}
|
||||
gov->free(policy_dbs);
|
||||
}
|
||||
|
||||
static int cpufreq_governor_init(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct dbs_governor *gov = dbs_governor_of(policy);
|
||||
struct dbs_data *dbs_data;
|
||||
unsigned int sampling_rate, delay;
|
||||
bool eval_load;
|
||||
|
||||
policy = shared->policy;
|
||||
dbs_data = policy->governor_data;
|
||||
|
||||
/* Kill all timers */
|
||||
gov_cancel_timers(policy);
|
||||
|
||||
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
|
||||
sampling_rate = cs_tuners->sampling_rate;
|
||||
} else {
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
|
||||
sampling_rate = od_tuners->sampling_rate;
|
||||
}
|
||||
|
||||
eval_load = need_load_eval(shared, sampling_rate);
|
||||
|
||||
/*
|
||||
* Make sure cpufreq_governor_limits() isn't evaluating load in
|
||||
* parallel.
|
||||
*/
|
||||
mutex_lock(&shared->timer_mutex);
|
||||
delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
|
||||
mutex_unlock(&shared->timer_mutex);
|
||||
|
||||
atomic_dec(&shared->skip_work);
|
||||
|
||||
gov_add_timers(policy, delay);
|
||||
}
|
||||
|
||||
static void dbs_timer_handler(unsigned long data)
|
||||
{
|
||||
struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
|
||||
struct cpu_common_dbs_info *shared = cdbs->shared;
|
||||
|
||||
/*
|
||||
* Timer handler may not be allowed to queue the work at the moment,
|
||||
* because:
|
||||
* - Another timer handler has done that
|
||||
* - We are stopping the governor
|
||||
* - Or we are updating the sampling rate of the ondemand governor
|
||||
*/
|
||||
if (atomic_inc_return(&shared->skip_work) > 1)
|
||||
atomic_dec(&shared->skip_work);
|
||||
else
|
||||
queue_work(system_wq, &shared->work);
|
||||
}
|
||||
|
||||
static void set_sampling_rate(struct dbs_data *dbs_data,
|
||||
unsigned int sampling_rate)
|
||||
{
|
||||
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
cs_tuners->sampling_rate = sampling_rate;
|
||||
} else {
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
od_tuners->sampling_rate = sampling_rate;
|
||||
}
|
||||
}
|
||||
|
||||
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
|
||||
struct common_dbs_data *cdata)
|
||||
{
|
||||
struct cpu_common_dbs_info *shared;
|
||||
int j;
|
||||
|
||||
/* Allocate memory for the common information for policy->cpus */
|
||||
shared = kzalloc(sizeof(*shared), GFP_KERNEL);
|
||||
if (!shared)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Set shared for all CPUs, online+offline */
|
||||
for_each_cpu(j, policy->related_cpus)
|
||||
cdata->get_cpu_cdbs(j)->shared = shared;
|
||||
|
||||
mutex_init(&shared->timer_mutex);
|
||||
atomic_set(&shared->skip_work, 0);
|
||||
INIT_WORK(&shared->work, dbs_work_handler);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void free_common_dbs_info(struct cpufreq_policy *policy,
|
||||
struct common_dbs_data *cdata)
|
||||
{
|
||||
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
|
||||
struct cpu_common_dbs_info *shared = cdbs->shared;
|
||||
int j;
|
||||
|
||||
mutex_destroy(&shared->timer_mutex);
|
||||
|
||||
for_each_cpu(j, policy->cpus)
|
||||
cdata->get_cpu_cdbs(j)->shared = NULL;
|
||||
|
||||
kfree(shared);
|
||||
}
|
||||
|
||||
static int cpufreq_governor_init(struct cpufreq_policy *policy,
|
||||
struct dbs_data *dbs_data,
|
||||
struct common_dbs_data *cdata)
|
||||
{
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
unsigned int latency;
|
||||
int ret;
|
||||
int ret = 0;
|
||||
|
||||
/* State should be equivalent to EXIT */
|
||||
if (policy->governor_data)
|
||||
return -EBUSY;
|
||||
|
||||
policy_dbs = alloc_policy_dbs_info(policy, gov);
|
||||
if (!policy_dbs)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Protect gov->gdbs_data against concurrent updates. */
|
||||
mutex_lock(&gov_dbs_data_mutex);
|
||||
|
||||
dbs_data = gov->gdbs_data;
|
||||
if (dbs_data) {
|
||||
if (WARN_ON(have_governor_per_policy()))
|
||||
return -EINVAL;
|
||||
|
||||
ret = alloc_common_dbs_info(policy, cdata);
|
||||
if (ret)
|
||||
return ret;
|
||||
if (WARN_ON(have_governor_per_policy())) {
|
||||
ret = -EINVAL;
|
||||
goto free_policy_dbs_info;
|
||||
}
|
||||
policy_dbs->dbs_data = dbs_data;
|
||||
policy->governor_data = policy_dbs;
|
||||
|
||||
mutex_lock(&dbs_data->mutex);
|
||||
dbs_data->usage_count++;
|
||||
policy->governor_data = dbs_data;
|
||||
return 0;
|
||||
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
|
||||
mutex_unlock(&dbs_data->mutex);
|
||||
goto out;
|
||||
}
|
||||
|
||||
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
|
||||
if (!dbs_data)
|
||||
return -ENOMEM;
|
||||
if (!dbs_data) {
|
||||
ret = -ENOMEM;
|
||||
goto free_policy_dbs_info;
|
||||
}
|
||||
|
||||
ret = alloc_common_dbs_info(policy, cdata);
|
||||
INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
|
||||
mutex_init(&dbs_data->mutex);
|
||||
|
||||
ret = gov->init(dbs_data, !policy->governor->initialized);
|
||||
if (ret)
|
||||
goto free_dbs_data;
|
||||
|
||||
dbs_data->cdata = cdata;
|
||||
dbs_data->usage_count = 1;
|
||||
|
||||
ret = cdata->init(dbs_data, !policy->governor->initialized);
|
||||
if (ret)
|
||||
goto free_common_dbs_info;
|
||||
goto free_policy_dbs_info;
|
||||
|
||||
/* policy latency is in ns. Convert it to us first */
|
||||
latency = policy->cpuinfo.transition_latency / 1000;
|
||||
|
@ -381,216 +481,156 @@ static int cpufreq_governor_init(struct cpufreq_policy *policy,
|
|||
/* Bring kernel and HW constraints together */
|
||||
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
|
||||
MIN_LATENCY_MULTIPLIER * latency);
|
||||
set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
|
||||
latency * LATENCY_MULTIPLIER));
|
||||
dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
|
||||
LATENCY_MULTIPLIER * latency);
|
||||
|
||||
if (!have_governor_per_policy())
|
||||
cdata->gdbs_data = dbs_data;
|
||||
gov->gdbs_data = dbs_data;
|
||||
|
||||
policy->governor_data = dbs_data;
|
||||
policy->governor_data = policy_dbs;
|
||||
|
||||
ret = sysfs_create_group(get_governor_parent_kobj(policy),
|
||||
get_sysfs_attr(dbs_data));
|
||||
if (ret)
|
||||
goto reset_gdbs_data;
|
||||
policy_dbs->dbs_data = dbs_data;
|
||||
dbs_data->usage_count = 1;
|
||||
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
|
||||
|
||||
return 0;
|
||||
gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
|
||||
ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
|
||||
get_governor_parent_kobj(policy),
|
||||
"%s", gov->gov.name);
|
||||
if (!ret)
|
||||
goto out;
|
||||
|
||||
/* Failure, so roll back. */
|
||||
pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
|
||||
|
||||
reset_gdbs_data:
|
||||
policy->governor_data = NULL;
|
||||
|
||||
if (!have_governor_per_policy())
|
||||
cdata->gdbs_data = NULL;
|
||||
cdata->exit(dbs_data, !policy->governor->initialized);
|
||||
free_common_dbs_info:
|
||||
free_common_dbs_info(policy, cdata);
|
||||
free_dbs_data:
|
||||
gov->gdbs_data = NULL;
|
||||
gov->exit(dbs_data, !policy->governor->initialized);
|
||||
kfree(dbs_data);
|
||||
|
||||
free_policy_dbs_info:
|
||||
free_policy_dbs_info(policy_dbs, gov);
|
||||
|
||||
out:
|
||||
mutex_unlock(&gov_dbs_data_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
|
||||
struct dbs_data *dbs_data)
|
||||
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct common_dbs_data *cdata = dbs_data->cdata;
|
||||
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
|
||||
struct dbs_governor *gov = dbs_governor_of(policy);
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
int count;
|
||||
|
||||
/* State should be equivalent to INIT */
|
||||
if (!cdbs->shared || cdbs->shared->policy)
|
||||
return -EBUSY;
|
||||
/* Protect gov->gdbs_data against concurrent updates. */
|
||||
mutex_lock(&gov_dbs_data_mutex);
|
||||
|
||||
if (!--dbs_data->usage_count) {
|
||||
sysfs_remove_group(get_governor_parent_kobj(policy),
|
||||
get_sysfs_attr(dbs_data));
|
||||
mutex_lock(&dbs_data->mutex);
|
||||
list_del(&policy_dbs->list);
|
||||
count = --dbs_data->usage_count;
|
||||
mutex_unlock(&dbs_data->mutex);
|
||||
|
||||
if (!count) {
|
||||
kobject_put(&dbs_data->kobj);
|
||||
|
||||
policy->governor_data = NULL;
|
||||
|
||||
if (!have_governor_per_policy())
|
||||
cdata->gdbs_data = NULL;
|
||||
gov->gdbs_data = NULL;
|
||||
|
||||
cdata->exit(dbs_data, policy->governor->initialized == 1);
|
||||
gov->exit(dbs_data, policy->governor->initialized == 1);
|
||||
mutex_destroy(&dbs_data->mutex);
|
||||
kfree(dbs_data);
|
||||
} else {
|
||||
policy->governor_data = NULL;
|
||||
}
|
||||
|
||||
free_common_dbs_info(policy, cdata);
|
||||
free_policy_dbs_info(policy_dbs, gov);
|
||||
|
||||
mutex_unlock(&gov_dbs_data_mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cpufreq_governor_start(struct cpufreq_policy *policy,
|
||||
struct dbs_data *dbs_data)
|
||||
static int cpufreq_governor_start(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct common_dbs_data *cdata = dbs_data->cdata;
|
||||
unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
|
||||
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
|
||||
struct cpu_common_dbs_info *shared = cdbs->shared;
|
||||
int io_busy = 0;
|
||||
struct dbs_governor *gov = dbs_governor_of(policy);
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
unsigned int sampling_rate, ignore_nice, j;
|
||||
unsigned int io_busy;
|
||||
|
||||
if (!policy->cur)
|
||||
return -EINVAL;
|
||||
|
||||
/* State should be equivalent to INIT */
|
||||
if (!shared || shared->policy)
|
||||
return -EBUSY;
|
||||
policy_dbs->is_shared = policy_is_shared(policy);
|
||||
policy_dbs->rate_mult = 1;
|
||||
|
||||
if (cdata->governor == GOV_CONSERVATIVE) {
|
||||
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
|
||||
|
||||
sampling_rate = cs_tuners->sampling_rate;
|
||||
ignore_nice = cs_tuners->ignore_nice_load;
|
||||
} else {
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
|
||||
sampling_rate = od_tuners->sampling_rate;
|
||||
ignore_nice = od_tuners->ignore_nice_load;
|
||||
io_busy = od_tuners->io_is_busy;
|
||||
}
|
||||
|
||||
shared->policy = policy;
|
||||
shared->time_stamp = ktime_get();
|
||||
sampling_rate = dbs_data->sampling_rate;
|
||||
ignore_nice = dbs_data->ignore_nice_load;
|
||||
io_busy = dbs_data->io_is_busy;
|
||||
|
||||
for_each_cpu(j, policy->cpus) {
|
||||
struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
|
||||
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
||||
unsigned int prev_load;
|
||||
|
||||
j_cdbs->prev_cpu_idle =
|
||||
get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
|
||||
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
|
||||
|
||||
prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
|
||||
j_cdbs->prev_cpu_idle);
|
||||
j_cdbs->prev_load = 100 * prev_load /
|
||||
(unsigned int)j_cdbs->prev_cpu_wall;
|
||||
prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
|
||||
