sched: fix process time monotonicity
Spencer reported a problem where utime and stime were going negative despite
the fixes in commit b27f03d4bd
. The suspected
reason for the problem is that signal_struct maintains it's own utime and
stime (of exited tasks), these are not updated using the new task_utime()
routine, hence sig->utime can go backwards and cause the same problem
to occur (sig->utime, adds tsk->utime and not task_utime()). This patch
fixes the problem
TODO: using max(task->prev_utime, derived utime) works for now, but a more
generic solution is to implement cputime_max() and use the cputime_gt()
function for comparison.
Reported-by: spencer@bluehost.com
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
56c7426b39
commit
49048622ea
|
@ -337,65 +337,6 @@ int proc_pid_status(struct seq_file *m, struct pid_namespace *ns,
|
|||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Use precise platform statistics if available:
|
||||
*/
|
||||
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
|
||||
static cputime_t task_utime(struct task_struct *p)
|
||||
{
|
||||
return p->utime;
|
||||
}
|
||||
|
||||
static cputime_t task_stime(struct task_struct *p)
|
||||
{
|
||||
return p->stime;
|
||||
}
|
||||
#else
|
||||
static cputime_t task_utime(struct task_struct *p)
|
||||
{
|
||||
clock_t utime = cputime_to_clock_t(p->utime),
|
||||
total = utime + cputime_to_clock_t(p->stime);
|
||||
u64 temp;
|
||||
|
||||
/*
|
||||
* Use CFS's precise accounting:
|
||||
*/
|
||||
temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
|
||||
|
||||
if (total) {
|
||||
temp *= utime;
|
||||
do_div(temp, total);
|
||||
}
|
||||
utime = (clock_t)temp;
|
||||
|
||||
p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
|
||||
return p->prev_utime;
|
||||
}
|
||||
|
||||
static cputime_t task_stime(struct task_struct *p)
|
||||
{
|
||||
clock_t stime;
|
||||
|
||||
/*
|
||||
* Use CFS's precise accounting. (we subtract utime from
|
||||
* the total, to make sure the total observed by userspace
|
||||
* grows monotonically - apps rely on that):
|
||||
*/
|
||||
stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
|
||||
cputime_to_clock_t(task_utime(p));
|
||||
|
||||
if (stime >= 0)
|
||||
p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
|
||||
|
||||
return p->prev_stime;
|
||||
}
|
||||
#endif
|
||||
|
||||
static cputime_t task_gtime(struct task_struct *p)
|
||||
{
|
||||
return p->gtime;
|
||||
}
|
||||
|
||||
static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
|
||||
struct pid *pid, struct task_struct *task, int whole)
|
||||
{
|
||||
|
|
|
@ -1475,6 +1475,10 @@ static inline void put_task_struct(struct task_struct *t)
|
|||
__put_task_struct(t);
|
||||
}
|
||||
|
||||
extern cputime_t task_utime(struct task_struct *p);
|
||||
extern cputime_t task_stime(struct task_struct *p);
|
||||
extern cputime_t task_gtime(struct task_struct *p);
|
||||
|
||||
/*
|
||||
* Per process flags
|
||||
*/
|
||||
|
|
|
@ -112,9 +112,9 @@ static void __exit_signal(struct task_struct *tsk)
|
|||
* We won't ever get here for the group leader, since it
|
||||
* will have been the last reference on the signal_struct.
|
||||
*/
|
||||
sig->utime = cputime_add(sig->utime, tsk->utime);
|
||||
sig->stime = cputime_add(sig->stime, tsk->stime);
|
||||
sig->gtime = cputime_add(sig->gtime, tsk->gtime);
|
||||
sig->utime = cputime_add(sig->utime, task_utime(tsk));
|
||||
sig->stime = cputime_add(sig->stime, task_stime(tsk));
|
||||
sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
|
||||
sig->min_flt += tsk->min_flt;
|
||||
sig->maj_flt += tsk->maj_flt;
|
||||
sig->nvcsw += tsk->nvcsw;
|
||||
|
|
|
@ -4178,6 +4178,65 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
|
|||
cpustat->steal = cputime64_add(cpustat->steal, tmp);
|
||||
}
|
||||
|
||||
/*
|
||||
* Use precise platform statistics if available:
|
||||
*/
|
||||
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
|
||||
cputime_t task_utime(struct task_struct *p)
|
||||
{
|
||||
return p->utime;
|
||||
}
|
||||
|
||||
cputime_t task_stime(struct task_struct *p)
|
||||
{
|
||||
return p->stime;
|
||||
}
|
||||
#else
|
||||
cputime_t task_utime(struct task_struct *p)
|
||||
{
|
||||
clock_t utime = cputime_to_clock_t(p->utime),
|
||||
total = utime + cputime_to_clock_t(p->stime);
|
||||
u64 temp;
|
||||
|
||||
/*
|
||||
* Use CFS's precise accounting:
|
||||
*/
|
||||
temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
|
||||
|
||||
if (total) {
|
||||
temp *= utime;
|
||||
do_div(temp, total);
|
||||
}
|
||||
utime = (clock_t)temp;
|
||||
|
||||
p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
|
||||
return p->prev_utime;
|
||||
}
|
||||
|
||||
cputime_t task_stime(struct task_struct *p)
|
||||
{
|
||||
clock_t stime;
|
||||
|
||||
/*
|
||||
* Use CFS's precise accounting. (we subtract utime from
|
||||
* the total, to make sure the total observed by userspace
|
||||
* grows monotonically - apps rely on that):
|
||||
*/
|
||||
stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
|
||||
cputime_to_clock_t(task_utime(p));
|
||||
|
||||
if (stime >= 0)
|
||||
p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
|
||||
|
||||
return p->prev_stime;
|
||||
}
|
||||
#endif
|
||||
|
||||
inline cputime_t task_gtime(struct task_struct *p)
|
||||
{
|
||||
return p->gtime;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function gets called by the timer code, with HZ frequency.
|
||||
* We call it with interrupts disabled.
|
||||
|
|
Loading…
Reference in New Issue