j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
|
||||
|
||||
if (ignore_nice)
|
||||
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
||||
|
||||
__setup_timer(&j_cdbs->timer, dbs_timer_handler,
|
||||
(unsigned long)j_cdbs,
|
||||
TIMER_DEFERRABLE | TIMER_IRQSAFE);
|
||||
}
|
||||
|
||||
if (cdata->governor == GOV_CONSERVATIVE) {
|
||||
struct cs_cpu_dbs_info_s *cs_dbs_info =
|
||||
cdata->get_cpu_dbs_info_s(cpu);
|
||||
gov->start(policy);
|
||||
|
||||
cs_dbs_info->down_skip = 0;
|
||||
cs_dbs_info->requested_freq = policy->cur;
|
||||
} else {
|
||||
struct od_ops *od_ops = cdata->gov_ops;
|
||||
struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
|
||||
|
||||
od_dbs_info->rate_mult = 1;
|
||||
od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
|
||||
od_ops->powersave_bias_init_cpu(cpu);
|
||||
}
|
||||
|
||||
gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
|
||||
gov_set_update_util(policy_dbs, sampling_rate);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
|
||||
struct dbs_data *dbs_data)
|
||||
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
|
||||
struct cpu_common_dbs_info *shared = cdbs->shared;
|
||||
gov_cancel_work(policy);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* State should be equivalent to START */
|
||||
if (!shared || !shared->policy)
|
||||
return -EBUSY;
|
||||
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
|
||||
gov_cancel_work(shared);
|
||||
shared->policy = NULL;
|
||||
mutex_lock(&policy_dbs->timer_mutex);
|
||||
|
||||
if (policy->max < policy->cur)
|
||||
__cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
|
||||
else if (policy->min > policy->cur)
|
||||
__cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
|
||||
|
||||
gov_update_sample_delay(policy_dbs, 0);
|
||||
|
||||
mutex_unlock(&policy_dbs->timer_mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
|
||||
struct dbs_data *dbs_data)
|
||||
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
|
||||
{
|
||||
struct common_dbs_data *cdata = dbs_data->cdata;
|
||||
unsigned int cpu = policy->cpu;
|
||||
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
|
||||
|
||||
/* State should be equivalent to START */
|
||||
if (!cdbs->shared || !cdbs->shared->policy)
|
||||
return -EBUSY;
|
||||
|
||||
mutex_lock(&cdbs->shared->timer_mutex);
|
||||
if (policy->max < cdbs->shared->policy->cur)
|
||||
__cpufreq_driver_target(cdbs->shared->policy, policy->max,
|
||||
CPUFREQ_RELATION_H);
|
||||
else if (policy->min > cdbs->shared->policy->cur)
|
||||
__cpufreq_driver_target(cdbs->shared->policy, policy->min,
|
||||
CPUFREQ_RELATION_L);
|
||||
dbs_check_cpu(dbs_data, cpu);
|
||||
mutex_unlock(&cdbs->shared->timer_mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
||||
struct common_dbs_data *cdata, unsigned int event)
|
||||
{
|
||||
struct dbs_data *dbs_data;
|
||||
int ret;
|
||||
|
||||
/* Lock governor to block concurrent initialization of governor */
|
||||
mutex_lock(&cdata->mutex);
|
||||
|
||||
if (have_governor_per_policy())
|
||||
dbs_data = policy->governor_data;
|
||||
else
|
||||
dbs_data = cdata->gdbs_data;
|
||||
|
||||
if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
|
||||
ret = -EINVAL;
|
||||
goto unlock;
|
||||
if (event == CPUFREQ_GOV_POLICY_INIT) {
|
||||
return cpufreq_governor_init(policy);
|
||||
} else if (policy->governor_data) {
|
||||
switch (event) {
|
||||
case CPUFREQ_GOV_POLICY_EXIT:
|
||||
return cpufreq_governor_exit(policy);
|
||||
case CPUFREQ_GOV_START:
|
||||
return cpufreq_governor_start(policy);
|
||||
case CPUFREQ_GOV_STOP:
|
||||
return cpufreq_governor_stop(policy);
|
||||
case CPUFREQ_GOV_LIMITS:
|
||||
return cpufreq_governor_limits(policy);
|
||||
}
|
||||
}
|
||||
|
||||
switch (event) {
|
||||
case CPUFREQ_GOV_POLICY_INIT:
|
||||
ret = cpufreq_governor_init(policy, dbs_data, cdata);
|
||||
break;
|
||||
case CPUFREQ_GOV_POLICY_EXIT:
|
||||
ret = cpufreq_governor_exit(policy, dbs_data);
|
||||
break;
|
||||
case CPUFREQ_GOV_START:
|
||||
ret = cpufreq_governor_start(policy, dbs_data);
|
||||
break;
|
||||
case CPUFREQ_GOV_STOP:
|
||||
ret = cpufreq_governor_stop(policy, dbs_data);
|
||||
break;
|
||||
case CPUFREQ_GOV_LIMITS:
|
||||
ret = cpufreq_governor_limits(policy, dbs_data);
|
||||
break;
|
||||
default:
|
||||
ret = -EINVAL;
|
||||
}
|
||||
|
||||
unlock:
|
||||
mutex_unlock(&cdata->mutex);
|
||||
|
||||
return ret;
|
||||
return -EINVAL;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#define _CPUFREQ_GOVERNOR_H
|
||||
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/irq_work.h>
|
||||
#include <linux/cpufreq.h>
|
||||
#include <linux/kernel_stat.h>
|
||||
#include <linux/module.h>
|
||||
|
@ -40,86 +41,6 @@
|
|||
/* Ondemand Sampling types */
|
||||
enum {OD_NORMAL_SAMPLE, OD_SUB_SAMPLE};
|
||||
|
||||
/*
|
||||
* Macro for creating governors sysfs routines
|
||||
*
|
||||
* - gov_sys: One governor instance per whole system
|
||||
* - gov_pol: One governor instance per policy
|
||||
*/
|
||||
|
||||
/* Create attributes */
|
||||
#define gov_sys_attr_ro(_name) \
|
||||
static struct global_attr _name##_gov_sys = \
|
||||
__ATTR(_name, 0444, show_##_name##_gov_sys, NULL)
|
||||
|
||||
#define gov_sys_attr_rw(_name) \
|
||||
static struct global_attr _name##_gov_sys = \
|
||||
__ATTR(_name, 0644, show_##_name##_gov_sys, store_##_name##_gov_sys)
|
||||
|
||||
#define gov_pol_attr_ro(_name) \
|
||||
static struct freq_attr _name##_gov_pol = \
|
||||
__ATTR(_name, 0444, show_##_name##_gov_pol, NULL)
|
||||
|
||||
#define gov_pol_attr_rw(_name) \
|
||||
static struct freq_attr _name##_gov_pol = \
|
||||
__ATTR(_name, 0644, show_##_name##_gov_pol, store_##_name##_gov_pol)
|
||||
|
||||
#define gov_sys_pol_attr_rw(_name) \
|
||||
gov_sys_attr_rw(_name); \
|
||||
gov_pol_attr_rw(_name)
|
||||
|
||||
#define gov_sys_pol_attr_ro(_name) \
|
||||
gov_sys_attr_ro(_name); \
|
||||
gov_pol_attr_ro(_name)
|
||||
|
||||
/* Create show/store routines */
|
||||
#define show_one(_gov, file_name) \
|
||||
static ssize_t show_##file_name##_gov_sys \
|
||||
(struct kobject *kobj, struct attribute *attr, char *buf) \
|
||||
{ \
|
||||
struct _gov##_dbs_tuners *tuners = _gov##_dbs_cdata.gdbs_data->tuners; \
|
||||
return sprintf(buf, "%u\n", tuners->file_name); \
|
||||
} \
|
||||
\
|
||||
static ssize_t show_##file_name##_gov_pol \
|
||||
(struct cpufreq_policy *policy, char *buf) \
|
||||
{ \
|
||||
struct dbs_data *dbs_data = policy->governor_data; \
|
||||
struct _gov##_dbs_tuners *tuners = dbs_data->tuners; \
|
||||
return sprintf(buf, "%u\n", tuners->file_name); \
|
||||
}
|
||||
|
||||
#define store_one(_gov, file_name) \
|
||||
static ssize_t store_##file_name##_gov_sys \
|
||||
(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) \
|
||||
{ \
|
||||
struct dbs_data *dbs_data = _gov##_dbs_cdata.gdbs_data; \
|
||||
return store_##file_name(dbs_data, buf, count); \
|
||||
} \
|
||||
\
|
||||
static ssize_t store_##file_name##_gov_pol \
|
||||
(struct cpufreq_policy *policy, const char *buf, size_t count) \
|
||||
{ \
|
||||
struct dbs_data *dbs_data = policy->governor_data; \
|
||||
return store_##file_name(dbs_data, buf, count); \
|
||||
}
|
||||
|
||||
#define show_store_one(_gov, file_name) \
|
||||
show_one(_gov, file_name); \
|
||||
store_one(_gov, file_name)
|
||||
|
||||
/* create helper routines */
|
||||
#define define_get_cpu_dbs_routines(_dbs_info) \
|
||||
static struct cpu_dbs_info *get_cpu_cdbs(int cpu) \
|
||||
{ \
|
||||
return &per_cpu(_dbs_info, cpu).cdbs; \
|
||||
} \
|
||||
\
|
||||
static void *get_cpu_dbs_info_s(int cpu) \
|
||||
{ \
|
||||
return &per_cpu(_dbs_info, cpu); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Abbreviations:
|
||||
* dbs: used as a shortform for demand based switching It helps to keep variable
|
||||
|
@ -129,8 +50,60 @@ static void *get_cpu_dbs_info_s(int cpu) \
|
|||
* cs_*: Conservative governor
|
||||
*/
|
||||
|
||||
/* Governor demand based switching data (per-policy or global). */
|
||||
struct dbs_data {
|
||||
int usage_count;
|
||||
void *tuners;
|
||||
unsigned int min_sampling_rate;
|
||||
unsigned int ignore_nice_load;
|
||||
unsigned int sampling_rate;
|
||||
unsigned int sampling_down_factor;
|
||||
unsigned int up_threshold;
|
||||
unsigned int io_is_busy;
|
||||
|
||||
struct kobject kobj;
|
||||
struct list_head policy_dbs_list;
|
||||
/*
|
||||
* Protect concurrent updates to governor tunables from sysfs,
|
||||
* policy_dbs_list and usage_count.
|
||||
*/
|
||||
struct mutex mutex;
|
||||
};
|
||||
|
||||
/* Governor's specific attributes */
|
||||
struct dbs_data;
|
||||
struct governor_attr {
|
||||
struct attribute attr;
|
||||
ssize_t (*show)(struct dbs_data *dbs_data, char *buf);
|
||||
ssize_t (*store)(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count);
|
||||
};
|
||||
|
||||
#define gov_show_one(_gov, file_name) \
|
||||
static ssize_t show_##file_name \
|
||||
(struct dbs_data *dbs_data, char *buf) \
|
||||
{ \
|
||||
struct _gov##_dbs_tuners *tuners = dbs_data->tuners; \
|
||||
return sprintf(buf, "%u\n", tuners->file_name); \
|
||||
}
|
||||
|
||||
#define gov_show_one_common(file_name) \
|
||||
static ssize_t show_##file_name \
|
||||
(struct dbs_data *dbs_data, char *buf) \
|
||||
{ \
|
||||
return sprintf(buf, "%u\n", dbs_data->file_name); \
|
||||
}
|
||||
|
||||
#define gov_attr_ro(_name) \
|
||||
static struct governor_attr _name = \
|
||||
__ATTR(_name, 0444, show_##_name, NULL)
|
||||
|
||||
#define gov_attr_rw(_name) \
|
||||
static struct governor_attr _name = \
|
||||
__ATTR(_name, 0644, show_##_name, store_##_name)
|
||||
|
||||
/* Common to all CPUs of a policy */
|
||||
struct cpu_common_dbs_info {
|
||||
struct policy_dbs_info {
|
||||
struct cpufreq_policy *policy;
|
||||
/*
|
||||
* Per policy mutex that serializes load evaluation from limit-change
|
||||
|
@ -138,11 +111,27 @@ struct cpu_common_dbs_info {
|
|||
*/
|
||||
struct mutex timer_mutex;
|
||||
|
||||
ktime_t time_stamp;
|
||||
atomic_t skip_work;
|
||||
u64 last_sample_time;
|
||||
s64 sample_delay_ns;
|
||||
atomic_t work_count;
|
||||
struct irq_work irq_work;
|
||||
struct work_struct work;
|
||||
/* dbs_data may be shared between multiple policy objects */
|
||||
struct dbs_data *dbs_data;
|
||||
struct list_head list;
|
||||
/* Multiplier for increasing sample delay temporarily. */
|
||||
unsigned int rate_mult;
|
||||
/* Status indicators */
|
||||
bool is_shared; /* This object is used by multiple CPUs */
|
||||
bool work_in_progress; /* Work is being queued up or in progress */
|
||||
};
|
||||
|
||||
static inline void gov_update_sample_delay(struct policy_dbs_info *policy_dbs,
|
||||
unsigned int delay_us)
|
||||
{
|
||||
policy_dbs->sample_delay_ns = delay_us * NSEC_PER_USEC;
|
||||
}
|
||||
|
||||
/* Per cpu structures */
|
||||
struct cpu_dbs_info {
|
||||
u64 prev_cpu_idle;
|
||||
|
@ -155,54 +144,14 @@ struct cpu_dbs_info {
|
|||
* wake-up from idle.
|
||||
*/
|
||||
unsigned int prev_load;
|
||||
struct timer_list timer;
|
||||
struct cpu_common_dbs_info *shared;
|
||||
};
|
||||
|
||||
struct od_cpu_dbs_info_s {
|
||||
struct cpu_dbs_info cdbs;
|
||||
struct cpufreq_frequency_table *freq_table;
|
||||
unsigned int freq_lo;
|
||||
unsigned int freq_lo_jiffies;
|
||||
unsigned int freq_hi_jiffies;
|
||||
unsigned int rate_mult;
|
||||
unsigned int sample_type:1;
|
||||
};
|
||||
|
||||
struct cs_cpu_dbs_info_s {
|
||||
struct cpu_dbs_info cdbs;
|
||||
unsigned int down_skip;
|
||||
unsigned int requested_freq;
|
||||
};
|
||||
|
||||
/* Per policy Governors sysfs tunables */
|
||||
struct od_dbs_tuners {
|
||||
unsigned int ignore_nice_load;
|
||||
unsigned int sampling_rate;
|
||||
unsigned int sampling_down_factor;
|
||||
unsigned int up_threshold;
|
||||
unsigned int powersave_bias;
|
||||
unsigned int io_is_busy;
|
||||
};
|
||||
|
||||
struct cs_dbs_tuners {
|
||||
unsigned int ignore_nice_load;
|
||||
unsigned int sampling_rate;
|
||||
unsigned int sampling_down_factor;
|
||||
unsigned int up_threshold;
|
||||
unsigned int down_threshold;
|
||||
unsigned int freq_step;
|
||||
struct update_util_data update_util;
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
};
|
||||
|
||||
/* Common Governor data across policies */
|
||||
struct dbs_data;
|
||||
struct common_dbs_data {
|
||||
/* Common across governors */
|
||||
#define GOV_ONDEMAND 0
|
||||
#define GOV_CONSERVATIVE 1
|
||||
int governor;
|
||||
struct attribute_group *attr_group_gov_sys; /* one governor - system */
|
||||
struct attribute_group *attr_group_gov_pol; /* one governor - policy */
|
||||
struct dbs_governor {
|
||||
struct cpufreq_governor gov;
|
||||
struct kobj_type kobj_type;
|
||||
|
||||
/*
|
||||
* Common data for platforms that don't set
|
||||
|
@ -210,74 +159,32 @@ struct common_dbs_data {
|
|||
*/
|
||||
struct dbs_data *gdbs_data;
|
||||
|
||||
struct cpu_dbs_info *(*get_cpu_cdbs)(int cpu);
|
||||
void *(*get_cpu_dbs_info_s)(int cpu);
|
||||
unsigned int (*gov_dbs_timer)(struct cpufreq_policy *policy,
|
||||
bool modify_all);
|
||||
void (*gov_check_cpu)(int cpu, unsigned int load);
|
||||
unsigned int (*gov_dbs_timer)(struct cpufreq_policy *policy);
|
||||
struct policy_dbs_info *(*alloc)(void);
|
||||
void (*free)(struct policy_dbs_info *policy_dbs);
|
||||
int (*init)(struct dbs_data *dbs_data, bool notify);
|
||||
void (*exit)(struct dbs_data *dbs_data, bool notify);
|
||||
|
||||
/* Governor specific ops, see below */
|
||||
void *gov_ops;
|
||||
|
||||
/*
|
||||
* Protects governor's data (struct dbs_data and struct common_dbs_data)
|
||||
*/
|
||||
struct mutex mutex;
|
||||
void (*start)(struct cpufreq_policy *policy);
|
||||
};
|
||||
|
||||
/* Governor Per policy data */
|
||||
struct dbs_data {
|
||||
struct common_dbs_data *cdata;
|
||||
unsigned int min_sampling_rate;
|
||||
int usage_count;
|
||||
void *tuners;
|
||||
};
|
||||
static inline struct dbs_governor *dbs_governor_of(struct cpufreq_policy *policy)
|
||||
{
|
||||
return container_of(policy->governor, struct dbs_governor, gov);
|
||||
}
|
||||
|
||||
/* Governor specific ops, will be passed to dbs_data->gov_ops */
|
||||
/* Governor specific operations */
|
||||
struct od_ops {
|
||||
void (*powersave_bias_init_cpu)(int cpu);
|
||||
unsigned int (*powersave_bias_target)(struct cpufreq_policy *policy,
|
||||
unsigned int freq_next, unsigned int relation);
|
||||
void (*freq_increase)(struct cpufreq_policy *policy, unsigned int freq);
|
||||
};
|
||||
|
||||
static inline int delay_for_sampling_rate(unsigned int sampling_rate)
|
||||
{
|
||||
int delay = usecs_to_jiffies(sampling_rate);
|
||||
|
||||
/* We want all CPUs to do sampling nearly on same jiffy */
|
||||
if (num_online_cpus() > 1)
|
||||
delay -= jiffies % delay;
|
||||
|
||||
return delay;
|
||||
}
|
||||
|
||||
#define declare_show_sampling_rate_min(_gov) \
|
||||
static ssize_t show_sampling_rate_min_gov_sys \
|
||||
(struct kobject *kobj, struct attribute *attr, char *buf) \
|
||||
{ \
|
||||
struct dbs_data *dbs_data = _gov##_dbs_cdata.gdbs_data; \
|
||||
return sprintf(buf, "%u\n", dbs_data->min_sampling_rate); \
|
||||
} \
|
||||
\
|
||||
static ssize_t show_sampling_rate_min_gov_pol \
|
||||
(struct cpufreq_policy *policy, char *buf) \
|
||||
{ \
|
||||
struct dbs_data *dbs_data = policy->governor_data; \
|
||||
return sprintf(buf, "%u\n", dbs_data->min_sampling_rate); \
|
||||
}
|
||||
|
||||
extern struct mutex cpufreq_governor_lock;
|
||||
|
||||
void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay);
|
||||
void gov_cancel_work(struct cpu_common_dbs_info *shared);
|
||||
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu);
|
||||
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
||||
struct common_dbs_data *cdata, unsigned int event);
|
||||
unsigned int dbs_update(struct cpufreq_policy *policy);
|
||||
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event);
|
||||
void od_register_powersave_bias_handler(unsigned int (*f)
|
||||
(struct cpufreq_policy *, unsigned int, unsigned int),
|
||||
unsigned int powersave_bias);
|
||||
void od_unregister_powersave_bias_handler(void);
|
||||
ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count);
|
||||
void gov_update_cpu_data(struct dbs_data *dbs_data);
|
||||
#endif /* _CPUFREQ_GOVERNOR_H */
|
||||
|
|
|
@ -16,7 +16,8 @@
|
|||
#include <linux/percpu-defs.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/tick.h>
|
||||
#include "cpufreq_governor.h"
|
||||
|
||||
#include "cpufreq_ondemand.h"
|
||||
|
||||
/* On-demand governor macros */
|
||||
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
||||
|
@ -27,24 +28,10 @@
|
|||
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
||||
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
||||
|
||||
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
|
||||
|
||||
static struct od_ops od_ops;
|
||||
|
||||
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
||||
static struct cpufreq_governor cpufreq_gov_ondemand;
|
||||
#endif
|
||||
|
||||
static unsigned int default_powersave_bias;
|
||||
|
||||
static void ondemand_powersave_bias_init_cpu(int cpu)
|
||||
{
|
||||
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
||||
|
||||
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
|
||||
dbs_info->freq_lo = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Not all CPUs want IO time to be accounted as busy; this depends on how
|
||||
* efficient idling at a higher frequency/voltage is.
|
||||
|
@ -70,8 +57,8 @@ static int should_io_be_busy(void)
|
|||
|
||||
/*
|
||||
* Find right freq to be set now with powersave_bias on.
|
||||
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
|
||||
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
|
||||
* Returns the freq_hi to be used right now and will set freq_hi_delay_us,
|
||||
* freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
|
||||
*/
|
||||
static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
|
||||
unsigned int freq_next, unsigned int relation)
|
||||
|
@ -79,15 +66,15 @@ static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
|
|||
unsigned int freq_req, freq_reduc, freq_avg;
|
||||
unsigned int freq_hi, freq_lo;
|
||||
unsigned int index = 0;
|
||||
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
|
||||
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
||||
policy->cpu);
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
unsigned int delay_hi_us;
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
|
||||
if (!dbs_info->freq_table) {
|
||||
dbs_info->freq_lo = 0;
|
||||
dbs_info->freq_lo_jiffies = 0;
|
||||
dbs_info->freq_lo_delay_us = 0;
|
||||
return freq_next;
|
||||
}
|
||||
|
||||
|
@ -110,31 +97,30 @@ static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
|
|||
/* Find out how long we have to be in hi and lo freqs */
|
||||
if (freq_hi == freq_lo) {
|
||||
dbs_info->freq_lo = 0;
|
||||
dbs_info->freq_lo_jiffies = 0;
|
||||
dbs_info->freq_lo_delay_us = 0;
|
||||
return freq_lo;
|
||||
}
|
||||
jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
|
||||
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
|
||||
jiffies_hi += ((freq_hi - freq_lo) / 2);
|
||||
jiffies_hi /= (freq_hi - freq_lo);
|
||||
jiffies_lo = jiffies_total - jiffies_hi;
|
||||
delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
|
||||
delay_hi_us += (freq_hi - freq_lo) / 2;
|
||||
delay_hi_us /= freq_hi - freq_lo;
|
||||
dbs_info->freq_hi_delay_us = delay_hi_us;
|
||||
dbs_info->freq_lo = freq_lo;
|
||||
dbs_info->freq_lo_jiffies = jiffies_lo;
|
||||
dbs_info->freq_hi_jiffies = jiffies_hi;
|
||||
dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
|
||||
return freq_hi;
|
||||
}
|
||||
|
||||
static void ondemand_powersave_bias_init(void)
|
||||
static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
|
||||
{
|
||||
int i;
|
||||
for_each_online_cpu(i) {
|
||||
ondemand_powersave_bias_init_cpu(i);
|
||||
}
|
||||
struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
|
||||
|
||||
dbs_info->freq_table = cpufreq_frequency_get_table(policy->cpu);
|
||||
dbs_info->freq_lo = 0;
|
||||
}
|
||||
|
||||
static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
|
||||
{
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
|
||||
if (od_tuners->powersave_bias)
|
||||
|
@ -152,21 +138,21 @@ static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
|
|||
* (default), then we try to increase frequency. Else, we adjust the frequency
|
||||
* proportional to load.
|
||||
*/
|
||||
static void od_check_cpu(int cpu, unsigned int load)
|
||||
static void od_update(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
||||
struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
unsigned int load = dbs_update(policy);
|
||||
|
||||
dbs_info->freq_lo = 0;
|
||||
|
||||
/* Check for frequency increase */
|
||||
if (load > od_tuners->up_threshold) {
|
||||
if (load > dbs_data->up_threshold) {
|
||||
/* If switching to max speed, apply sampling_down_factor */
|
||||
if (policy->cur < policy->max)
|
||||
dbs_info->rate_mult =
|
||||
od_tuners->sampling_down_factor;
|
||||
policy_dbs->rate_mult = dbs_data->sampling_down_factor;
|
||||
dbs_freq_increase(policy, policy->max);
|
||||
} else {
|
||||
/* Calculate the next frequency proportional to load */
|
||||
|
@ -177,177 +163,70 @@ static void od_check_cpu(int cpu, unsigned int load)
|
|||
freq_next = min_f + load * (max_f - min_f) / 100;
|
||||
|
||||
/* No longer fully busy, reset rate_mult */
|
||||
dbs_info->rate_mult = 1;
|
||||
policy_dbs->rate_mult = 1;
|
||||
|
||||
if (!od_tuners->powersave_bias) {
|
||||
__cpufreq_driver_target(policy, freq_next,
|
||||
CPUFREQ_RELATION_C);
|
||||
return;
|
||||
}
|
||||
if (od_tuners->powersave_bias)
|
||||
freq_next = od_ops.powersave_bias_target(policy,
|
||||
freq_next,
|
||||
CPUFREQ_RELATION_L);
|
||||
|
||||
freq_next = od_ops.powersave_bias_target(policy, freq_next,
|
||||
CPUFREQ_RELATION_L);
|
||||
__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
|
||||
}
|
||||
}
|
||||
|
||||
static unsigned int od_dbs_timer(struct cpufreq_policy *policy, bool modify_all)
|
||||
static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct dbs_data *dbs_data = policy->governor_data;
|
||||
unsigned int cpu = policy->cpu;
|
||||
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
||||
cpu);
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
int delay = 0, sample_type = dbs_info->sample_type;
|
||||
|
||||
if (!modify_all)
|
||||
goto max_delay;
|
||||
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
||||
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
||||
struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
|
||||
int sample_type = dbs_info->sample_type;
|
||||
|
||||
/* Common NORMAL_SAMPLE setup */
|
||||
dbs_info->sample_type = OD_NORMAL_SAMPLE;
|
||||
if (sample_type == OD_SUB_SAMPLE) {
|
||||
delay = dbs_info->freq_lo_jiffies;
|
||||
/*
|
||||
* OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
|
||||
* it then.
|
||||
*/
|
||||
if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
|
||||
__cpufreq_driver_target(policy, dbs_info->freq_lo,
|
||||
CPUFREQ_RELATION_H);
|
||||
} else {
|
||||
dbs_check_cpu(dbs_data, cpu);
|
||||
if (dbs_info->freq_lo) {
|
||||
/* Setup timer for SUB_SAMPLE */
|
||||
dbs_info->sample_type = OD_SUB_SAMPLE;
|
||||
delay = dbs_info->freq_hi_jiffies;
|
||||
}
|
||||
return dbs_info->freq_lo_delay_us;
|
||||
}
|
||||
|
||||
max_delay:
|
||||
if (!delay)
|
||||
delay = delay_for_sampling_rate(od_tuners->sampling_rate
|
||||
* dbs_info->rate_mult);
|
||||
od_update(policy);
|
||||
|
||||
return delay;
|
||||
if (dbs_info->freq_lo) {
|
||||
/* Setup timer for SUB_SAMPLE */
|
||||
dbs_info->sample_type = OD_SUB_SAMPLE;
|
||||
return dbs_info->freq_hi_delay_us;
|
||||
}
|
||||
|
||||
return dbs_data->sampling_rate * policy_dbs->rate_mult;
|
||||
}
|
||||
|
||||
/************************** sysfs interface ************************/
|
||||
static struct common_dbs_data od_dbs_cdata;
|
||||
|
||||
/**
|
||||
* update_sampling_rate - update sampling rate effective immediately if needed.
|
||||
* @new_rate: new sampling rate
|
||||
*
|
||||
* If new rate is smaller than the old, simply updating
|
||||
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
|
||||
* original sampling_rate was 1 second and the requested new sampling rate is 10
|
||||
* ms because the user needs immediate reaction from ondemand governor, but not
|
||||
* sure if higher frequency will be required or not, then, the governor may
|
||||
* change the sampling rate too late; up to 1 second later. Thus, if we are
|
||||
* reducing the sampling rate, we need to make the new value effective
|
||||
* immediately.
|
||||
*/
|
||||
static void update_sampling_rate(struct dbs_data *dbs_data,
|
||||
unsigned int new_rate)
|
||||
{
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
struct cpumask cpumask;
|
||||
int cpu;
|
||||
|
||||
od_tuners->sampling_rate = new_rate = max(new_rate,
|
||||
dbs_data->min_sampling_rate);
|
||||
|
||||
/*
|
||||
* Lock governor so that governor start/stop can't execute in parallel.
|
||||
*/
|
||||
mutex_lock(&od_dbs_cdata.mutex);
|
||||
|
||||
cpumask_copy(&cpumask, cpu_online_mask);
|
||||
|
||||
for_each_cpu(cpu, &cpumask) {
|
||||
struct cpufreq_policy *policy;
|
||||
struct od_cpu_dbs_info_s *dbs_info;
|
||||
struct cpu_dbs_info *cdbs;
|
||||
struct cpu_common_dbs_info *shared;
|
||||
unsigned long next_sampling, appointed_at;
|
||||
|
||||
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
||||
cdbs = &dbs_info->cdbs;
|
||||
shared = cdbs->shared;
|
||||
|
||||
/*
|
||||
* A valid shared and shared->policy means governor hasn't
|
||||
* stopped or exited yet.
|
||||
*/
|
||||
if (!shared || !shared->policy)
|
||||
continue;
|
||||
|
||||
policy = shared->policy;
|
||||
|
||||
/* clear all CPUs of this policy */
|
||||
cpumask_andnot(&cpumask, &cpumask, policy->cpus);
|
||||
|
||||
/*
|
||||
* Update sampling rate for CPUs whose policy is governed by
|
||||
* dbs_data. In case of governor_per_policy, only a single
|
||||
* policy will be governed by dbs_data, otherwise there can be
|
||||
* multiple policies that are governed by the same dbs_data.
|
||||
*/
|
||||
if (dbs_data != policy->governor_data)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Checking this for any CPU should be fine, timers for all of
|
||||
* them are scheduled together.
|
||||
*/
|
||||
next_sampling = jiffies + usecs_to_jiffies(new_rate);
|
||||
appointed_at = dbs_info->cdbs.timer.expires;
|
||||
|
||||
if (time_before(next_sampling, appointed_at)) {
|
||||
gov_cancel_work(shared);
|
||||
gov_add_timers(policy, usecs_to_jiffies(new_rate));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
mutex_unlock(&od_dbs_cdata.mutex);
|
||||
}
|
||||
|
||||
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
unsigned int input;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
if (ret != 1)
|
||||
return -EINVAL;
|
||||
|
||||
update_sampling_rate(dbs_data, input);
|
||||
return count;
|
||||
}
|
||||
static struct dbs_governor od_dbs_gov;
|
||||
|
||||
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
unsigned int j;
|
||||
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
if (ret != 1)
|
||||
return -EINVAL;
|
||||
od_tuners->io_is_busy = !!input;
|
||||
dbs_data->io_is_busy = !!input;
|
||||
|
||||
/* we need to re-evaluate prev_cpu_idle */
|
||||
for_each_online_cpu(j) {
|
||||
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
||||
j);
|
||||
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
||||
&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
|
||||
}
|
||||
gov_update_cpu_data(dbs_data);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
|
@ -357,40 +236,43 @@ static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
|
|||
return -EINVAL;
|
||||
}
|
||||
|
||||
od_tuners->up_threshold = input;
|
||||
dbs_data->up_threshold = input;
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
|
||||
const char *buf, size_t count)
|
||||
{
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
unsigned int input, j;
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
|
||||
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
||||
return -EINVAL;
|
||||
od_tuners->sampling_down_factor = input;
|
||||
|
||||
dbs_data->sampling_down_factor = input;
|
||||
|
||||
/* Reset down sampling multiplier in case it was active */
|
||||
for_each_online_cpu(j) {
|
||||
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
||||
j);
|
||||
dbs_info->rate_mult = 1;
|
||||
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
|
||||
/*
|
||||
* Doing this without locking might lead to using different
|
||||
* rate_mult values in od_update() and od_dbs_timer().
|
||||
*/
|
||||
mutex_lock(&policy_dbs->timer_mutex);
|
||||
policy_dbs->rate_mult = 1;
|
||||
mutex_unlock(&policy_dbs->timer_mutex);
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
|
||||
const char *buf, size_t count)
|
||||
{
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
|
||||
unsigned int j;
|
||||
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
if (ret != 1)
|
||||
return -EINVAL;
|
||||
|
@ -398,22 +280,14 @@ static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
|
|||
if (input > 1)
|
||||
input = 1;
|
||||
|
||||
if (input == od_tuners->ignore_nice_load) { /* nothing to do */
|
||||
if (input == dbs_data->ignore_nice_load) { /* nothing to do */
|
||||
return count;
|
||||
}
|
||||
od_tuners->ignore_nice_load = input;
|
||||
dbs_data->ignore_nice_load = input;
|
||||
|
||||
/* we need to re-evaluate prev_cpu_idle */
|
||||
for_each_online_cpu(j) {
|
||||
struct od_cpu_dbs_info_s *dbs_info;
|
||||
dbs_info = &per_cpu(od_cpu_dbs_info, j);
|
||||
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
||||
&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
|
||||
if (od_tuners->ignore_nice_load)
|
||||
dbs_info->cdbs.prev_cpu_nice =
|
||||
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
||||
gov_update_cpu_data(dbs_data);
|
||||
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
@ -421,6 +295,7 @@ static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
|
|||
size_t count)
|
||||
{
|
||||
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
unsigned int input;
|
||||
int ret;
|
||||
ret = sscanf(buf, "%u", &input);
|
||||
|
@ -432,60 +307,55 @@ static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
|
|||
input = 1000;
|
||||
|
||||
od_tuners->powersave_bias = input;
|
||||
ondemand_powersave_bias_init();
|
||||
|
||||
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list)
|
||||
ondemand_powersave_bias_init(policy_dbs->policy);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
show_store_one(od, sampling_rate);
|
||||
show_store_one(od, io_is_busy);
|
||||
show_store_one(od, up_threshold);
|
||||
show_store_one(od, sampling_down_factor);
|
||||
show_store_one(od, ignore_nice_load);
|
||||
show_store_one(od, powersave_bias);
|
||||
declare_show_sampling_rate_min(od);
|
||||
gov_show_one_common(sampling_rate);
|
||||
gov_show_one_common(up_threshold);
|
||||
gov_show_one_common(sampling_down_factor);
|
||||
gov_show_one_common(ignore_nice_load);
|
||||
gov_show_one_common(min_sampling_rate);
|
||||
gov_show_one_common(io_is_busy);
|
||||
gov_show_one(od, powersave_bias);
|
||||
|
||||
gov_sys_pol_attr_rw(sampling_rate);
|
||||
gov_sys_pol_attr_rw(io_is_busy);
|
||||
gov_sys_pol_attr_rw(up_threshold);
|
||||
gov_sys_pol_attr_rw(sampling_down_factor);
|
||||
gov_sys_pol_attr_rw(ignore_nice_load);
|
||||
gov_sys_pol_attr_rw(powersave_bias);
|
||||
gov_sys_pol_attr_ro(sampling_rate_min);
|
||||
gov_attr_rw(sampling_rate);
|
||||
gov_attr_rw(io_is_busy);
|
||||
gov_attr_rw(up_threshold);
|
||||
gov_attr_rw(sampling_down_factor);
|
||||
gov_attr_rw(ignore_nice_load);
|
||||
gov_attr_rw(powersave_bias);
|
||||
gov_attr_ro(min_sampling_rate);
|
||||
|
||||
static struct attribute *dbs_attributes_gov_sys[] = {
|
||||
&sampling_rate_min_gov_sys.attr,
|
||||
&sampling_rate_gov_sys.attr,
|
||||
&up_threshold_gov_sys.attr,
|
||||
&sampling_down_factor_gov_sys.attr,
|
||||
&ignore_nice_load_gov_sys.attr,
|
||||
&powersave_bias_gov_sys.attr,
|
||||
&io_is_busy_gov_sys.attr,
|
||||
static struct attribute *od_attributes[] = {
|
||||
&min_sampling_rate.attr,
|
||||
&sampling_rate.attr,
|
||||
&up_threshold.attr,
|
||||
&sampling_down_factor.attr,
|
||||
&ignore_nice_load.attr,
|
||||
&powersave_bias.attr,
|
||||
&io_is_busy.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static struct attribute_group od_attr_group_gov_sys = {
|
||||
.attrs = dbs_attributes_gov_sys,
|
||||
.name = "ondemand",
|
||||
};
|
||||
|
||||
static struct attribute *dbs_attributes_gov_pol[] = {
|
||||
&sampling_rate_min_gov_pol.attr,
|
||||
&sampling_rate_gov_pol.attr,
|
||||
&up_threshold_gov_pol.attr,
|
||||
&sampling_down_factor_gov_pol.attr,
|
||||
&ignore_nice_load_gov_pol.attr,
|
||||
&powersave_bias_gov_pol.attr,
|
||||
&io_is_busy_gov_pol.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static struct attribute_group od_attr_group_gov_pol = {
|
||||
.attrs = dbs_attributes_gov_pol,
|
||||
.name = "ondemand",
|
||||
};
|
||||
|
||||
/************************** sysfs end ************************/
|
||||
|
||||
static struct policy_dbs_info *od_alloc(void)
|
||||
{
|
||||
struct od_policy_dbs_info *dbs_info;
|
||||
|
||||
dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
|
||||
return dbs_info ? &dbs_info->policy_dbs : NULL;
|
||||
}
|
||||
|
||||
static void od_free(struct policy_dbs_info *policy_dbs)
|
||||
{
|
||||
kfree(to_dbs_info(policy_dbs));
|
||||
}
|
||||
|
||||
static int od_init(struct dbs_data *dbs_data, bool notify)
|
||||
{
|
||||
struct od_dbs_tuners *tuners;
|
||||
|
@ -503,7 +373,7 @@ static int od_init(struct dbs_data *dbs_data, bool notify)
|
|||
put_cpu();
|
||||
if (idle_time != -1ULL) {
|
||||
/* Idle micro accounting is supported. Use finer thresholds */
|
||||
tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
|
||||
dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
|
||||
/*
|
||||
* In nohz/micro accounting case we set the minimum frequency
|
||||
* not depending on HZ, but fixed (very low). The deferred
|
||||
|
@ -511,17 +381,17 @@ static int od_init(struct dbs_data *dbs_data, bool notify)
|
|||
*/
|
||||
dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
|
||||
} else {
|
||||
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
|
||||
dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
|
||||
|
||||
/* For correct statistics, we need 10 ticks for each measure */
|
||||
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
|
||||
jiffies_to_usecs(10);
|
||||
}
|
||||
|
||||
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
|
||||
tuners->ignore_nice_load = 0;
|
||||
dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
|
||||
dbs_data->ignore_nice_load = 0;
|
||||
tuners->powersave_bias = default_powersave_bias;
|
||||
tuners->io_is_busy = should_io_be_busy();
|
||||
dbs_data->io_is_busy = should_io_be_busy();
|
||||
|
||||
dbs_data->tuners = tuners;
|
||||
return 0;
|
||||
|
@ -532,33 +402,38 @@ static void od_exit(struct dbs_data *dbs_data, bool notify)
|
|||
kfree(dbs_data->tuners);
|
||||
}
|
||||
|
||||
define_get_cpu_dbs_routines(od_cpu_dbs_info);
|
||||
static void od_start(struct cpufreq_policy *policy)
|
||||
{
|
||||
struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
|
||||
|
||||
dbs_info->sample_type = OD_NORMAL_SAMPLE;
|
||||
ondemand_powersave_bias_init(policy);
|
||||
}
|
||||
|
||||
static struct od_ops od_ops = {
|
||||
.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
|
||||
.powersave_bias_target = generic_powersave_bias_target,
|
||||
.freq_increase = dbs_freq_increase,
|
||||
};
|
||||
|
||||
static struct common_dbs_data od_dbs_cdata = {
|
||||
.governor = GOV_ONDEMAND,
|
||||
.attr_group_gov_sys = &od_attr_group_gov_sys,
|
||||
.attr_group_gov_pol = &od_attr_group_gov_pol,
|
||||
.get_cpu_cdbs = get_cpu_cdbs,
|
||||
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
|
||||
static struct dbs_governor od_dbs_gov = {
|
||||
.gov = {
|
||||
.name = "ondemand",
|
||||
.governor = cpufreq_governor_dbs,
|
||||
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
||||
.owner = THIS_MODULE,
|
||||
},
|
||||
.kobj_type = { .default_attrs = od_attributes },
|
||||
.gov_dbs_timer = od_dbs_timer,
|
||||
.gov_check_cpu = od_check_cpu,
|
||||
.gov_ops = &od_ops,
|
||||
.alloc = od_alloc,
|
||||
.free = od_free,
|
||||
.init = od_init,
|
||||
.exit = od_exit,
|
||||
.mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
|
||||
.start = od_start,
|
||||
};
|
||||
|
||||
#define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
|
||||
|
||||
static void od_set_powersave_bias(unsigned int powersave_bias)
|
||||
{
|
||||
struct cpufreq_policy *policy;
|
||||
struct dbs_data *dbs_data;
|
||||
struct od_dbs_tuners *od_tuners;
|
||||
unsigned int cpu;
|
||||
cpumask_t done;
|
||||
|
||||
|
@ -567,22 +442,25 @@ static void od_set_powersave_bias(unsigned int powersave_bias)
|
|||
|
||||
get_online_cpus();
|
||||
for_each_online_cpu(cpu) {
|
||||
struct cpu_common_dbs_info *shared;
|
||||
struct cpufreq_policy *policy;
|
||||
struct policy_dbs_info *policy_dbs;
|
||||
struct dbs_data *dbs_data;
|
||||
struct od_dbs_tuners *od_tuners;
|
||||
|
||||
if (cpumask_test_cpu(cpu, &done))
|
||||
continue;
|
||||
|
||||
shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
|
||||
if (!shared)
|
||||
policy = cpufreq_cpu_get_raw(cpu);
|
||||
if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
|
||||
continue;
|
||||
|
||||
policy_dbs = policy->governor_data;
|
||||
if (!policy_dbs)
|
||||
continue;
|
||||
|
||||
policy = shared->policy;
|
||||
cpumask_or(&done, &done, policy->cpus);
|
||||
|
||||
if (policy->governor != &cpufreq_gov_ondemand)
|
||||
continue;
|
||||
|
||||
dbs_data = policy->governor_data;
|
||||
dbs_data = policy_dbs->dbs_data;
|
||||
od_tuners = dbs_data->tuners;
|
||||
od_tuners->powersave_bias = default_powersave_bias;
|
||||
}
|
||||
|
@ -605,30 +483,14 @@ void od_unregister_powersave_bias_handler(void)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
|
||||
|
||||
static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
||||
unsigned int event)
|
||||
{
|
||||
return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
|
||||
}
|
||||
|
||||
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
||||
static
|
||||
#endif
|
||||
struct cpufreq_governor cpufreq_gov_ondemand = {
|
||||
.name = "ondemand",
|
||||
.governor = od_cpufreq_governor_dbs,
|
||||
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static int __init cpufreq_gov_dbs_init(void)
|
||||
{
|
||||
return cpufreq_register_governor(&cpufreq_gov_ondemand);
|
||||
return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
|
||||
}
|
||||
|
||||
static void __exit cpufreq_gov_dbs_exit(void)
|
||||
{
|
||||
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
|
||||
cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
|
||||
}
|
||||
|
||||
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
||||
|
@ -638,6 +500,11 @@ MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|||
MODULE_LICENSE("GPL");
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
||||
struct cpufreq_governor *cpufreq_default_governor(void)
|
||||
{
|
||||
return CPU_FREQ_GOV_ONDEMAND;
|
||||
}
|
||||
|
||||
fs_initcall(cpufreq_gov_dbs_init);
|
||||
#else
|
||||
module_init(cpufreq_gov_dbs_init);
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
/*
|
||||
* Header file for CPUFreq ondemand governor and related code.
|
||||
*
|
||||
* Copyright (C) 2016, Intel Corporation
|
||||
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include "cpufreq_governor.h"
|
||||
|
||||
struct od_policy_dbs_info {
|
||||
struct policy_dbs_info policy_dbs;
|
||||
struct cpufreq_frequency_table *freq_table;
|
||||
unsigned int freq_lo;
|
||||
unsigned int freq_lo_delay_us;
|
||||
unsigned int freq_hi_delay_us;
|
||||
unsigned int sample_type:1;
|
||||
};
|
||||
|
||||
static inline struct od_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
|
||||
{
|
||||
return container_of(policy_dbs, struct od_policy_dbs_info, policy_dbs);
|
||||
}
|
||||
|
||||
struct od_dbs_tuners {
|
||||
unsigned int powersave_bias;
|
||||
};
|
|
@ -33,10 +33,7 @@ static int cpufreq_governor_performance(struct cpufreq_policy *policy,
|
|||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE_MODULE
|
||||
static
|
||||
#endif
|
||||
struct cpufreq_governor cpufreq_gov_performance = {
|
||||
static struct cpufreq_governor cpufreq_gov_performance = {
|
||||
.name = "performance",
|
||||
.governor = cpufreq_governor_performance,
|
||||
.owner = THIS_MODULE,
|
||||
|
@ -52,6 +49,19 @@ static void __exit cpufreq_gov_performance_exit(void)
|
|||
cpufreq_unregister_governor(&cpufreq_gov_performance);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
|
||||
struct cpufreq_governor *cpufreq_default_governor(void)
|
||||
{
|
||||
return &cpufreq_gov_performance;
|
||||
}
|
||||
#endif
|
||||
#ifndef CONFIG_CPU_FREQ_GOV_PERFORMANCE_MODULE
|
||||
struct cpufreq_governor *cpufreq_fallback_governor(void)
|
||||
{
|
||||
return &cpufreq_gov_performance;
|
||||
}
|
||||
#endif
|
||||
|
||||
MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>");
|
||||
MODULE_DESCRIPTION("CPUfreq policy governor 'performance'");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
|
|
@ -33,10 +33,7 @@ static int cpufreq_governor_powersave(struct cpufreq_policy *policy,
|
|||
return 0;
|
||||
}
|
||||
|
||||
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_POWERSAVE
|
||||
static
|
||||
#endif
|
||||
struct cpufreq_governor cpufreq_gov_powersave = {
|
||||
static struct cpufreq_governor cpufreq_gov_powersave = {
|
||||
.name = "powersave",
|
||||
.governor = cpufreq_governor_powersave,
|
||||
.owner = THIS_MODULE,
|
||||
|
@ -57,6 +54,11 @@ MODULE_DESCRIPTION("CPUfreq policy governor 'powersave'");
|
|||
MODULE_LICENSE("GPL");
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_POWERSAVE
|
||||
struct cpufreq_governor *cpufreq_default_governor(void)
|
||||
{
|
||||
return &cpufreq_gov_powersave;
|
||||
}
|
||||
|
||||
fs_initcall(cpufreq_gov_powersave_init);
|
||||
#else
|
||||
module_init(cpufreq_gov_powersave_init);
|
||||
|
|
|
@ -89,10 +89,7 @@ static int cpufreq_governor_userspace(struct cpufreq_policy *policy,
|
|||
return rc;
|
||||
}
|
||||
|
||||
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE
|
||||
static
|
||||
#endif
|
||||
struct cpufreq_governor cpufreq_gov_userspace = {
|
||||
static struct cpufreq_governor cpufreq_gov_userspace = {
|
||||
.name = "userspace",
|
||||
.governor = cpufreq_governor_userspace,
|
||||
.store_setspeed = cpufreq_set,
|
||||
|
@ -116,6 +113,11 @@ MODULE_DESCRIPTION("CPUfreq policy governor 'userspace'");
|
|||
MODULE_LICENSE("GPL");
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE
|
||||
struct cpufreq_governor *cpufreq_default_governor(void)
|
||||
{
|
||||
return &cpufreq_gov_userspace;
|
||||
}
|
||||
|
||||
fs_initcall(cpufreq_gov_userspace_init);
|
||||
#else
|
||||
module_init(cpufreq_gov_userspace_init);
|
||||
|
|
|
@ -71,7 +71,7 @@ struct sample {
|
|||
u64 mperf;
|
||||
u64 tsc;
|
||||
int freq;
|
||||
ktime_t time;
|
||||
u64 time;
|
||||
};
|
||||
|
||||
struct pstate_data {
|
||||
|
@ -103,13 +103,13 @@ struct _pid {
|
|||
struct cpudata {
|
||||
int cpu;
|
||||
|
||||
struct timer_list timer;
|
||||
struct update_util_data update_util;
|
||||
|
||||
struct pstate_data pstate;
|
||||
struct vid_data vid;
|
||||
struct _pid pid;
|
||||
|
||||
ktime_t last_sample_time;
|
||||
u64 last_sample_time;
|
||||
u64 prev_aperf;
|
||||
u64 prev_mperf;
|
||||
u64 prev_tsc;
|
||||
|
@ -120,6 +120,7 @@ struct cpudata {
|
|||
static struct cpudata **all_cpu_data;
|
||||
struct pstate_adjust_policy {
|
||||
int sample_rate_ms;
|
||||
s64 sample_rate_ns;
|
||||
int deadband;
|
||||
int setpoint;
|
||||
int p_gain_pct;
|
||||
|
@ -197,8 +198,8 @@ static struct perf_limits *limits = &powersave_limits;
|
|||
|
||||
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
|
||||
int deadband, int integral) {
|
||||
pid->setpoint = setpoint;
|
||||
pid->deadband = deadband;
|
||||
pid->setpoint = int_tofp(setpoint);
|
||||
pid->deadband = int_tofp(deadband);
|
||||
pid->integral = int_tofp(integral);
|
||||
pid->last_err = int_tofp(setpoint) - int_tofp(busy);
|
||||
}
|
||||
|
@ -224,9 +225,9 @@ static signed int pid_calc(struct _pid *pid, int32_t busy)
|
|||
int32_t pterm, dterm, fp_error;
|
||||
int32_t integral_limit;
|
||||
|
||||
fp_error = int_tofp(pid->setpoint) - busy;
|
||||
fp_error = pid->setpoint - busy;
|
||||
|
||||
if (abs(fp_error) <= int_tofp(pid->deadband))
|
||||
if (abs(fp_error) <= pid->deadband)
|
||||
return 0;
|
||||
|
||||
pterm = mul_fp(pid->p_gain, fp_error);
|
||||
|
@ -286,7 +287,7 @@ static inline void update_turbo_state(void)
|
|||
cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
|
||||
}
|
||||
|
||||
static void intel_pstate_hwp_set(void)
|
||||
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
|
||||
{
|
||||
int min, hw_min, max, hw_max, cpu, range, adj_range;
|
||||
u64 value, cap;
|
||||
|
@ -296,9 +297,7 @@ static void intel_pstate_hwp_set(void)
|
|||
hw_max = HWP_HIGHEST_PERF(cap);
|
||||
range = hw_max - hw_min;
|
||||
|
||||
get_online_cpus();
|
||||
|
||||
for_each_online_cpu(cpu) {
|
||||
for_each_cpu(cpu, cpumask) {
|
||||
rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
|
||||
adj_range = limits->min_perf_pct * range / 100;
|
||||
min = hw_min + adj_range;
|
||||
|
@ -317,7 +316,12 @@ static void intel_pstate_hwp_set(void)
|
|||
value |= HWP_MAX_PERF(max);
|
||||
wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
|
||||
}
|
||||
}
|
||||
|
||||
static void intel_pstate_hwp_set_online_cpus(void)
|
||||
{
|
||||
get_online_cpus();
|
||||
intel_pstate_hwp_set(cpu_online_mask);
|
||||
put_online_cpus();
|
||||
}
|
||||
|
||||
|
@ -439,7 +443,7 @@ static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
|
|||
limits->no_turbo = clamp_t(int, input, 0, 1);
|
||||
|
||||
if (hwp_active)
|
||||
intel_pstate_hwp_set();
|
||||
intel_pstate_hwp_set_online_cpus();
|
||||
|
||||
return count;
|
||||
}
|
||||
|
@ -465,7 +469,7 @@ static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
|
|||
int_tofp(100));
|
||||
|
||||
if (hwp_active)
|
||||
intel_pstate_hwp_set();
|
||||
intel_pstate_hwp_set_online_cpus();
|
||||
return count;
|
||||
}
|
||||
|
||||
|
@ -490,7 +494,7 @@ static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
|
|||
int_tofp(100));
|
||||
|
||||
if (hwp_active)
|
||||
intel_pstate_hwp_set();
|
||||
intel_pstate_hwp_set_online_cpus();
|
||||
return count;
|
||||
}
|
||||
|
||||
|
@ -531,6 +535,9 @@ static void __init intel_pstate_sysfs_expose_params(void)
|
|||
|
||||
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
|
||||
{
|
||||
/* First disable HWP notification interrupt as we don't process them */
|
||||
wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
|
||||
|
||||
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
|
||||
}
|
||||
|
||||
|
@ -712,7 +719,7 @@ static void core_set_pstate(struct cpudata *cpudata, int pstate)
|
|||
if (limits->no_turbo && !limits->turbo_disabled)
|
||||
val |= (u64)1 << 32;
|
||||
|
||||
wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
|
||||
wrmsrl(MSR_IA32_PERF_CTL, val);
|
||||
}
|
||||
|
||||
static int knl_get_turbo_pstate(void)
|
||||
|
@ -824,11 +831,11 @@ static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
|
|||
* policy, or by cpu specific default values determined through
|
||||
* experimentation.
|
||||
*/
|
||||
max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
|
||||
max_perf_adj = fp_toint(max_perf * limits->max_perf);
|
||||
*max = clamp_t(int, max_perf_adj,
|
||||
cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
|
||||
|
||||
min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
|
||||
min_perf = fp_toint(max_perf * limits->min_perf);
|
||||
*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
|
||||
}
|
||||
|
||||
|
@ -874,16 +881,10 @@ static inline void intel_pstate_calc_busy(struct cpudata *cpu)
|
|||
core_pct = int_tofp(sample->aperf) * int_tofp(100);
|
||||
core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
|
||||
|
||||
sample->freq = fp_toint(
|
||||
mul_fp(int_tofp(
|
||||
cpu->pstate.max_pstate_physical *
|
||||
cpu->pstate.scaling / 100),
|
||||
core_pct));
|
||||
|
||||
sample->core_pct_busy = (int32_t)core_pct;
|
||||
}
|
||||
|
||||
static inline void intel_pstate_sample(struct cpudata *cpu)
|
||||
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
|
||||
{
|
||||
u64 aperf, mperf;
|
||||
unsigned long flags;
|
||||
|
@ -893,14 +894,14 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
|
|||
rdmsrl(MSR_IA32_APERF, aperf);
|
||||
rdmsrl(MSR_IA32_MPERF, mperf);
|
||||
tsc = rdtsc();
|
||||
if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
|
||||
if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
|
||||
local_irq_restore(flags);
|
||||
return;
|
||||
return false;
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
|
||||
cpu->last_sample_time = cpu->sample.time;
|
||||
cpu->sample.time = ktime_get();
|
||||
cpu->sample.time = time;
|
||||
cpu->sample.aperf = aperf;
|
||||
cpu->sample.mperf = mperf;
|
||||
cpu->sample.tsc = tsc;
|
||||
|
@ -908,27 +909,16 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
|
|||
cpu->sample.mperf -= cpu->prev_mperf;
|
||||
cpu->sample.tsc -= cpu->prev_tsc;
|
||||
|
||||
intel_pstate_calc_busy(cpu);
|
||||
|
||||
cpu->prev_aperf = aperf;
|
||||
cpu->prev_mperf = mperf;
|
||||
cpu->prev_tsc = tsc;
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
|
||||
static inline int32_t get_avg_frequency(struct cpudata *cpu)
|
||||
{
|
||||
int delay;
|
||||
|
||||
delay = msecs_to_jiffies(50);
|
||||
mod_timer_pinned(&cpu->timer, jiffies + delay);
|
||||
}
|
||||
|
||||
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
|
||||
{
|
||||
int delay;
|
||||
|
||||
delay = msecs_to_jiffies(pid_params.sample_rate_ms);
|
||||
mod_timer_pinned(&cpu->timer, jiffies + delay);
|
||||
return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
|
||||
cpu->pstate.scaling, cpu->sample.mperf);
|
||||
}
|
||||
|
||||
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
|
||||
|
@ -954,7 +944,6 @@ static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
|
|||
mperf = cpu->sample.mperf + delta_iowait_mperf;
|
||||
cpu->prev_cummulative_iowait = cummulative_iowait;
|
||||
|
||||
|
||||
/*
|
||||
* The load can be estimated as the ratio of the mperf counter
|
||||
* running at a constant frequency during active periods
|
||||
|
@ -970,8 +959,9 @@ static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
|
|||
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
|
||||
{
|
||||
int32_t core_busy, max_pstate, current_pstate, sample_ratio;
|
||||
s64 duration_us;
|
||||
u32 sample_time;
|
||||
u64 duration_ns;
|
||||
|
||||
intel_pstate_calc_busy(cpu);
|
||||
|
||||
/*
|
||||
* core_busy is the ratio of actual performance to max
|
||||
|
@ -990,18 +980,16 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
|
|||
core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
|
||||
|
||||
/*
|
||||
* Since we have a deferred timer, it will not fire unless
|
||||
* we are in C0. So, determine if the actual elapsed time
|
||||
* is significantly greater (3x) than our sample interval. If it
|
||||
* is, then we were idle for a long enough period of time
|
||||
* to adjust our busyness.
|
||||
* Since our utilization update callback will not run unless we are
|
||||
* in C0, check if the actual elapsed time is significantly greater (3x)
|
||||
* than our sample interval. If it is, then we were idle for a long
|
||||
* enough period of time to adjust our busyness.
|
||||
*/
|
||||
sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
|
||||
duration_us = ktime_us_delta(cpu->sample.time,
|
||||
cpu->last_sample_time);
|
||||
if (duration_us > sample_time * 3) {
|
||||
sample_ratio = div_fp(int_tofp(sample_time),
|
||||
int_tofp(duration_us));
|
||||
duration_ns = cpu->sample.time - cpu->last_sample_time;
|
||||
if ((s64)duration_ns > pid_params.sample_rate_ns * 3
|
||||
&& cpu->last_sample_time > 0) {
|
||||
sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
|
||||
int_tofp(duration_ns));
|
||||
core_busy = mul_fp(core_busy, sample_ratio);
|
||||
}
|
||||
|
||||
|
@ -1028,26 +1016,21 @@ static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
|
|||
sample->mperf,
|
||||
sample->aperf,
|
||||
sample->tsc,
|
||||
sample->freq);
|
||||
get_avg_frequency(cpu));
|
||||
}
|
||||
|
||||
static void intel_hwp_timer_func(unsigned long __data)
|
||||
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
|
||||
unsigned long util, unsigned long max)
|
||||
{
|
||||
struct cpudata *cpu = (struct cpudata *) __data;
|
||||
struct cpudata *cpu = container_of(data, struct cpudata, update_util);
|
||||
u64 delta_ns = time - cpu->sample.time;
|
||||
|
||||
intel_pstate_sample(cpu);
|
||||
intel_hwp_set_sample_time(cpu);
|
||||
}
|
||||
if ((s64)delta_ns >= pid_params.sample_rate_ns) {
|
||||
bool sample_taken = intel_pstate_sample(cpu, time);
|
||||
|
||||
static void intel_pstate_timer_func(unsigned long __data)
|
||||
{
|
||||
struct cpudata *cpu = (struct cpudata *) __data;
|
||||
|
||||
intel_pstate_sample(cpu);
|
||||
|
||||
intel_pstate_adjust_busy_pstate(cpu);
|
||||
|
||||
intel_pstate_set_sample_time(cpu);
|
||||
if (sample_taken && !hwp_active)
|
||||
intel_pstate_adjust_busy_pstate(cpu);
|
||||
}
|
||||
}
|
||||
|
||||
#define ICPU(model, policy) \
|
||||
|
@ -1095,24 +1078,19 @@ static int intel_pstate_init_cpu(unsigned int cpunum)
|
|||
|
||||
cpu->cpu = cpunum;
|
||||
|
||||
if (hwp_active)
|
||||
if (hwp_active) {
|
||||
intel_pstate_hwp_enable(cpu);
|
||||
pid_params.sample_rate_ms = 50;
|
||||
pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
|
||||
}
|
||||
|
||||
intel_pstate_get_cpu_pstates(cpu);
|
||||
|
||||
init_timer_deferrable(&cpu->timer);
|
||||
cpu->timer.data = (unsigned long)cpu;
|
||||
cpu->timer.expires = jiffies + HZ/100;
|
||||
|
||||
if (!hwp_active)
|
||||
cpu->timer.function = intel_pstate_timer_func;
|
||||
else
|
||||
cpu->timer.function = intel_hwp_timer_func;
|
||||
|
||||
intel_pstate_busy_pid_reset(cpu);
|
||||
intel_pstate_sample(cpu);
|
||||
intel_pstate_sample(cpu, 0);
|
||||
|
||||
add_timer_on(&cpu->timer, cpunum);
|
||||
cpu->update_util.func = intel_pstate_update_util;
|
||||
cpufreq_set_update_util_data(cpunum, &cpu->update_util);
|
||||
|
||||
pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
|
||||
|
||||
|
@ -1128,7 +1106,7 @@ static unsigned int intel_pstate_get(unsigned int cpu_num)
|
|||
if (!cpu)
|
||||
return 0;
|
||||
sample = &cpu->sample;
|
||||
return sample->freq;
|
||||
return get_avg_frequency(cpu);
|
||||
}
|
||||
|
||||
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
|
||||
|
@ -1141,7 +1119,7 @@ static int intel_pstate_set_policy(struct cpufreq_policy *policy)
|
|||
pr_debug("intel_pstate: set performance\n");
|
||||
limits = &performance_limits;
|
||||
if (hwp_active)
|
||||
intel_pstate_hwp_set();
|
||||
intel_pstate_hwp_set(policy->cpus);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1173,7 +1151,7 @@ static int intel_pstate_set_policy(struct cpufreq_policy *policy)
|
|||
int_tofp(100));
|
||||
|
||||
if (hwp_active)
|
||||
intel_pstate_hwp_set();
|
||||
intel_pstate_hwp_set(policy->cpus);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -1196,7 +1174,9 @@ static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
|
|||
|
||||
pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
|
||||
|
||||
del_timer_sync(&all_cpu_data[cpu_num]->timer);
|
||||
cpufreq_set_update_util_data(cpu_num, NULL);
|
||||
synchronize_sched();
|
||||
|
||||
if (hwp_active)
|
||||
return;
|
||||
|
||||
|
@ -1260,6 +1240,7 @@ static int intel_pstate_msrs_not_valid(void)
|
|||
static void copy_pid_params(struct pstate_adjust_policy *policy)
|
||||
{
|
||||
pid_params.sample_rate_ms = policy->sample_rate_ms;
|
||||
pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
|
||||
pid_params.p_gain_pct = policy->p_gain_pct;
|
||||
pid_params.i_gain_pct = policy->i_gain_pct;
|
||||
pid_params.d_gain_pct = policy->d_gain_pct;
|
||||
|
@ -1397,6 +1378,11 @@ static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
|
|||
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
|
||||
#endif /* CONFIG_ACPI */
|
||||
|
||||
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
|
||||
{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
|
||||
{}
|
||||
};
|
||||
|
||||
static int __init intel_pstate_init(void)
|
||||
{
|
||||
int cpu, rc = 0;
|
||||
|
@ -1406,17 +1392,16 @@ static int __init intel_pstate_init(void)
|
|||
if (no_load)
|
||||
return -ENODEV;
|
||||
|
||||
if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
|
||||
copy_cpu_funcs(&core_params.funcs);
|
||||
hwp_active++;
|
||||
goto hwp_cpu_matched;
|
||||
}
|
||||
|
||||
id = x86_match_cpu(intel_pstate_cpu_ids);
|
||||
if (!id)
|
||||
return -ENODEV;
|
||||
|
||||
/*
|
||||
* The Intel pstate driver will be ignored if the platform
|
||||
* firmware has its own power management modes.
|
||||
*/
|
||||
if (intel_pstate_platform_pwr_mgmt_exists())
|
||||
return -ENODEV;
|
||||
|
||||
cpu_def = (struct cpu_defaults *)id->driver_data;
|
||||
|
||||
copy_pid_params(&cpu_def->pid_policy);
|
||||
|
@ -1425,17 +1410,20 @@ static int __init intel_pstate_init(void)
|
|||
if (intel_pstate_msrs_not_valid())
|
||||
return -ENODEV;
|
||||
|
||||
hwp_cpu_matched:
|
||||
/*
|
||||
* The Intel pstate driver will be ignored if the platform
|
||||
* firmware has its own power management modes.
|
||||
*/
|
||||
if (intel_pstate_platform_pwr_mgmt_exists())
|
||||
return -ENODEV;
|
||||
|
||||
pr_info("Intel P-state driver initializing.\n");
|
||||
|
||||
all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
|
||||
if (!all_cpu_data)
|
||||
return -ENOMEM;
|
||||
|
||||
if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
|
||||
pr_info("intel_pstate: HWP enabled\n");
|
||||
hwp_active++;
|
||||
}
|
||||
|
||||
if (!hwp_active && hwp_only)
|
||||
goto out;
|
||||
|
||||
|
@ -1446,12 +1434,16 @@ static int __init intel_pstate_init(void)
|
|||
intel_pstate_debug_expose_params();
|
||||
intel_pstate_sysfs_expose_params();
|
||||
|
||||
if (hwp_active)
|
||||
pr_info("intel_pstate: HWP enabled\n");
|
||||
|
||||
return rc;
|
||||
out:
|
||||
get_online_cpus();
|
||||
for_each_online_cpu(cpu) {
|
||||
if (all_cpu_data[cpu]) {
|
||||
del_timer_sync(&all_cpu_data[cpu]->timer);
|
||||
cpufreq_set_update_util_data(cpu, NULL);
|
||||
synchronize_sched();
|
||||
kfree(all_cpu_data[cpu]);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -28,6 +28,8 @@
|
|||
#include <linux/of.h>
|
||||
#include <linux/reboot.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <trace/events/power.h>
|
||||
|
||||
#include <asm/cputhreads.h>
|
||||
#include <asm/firmware.h>
|
||||
|
@ -42,13 +44,24 @@
|
|||
|
||||
static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
|
||||
static bool rebooting, throttled, occ_reset;
|
||||
static unsigned int *core_to_chip_map;
|
||||
|
||||
static const char * const throttle_reason[] = {
|
||||
"No throttling",
|
||||
"Power Cap",
|
||||
"Processor Over Temperature",
|
||||
"Power Supply Failure",
|
||||
"Over Current",
|
||||
"OCC Reset"
|
||||
};
|
||||
|
||||
static struct chip {
|
||||
unsigned int id;
|
||||
bool throttled;
|
||||
bool restore;
|
||||
u8 throttle_reason;
|
||||
cpumask_t mask;
|
||||
struct work_struct throttle;
|
||||
bool restore;
|
||||
} *chips;
|
||||
|
||||
static int nr_chips;
|
||||
|
@ -312,13 +325,14 @@ static inline unsigned int get_nominal_index(void)
|
|||
static void powernv_cpufreq_throttle_check(void *data)
|
||||
{
|
||||
unsigned int cpu = smp_processor_id();
|
||||
unsigned int chip_id = core_to_chip_map[cpu_core_index_of_thread(cpu)];
|
||||
unsigned long pmsr;
|
||||
int pmsr_pmax, i;
|
||||
|
||||
pmsr = get_pmspr(SPRN_PMSR);
|
||||
|
||||
for (i = 0; i < nr_chips; i++)
|
||||
if (chips[i].id == cpu_to_chip_id(cpu))
|
||||
if (chips[i].id == chip_id)
|
||||
break;
|
||||
|
||||
/* Check for Pmax Capping */
|
||||
|
@ -328,17 +342,17 @@ static void powernv_cpufreq_throttle_check(void *data)
|
|||
goto next;
|
||||
chips[i].throttled = true;
|
||||
if (pmsr_pmax < powernv_pstate_info.nominal)
|
||||
pr_crit("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n",
|
||||
cpu, chips[i].id, pmsr_pmax,
|
||||
powernv_pstate_info.nominal);
|
||||
else
|
||||
pr_info("CPU %d on Chip %u has Pmax reduced below turbo frequency (%d < %d)\n",
|
||||
cpu, chips[i].id, pmsr_pmax,
|
||||
powernv_pstate_info.max);
|
||||
pr_warn_once("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n",
|
||||
cpu, chips[i].id, pmsr_pmax,
|
||||
powernv_pstate_info.nominal);
|
||||
trace_powernv_throttle(chips[i].id,
|
||||
throttle_reason[chips[i].throttle_reason],
|
||||
pmsr_pmax);
|
||||
} else if (chips[i].throttled) {
|
||||
chips[i].throttled = false;
|
||||
pr_info("CPU %d on Chip %u has Pmax restored to %d\n", cpu,
|
||||
chips[i].id, pmsr_pmax);
|
||||
trace_powernv_throttle(chips[i].id,
|
||||
throttle_reason[chips[i].throttle_reason],
|
||||
pmsr_pmax);
|
||||
}
|
||||
|
||||
/* Check if Psafe_mode_active is set in PMSR. */
|
||||
|
@ -356,7 +370,7 @@ next:
|
|||
|
||||
if (throttled) {
|
||||
pr_info("PMSR = %16lx\n", pmsr);
|
||||
pr_crit("CPU Frequency could be throttled\n");
|
||||
pr_warn("CPU Frequency could be throttled\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -423,18 +437,19 @@ void powernv_cpufreq_work_fn(struct work_struct *work)
|
|||
{
|
||||
struct chip *chip = container_of(work, struct chip, throttle);
|
||||
unsigned int cpu;
|
||||
cpumask_var_t mask;
|
||||
cpumask_t mask;
|
||||
|
||||
smp_call_function_any(&chip->mask,
|
||||
get_online_cpus();
|
||||
cpumask_and(&mask, &chip->mask, cpu_online_mask);
|
||||
smp_call_function_any(&mask,
|
||||
powernv_cpufreq_throttle_check, NULL, 0);
|
||||
|
||||
if (!chip->restore)
|
||||
return;
|
||||
goto out;
|
||||
|
||||
chip->restore = false;
|
||||
cpumask_copy(mask, &chip->mask);
|
||||
for_each_cpu_and(cpu, mask, cpu_online_mask) {
|
||||
int index, tcpu;
|
||||
for_each_cpu(cpu, &mask) {
|
||||
int index;
|
||||
struct cpufreq_policy policy;
|
||||
|
||||
cpufreq_get_policy(&policy, cpu);
|
||||
|
@ -442,20 +457,12 @@ void powernv_cpufreq_work_fn(struct work_struct *work)
|
|||
policy.cur,
|
||||
CPUFREQ_RELATION_C, &index);
|
||||
powernv_cpufreq_target_index(&policy, index);
|
||||
for_each_cpu(tcpu, policy.cpus)
|
||||
cpumask_clear_cpu(tcpu, mask);
|
||||
cpumask_andnot(&mask, &mask, policy.cpus);
|
||||
}
|
||||
out:
|
||||
put_online_cpus();
|
||||
}
|
||||
|
||||
static char throttle_reason[][30] = {
|
||||
"No throttling",
|
||||
"Power Cap",
|
||||
"Processor Over Temperature",
|
||||
"Power Supply Failure",
|
||||
"Over Current",
|
||||
"OCC Reset"
|
||||
};
|
||||
|
||||
static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
|
||||
unsigned long msg_type, void *_msg)
|
||||
{
|
||||
|
@ -481,7 +488,7 @@ static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
|
|||
*/
|
||||
if (!throttled) {
|
||||
throttled = true;
|
||||
pr_crit("CPU frequency is throttled for duration\n");
|
||||
pr_warn("CPU frequency is throttled for duration\n");
|
||||
}
|
||||
|
||||
break;
|
||||
|
@ -505,23 +512,18 @@ static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
|
|||
return 0;
|
||||
}
|
||||
|
||||
if (omsg.throttle_status &&
|
||||
omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS)
|
||||
pr_info("OCC: Chip %u Pmax reduced due to %s\n",
|
||||
(unsigned int)omsg.chip,
|
||||
throttle_reason[omsg.throttle_status]);
|
||||
else if (!omsg.throttle_status)
|
||||
pr_info("OCC: Chip %u %s\n", (unsigned int)omsg.chip,
|
||||
throttle_reason[omsg.throttle_status]);
|
||||
else
|
||||
return 0;
|
||||
|
||||
for (i = 0; i < nr_chips; i++)
|
||||
if (chips[i].id == omsg.chip) {
|
||||
if (!omsg.throttle_status)
|
||||
chips[i].restore = true;
|
||||
schedule_work(&chips[i].throttle);
|
||||
}
|
||||
if (chips[i].id == omsg.chip)
|
||||
break;
|
||||
|
||||
if (omsg.throttle_status >= 0 &&
|
||||
omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS)
|
||||
chips[i].throttle_reason = omsg.throttle_status;
|
||||
|
||||
if (!omsg.throttle_status)
|
||||
chips[i].restore = true;
|
||||
|
||||
schedule_work(&chips[i].throttle);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -556,29 +558,54 @@ static int init_chip_info(void)
|
|||
unsigned int chip[256];
|
||||
unsigned int cpu, i;
|
||||
unsigned int prev_chip_id = UINT_MAX;
|
||||
cpumask_t cpu_mask;
|
||||
int ret = -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
core_to_chip_map = kcalloc(cpu_nr_cores(), sizeof(unsigned int),
|
||||
GFP_KERNEL);
|
||||
if (!core_to_chip_map)
|
||||
goto out;
|
||||
|
||||
cpumask_copy(&cpu_mask, cpu_possible_mask);
|
||||
for_each_cpu(cpu, &cpu_mask) {
|
||||
unsigned int id = cpu_to_chip_id(cpu);
|
||||
|
||||
if (prev_chip_id != id) {
|
||||
prev_chip_id = id;
|
||||
chip[nr_chips++] = id;
|
||||
}
|
||||
core_to_chip_map[cpu_core_index_of_thread(cpu)] = id;
|
||||
cpumask_andnot(&cpu_mask, &cpu_mask, cpu_sibling_mask(cpu));
|
||||
}
|
||||
|
||||
chips = kmalloc_array(nr_chips, sizeof(struct chip), GFP_KERNEL);
|
||||
chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
|
||||
if (!chips)
|
||||
return -ENOMEM;
|
||||
goto free_chip_map;
|
||||
|
||||
for (i = 0; i < nr_chips; i++) {
|
||||
chips[i].id = chip[i];
|
||||
chips[i].throttled = false;
|
||||
cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
|
||||
INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
|
||||
chips[i].restore = false;
|
||||
}
|
||||
|
||||
return 0;
|
||||
free_chip_map:
|
||||
kfree(core_to_chip_map);
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void clean_chip_info(void)
|
||||
{
|
||||
kfree(chips);
|
||||
kfree(core_to_chip_map);
|
||||
}
|
||||
|
||||
static inline void unregister_all_notifiers(void)
|
||||
{
|
||||
opal_message_notifier_unregister(OPAL_MSG_OCC,
|
||||
&powernv_cpufreq_opal_nb);
|
||||
unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
|
||||
}
|
||||
|
||||
static int __init powernv_cpufreq_init(void)
|
||||
|
@ -591,28 +618,35 @@ static int __init powernv_cpufreq_init(void)
|
|||
|
||||
/* Discover pstates from device tree and init */
|
||||
rc = init_powernv_pstates();
|
||||
if (rc) {
|
||||
pr_info("powernv-cpufreq disabled. System does not support PState control\n");
|
||||
return rc;
|
||||
}
|
||||
if (rc)
|
||||
goto out;
|
||||
|
||||
/* Populate chip info */
|
||||
rc = init_chip_info();
|
||||
if (rc)
|
||||
return rc;
|
||||
goto out;
|
||||
|
||||
register_reboot_notifier(&powernv_cpufreq_reboot_nb);
|
||||
opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
|
||||
return cpufreq_register_driver(&powernv_cpufreq_driver);
|
||||
|
||||
rc = cpufreq_register_driver(&powernv_cpufreq_driver);
|
||||
if (!rc)
|
||||
return 0;
|
||||
|
||||
pr_info("Failed to register the cpufreq driver (%d)\n", rc);
|
||||
unregister_all_notifiers();
|
||||
clean_chip_info();
|
||||
out:
|
||||
pr_info("Platform driver disabled. System does not support PState control\n");
|
||||
return rc;
|
||||
}
|
||||
module_init(powernv_cpufreq_init);
|
||||
|
||||
static void __exit powernv_cpufreq_exit(void)
|
||||
{
|
||||
unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
|
||||
opal_message_notifier_unregister(OPAL_MSG_OCC,
|
||||
&powernv_cpufreq_opal_nb);
|
||||
cpufreq_unregister_driver(&powernv_cpufreq_driver);
|
||||
unregister_all_notifiers();
|
||||
clean_chip_info();
|
||||
}
|
||||
module_exit(powernv_cpufreq_exit);
|
||||
|
||||
|
|
|
@ -80,7 +80,6 @@ struct cpufreq_policy {
|
|||
unsigned int last_policy; /* policy before unplug */
|
||||
struct cpufreq_governor *governor; /* see below */
|
||||
void *governor_data;
|
||||
bool governor_enabled; /* governor start/stop flag */
|
||||
char last_governor[CPUFREQ_NAME_LEN]; /* last governor used */
|
||||
|
||||
struct work_struct update; /* if update_policy() needs to be
|
||||
|
@ -100,10 +99,6 @@ struct cpufreq_policy {
|
|||
* - Any routine that will write to the policy structure and/or may take away
|
||||
* the policy altogether (eg. CPU hotplug), will hold this lock in write
|
||||
* mode before doing so.
|
||||
*
|
||||
* Additional rules:
|
||||
* - Lock should not be held across
|
||||
* __cpufreq_governor(data, CPUFREQ_GOV_POLICY_EXIT);
|
||||
*/
|
||||
struct rw_semaphore rwsem;
|
||||
|
||||
|
@ -464,29 +459,8 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
|
|||
int cpufreq_register_governor(struct cpufreq_governor *governor);
|
||||
void cpufreq_unregister_governor(struct cpufreq_governor *governor);
|
||||
|
||||
/* CPUFREQ DEFAULT GOVERNOR */
|
||||
/*
|
||||
* Performance governor is fallback governor if any other gov failed to auto
|
||||
* load due latency restrictions
|
||||
*/
|
||||
#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
|
||||
extern struct cpufreq_governor cpufreq_gov_performance;
|
||||
#endif
|
||||
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
|
||||
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_performance)
|
||||
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_POWERSAVE)
|
||||
extern struct cpufreq_governor cpufreq_gov_powersave;
|
||||
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_powersave)
|
||||
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE)
|
||||
extern struct cpufreq_governor cpufreq_gov_userspace;
|
||||
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_userspace)
|
||||
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND)
|
||||
extern struct cpufreq_governor cpufreq_gov_ondemand;
|
||||
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_ondemand)
|
||||
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE)
|
||||
extern struct cpufreq_governor cpufreq_gov_conservative;
|
||||
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_conservative)
|
||||
#endif
|
||||
struct cpufreq_governor *cpufreq_default_governor(void);
|
||||
struct cpufreq_governor *cpufreq_fallback_governor(void);
|
||||
|
||||
/*********************************************************************
|
||||
* FREQUENCY TABLE HELPERS *
|
||||
|
@ -525,16 +499,6 @@ static inline void dev_pm_opp_free_cpufreq_table(struct device *dev,
|
|||
}
|
||||
#endif
|
||||
|
||||
static inline bool cpufreq_next_valid(struct cpufreq_frequency_table **pos)
|
||||
{
|
||||
while ((*pos)->frequency != CPUFREQ_TABLE_END)
|
||||
if ((*pos)->frequency != CPUFREQ_ENTRY_INVALID)
|
||||
return true;
|
||||
else
|
||||
(*pos)++;
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* cpufreq_for_each_entry - iterate over a cpufreq_frequency_table
|
||||
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
|
||||
|
@ -551,8 +515,11 @@ static inline bool cpufreq_next_valid(struct cpufreq_frequency_table **pos)
|
|||
* @table: the cpufreq_frequency_table * to iterate over.
|
||||
*/
|
||||
|
||||
#define cpufreq_for_each_valid_entry(pos, table) \
|
||||
for (pos = table; cpufreq_next_valid(&pos); pos++)
|
||||
#define cpufreq_for_each_valid_entry(pos, table) \
|
||||
for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++) \
|
||||
if (pos->frequency == CPUFREQ_ENTRY_INVALID) \
|
||||
continue; \
|
||||
else
|
||||
|
||||
int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
|
||||
struct cpufreq_frequency_table *table);
|
||||
|
|
|
@ -3207,4 +3207,13 @@ static inline unsigned long rlimit_max(unsigned int limit)
|
|||
return task_rlimit_max(current, limit);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
struct update_util_data {
|
||||
void (*func)(struct update_util_data *data,
|
||||
u64 time, unsigned long util, unsigned long max);
|
||||
};
|
||||
|
||||
void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
|
||||
#endif /* CONFIG_CPU_FREQ */
|
||||
|
||||
#endif
|
||||
|
|
|
@ -38,6 +38,28 @@ DEFINE_EVENT(cpu, cpu_idle,
|
|||
TP_ARGS(state, cpu_id)
|
||||
);
|
||||
|
||||
TRACE_EVENT(powernv_throttle,
|
||||
|
||||
TP_PROTO(int chip_id, const char *reason, int pmax),
|
||||
|
||||
TP_ARGS(chip_id, reason, pmax),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(int, chip_id)
|
||||
__string(reason, reason)
|
||||
__field(int, pmax)
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->chip_id = chip_id;
|
||||
__assign_str(reason, reason);
|
||||
__entry->pmax = pmax;
|
||||
),
|
||||
|
||||
TP_printk("Chip %d Pmax %d %s", __entry->chip_id,
|
||||
__entry->pmax, __get_str(reason))
|
||||
);
|
||||
|
||||
TRACE_EVENT(pstate_sample,
|
||||
|
||||
TP_PROTO(u32 core_busy,
|
||||
|
|
|
@ -19,3 +19,4 @@ obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
|
|||
obj-$(CONFIG_SCHEDSTATS) += stats.o
|
||||
obj-$(CONFIG_SCHED_DEBUG) += debug.o
|
||||
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
|
||||
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
* Scheduler code and data structures related to cpufreq.
|
||||
*
|
||||
* Copyright (C) 2016, Intel Corporation
|
||||
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include "sched.h"
|
||||
|
||||
DEFINE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
|
||||
|
||||
/**
|
||||
* cpufreq_set_update_util_data - Populate the CPU's update_util_data pointer.
|
||||
* @cpu: The CPU to set the pointer for.
|
||||
* @data: New pointer value.
|
||||
*
|
||||
* Set and publish the update_util_data pointer for the given CPU. That pointer
|
||||
* points to a struct update_util_data object containing a callback function
|
||||
* to call from cpufreq_update_util(). That function will be called from an RCU
|
||||
* read-side critical section, so it must not sleep.
|
||||
*
|
||||
* Callers must use RCU-sched callbacks to free any memory that might be
|
||||
* accessed via the old update_util_data pointer or invoke synchronize_sched()
|
||||
* right after this function to avoid use-after-free.
|
||||
*/
|
||||
void cpufreq_set_update_util_data(int cpu, struct update_util_data *data)
|
||||
{
|
||||
if (WARN_ON(data && !data->func))
|
||||
return;
|
||||
|
||||
rcu_assign_pointer(per_cpu(cpufreq_update_util_data, cpu), data);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cpufreq_set_update_util_data);
|
|
@ -726,6 +726,10 @@ static void update_curr_dl(struct rq *rq)
|
|||
if (!dl_task(curr) || !on_dl_rq(dl_se))
|
||||
return;
|
||||
|
||||
/* Kick cpufreq (see the comment in linux/cpufreq.h). */
|
||||
if (cpu_of(rq) == smp_processor_id())
|
||||
cpufreq_trigger_update(rq_clock(rq));
|
||||
|
||||
/*
|
||||
* Consumed budget is computed considering the time as
|
||||
* observed by schedulable tasks (excluding time spent
|
||||
|
|
|
@ -2824,7 +2824,8 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
|
|||
{
|
||||
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
||||
u64 now = cfs_rq_clock_task(cfs_rq);
|
||||
int cpu = cpu_of(rq_of(cfs_rq));
|
||||
struct rq *rq = rq_of(cfs_rq);
|
||||
int cpu = cpu_of(rq);
|
||||
|
||||
/*
|
||||
* Track task load average for carrying it to new CPU after migrated, and
|
||||
|
@ -2836,6 +2837,29 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
|
|||
|
||||
if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
|
||||
update_tg_load_avg(cfs_rq, 0);
|
||||
|
||||
if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
|
||||
unsigned long max = rq->cpu_capacity_orig;
|
||||
|
||||
/*
|
||||
* There are a few boundary cases this might miss but it should
|
||||
* get called often enough that that should (hopefully) not be
|
||||
* a real problem -- added to that it only calls on the local
|
||||
* CPU, so if we enqueue remotely we'll miss an update, but
|
||||
* the next tick/schedule should update.
|
||||
*
|
||||
* It will not get called when we go idle, because the idle
|
||||
* thread is a different class (!fair), nor will the utilization
|
||||
* number include things like RT tasks.
|
||||
*
|
||||
* As is, the util number is not freq-invariant (we'd have to
|
||||
* implement arch_scale_freq_capacity() for that).
|
||||
*
|
||||
* See cpu_util().
|
||||
*/
|
||||
cpufreq_update_util(rq_clock(rq),
|
||||
min(cfs_rq->avg.util_avg, max), max);
|
||||
}
|
||||
}
|
||||
|
||||
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
|
|
|
@ -945,6 +945,10 @@ static void update_curr_rt(struct rq *rq)
|
|||
if (curr->sched_class != &rt_sched_class)
|
||||
return;
|
||||
|
||||
/* Kick cpufreq (see the comment in linux/cpufreq.h). */
|
||||
if (cpu_of(rq) == smp_processor_id())
|
||||
cpufreq_trigger_update(rq_clock(rq));
|
||||
|
||||
delta_exec = rq_clock_task(rq) - curr->se.exec_start;
|
||||
if (unlikely((s64)delta_exec <= 0))
|
||||
return;
|
||||
|
|
|
@ -1738,3 +1738,51 @@ static inline u64 irq_time_read(int cpu)
|
|||
}
|
||||
#endif /* CONFIG_64BIT */
|
||||
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
|
||||
|
||||
/**
|
||||
* cpufreq_update_util - Take a note about CPU utilization changes.
|
||||
* @time: Current time.
|
||||
* @util: Current utilization.
|
||||
* @max: Utilization ceiling.
|
||||
*
|
||||
* This function is called by the scheduler on every invocation of
|
||||
* update_load_avg() on the CPU whose utilization is being updated.
|
||||
*
|
||||
* It can only be called from RCU-sched read-side critical sections.
|
||||
*/
|
||||
static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
|
||||
{
|
||||
struct update_util_data *data;
|
||||
|
||||
data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
|
||||
if (data)
|
||||
data->func(data, time, util, max);
|
||||
}
|
||||
|
||||
/**
|
||||
* cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
|
||||
* @time: Current time.
|
||||
*
|
||||
* The way cpufreq is currently arranged requires it to evaluate the CPU
|
||||
* performance state (frequency/voltage) on a regular basis to prevent it from
|
||||
* being stuck in a completely inadequate performance level for too long.
|
||||
* That is not guaranteed to happen if the updates are only triggered from CFS,
|
||||
* though, because they may not be coming in if RT or deadline tasks are active
|
||||
* all the time (or there are RT and DL tasks only).
|
||||
*
|
||||
* As a workaround for that issue, this function is called by the RT and DL
|
||||
* sched classes to trigger extra cpufreq updates to prevent it from stalling,
|
||||
* but that really is a band-aid. Going forward it should be replaced with
|
||||
* solutions targeted more specifically at RT and DL tasks.
|
||||
*/
|
||||
static inline void cpufreq_trigger_update(u64 time)
|
||||
{
|
||||
cpufreq_update_util(time, ULONG_MAX, 0);
|
||||
}
|
||||
#else
|
||||
static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
|
||||
static inline void cpufreq_trigger_update(u64 time) {}
|
||||
#endif /* CONFIG_CPU_FREQ */
|
||||
|
|
|
@ -15,4 +15,5 @@
|
|||
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(suspend_resume);
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(cpu_idle);
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(powernv_throttle);
|
||||
|
||||
|
|
Loading…
Reference in New Issue