iio: hid-sensor-attributes: Convert to use int_pow()
Instead of linear approach to calculate power of 10, use generic int_pow() which does it better. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
parent
2715a28105
commit
473d12f763
|
@ -8,6 +8,7 @@
|
|||
#include <linux/module.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/hid-sensor-hub.h>
|
||||
#include <linux/iio/iio.h>
|
||||
|
@ -68,16 +69,6 @@ static struct {
|
|||
{HID_USAGE_SENSOR_HUMIDITY, 0, 1000, 0},
|
||||
};
|
||||
|
||||
static int pow_10(unsigned power)
|
||||
{
|
||||
int i;
|
||||
int ret = 1;
|
||||
for (i = 0; i < power; ++i)
|
||||
ret = ret * 10;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void simple_div(int dividend, int divisor, int *whole,
|
||||
int *micro_frac)
|
||||
{
|
||||
|
@ -96,14 +87,14 @@ static void simple_div(int dividend, int divisor, int *whole,
|
|||
rem *= 10;
|
||||
exp++;
|
||||
}
|
||||
*micro_frac = (rem / divisor) * pow_10(6-exp);
|
||||
*micro_frac = (rem / divisor) * int_pow(10, 6 - exp);
|
||||
}
|
||||
}
|
||||
|
||||
static void split_micro_fraction(unsigned int no, int exp, int *val1, int *val2)
|
||||
{
|
||||
*val1 = no/pow_10(exp);
|
||||
*val2 = no%pow_10(exp) * pow_10(6-exp);
|
||||
*val1 = no / int_pow(10, exp);
|
||||
*val2 = no % int_pow(10, exp) * int_pow(10, 6 - exp);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -125,7 +116,7 @@ static void convert_from_vtf_format(u32 value, int size, int exp,
|
|||
}
|
||||
exp = hid_sensor_convert_exponent(exp);
|
||||
if (exp >= 0) {
|
||||
*val1 = sign * value * pow_10(exp);
|
||||
*val1 = sign * value * int_pow(10, exp);
|
||||
*val2 = 0;
|
||||
} else {
|
||||
split_micro_fraction(value, -exp, val1, val2);
|
||||
|
@ -145,10 +136,10 @@ static u32 convert_to_vtf_format(int size, int exp, int val1, int val2)
|
|||
sign = -1;
|
||||
exp = hid_sensor_convert_exponent(exp);
|
||||
if (exp < 0) {
|
||||
value = abs(val1) * pow_10(-exp);
|
||||
value += abs(val2) / pow_10(6+exp);
|
||||
value = abs(val1) * int_pow(10, -exp);
|
||||
value += abs(val2) / int_pow(10, 6 + exp);
|
||||
} else
|
||||
value = abs(val1) / pow_10(exp);
|
||||
value = abs(val1) / int_pow(10, exp);
|
||||
if (sign < 0)
|
||||
value = ((1LL << (size * 8)) - value);
|
||||
|
||||
|
@ -211,12 +202,12 @@ int hid_sensor_write_samp_freq_value(struct hid_sensor_common *st,
|
|||
if (val1 < 0 || val2 < 0)
|
||||
return -EINVAL;
|
||||
|
||||
value = val1 * pow_10(6) + val2;
|
||||
value = val1 * int_pow(10, 6) + val2;
|
||||
if (value) {
|
||||
if (st->poll.units == HID_USAGE_SENSOR_UNITS_MILLISECOND)
|
||||
value = pow_10(9)/value;
|
||||
value = int_pow(10, 9) / value;
|
||||
else if (st->poll.units == HID_USAGE_SENSOR_UNITS_SECOND)
|
||||
value = pow_10(6)/value;
|
||||
value = int_pow(10, 6) / value;
|
||||
else
|
||||
value = 0;
|
||||
}
|
||||
|
@ -311,34 +302,34 @@ static void adjust_exponent_nano(int *val0, int *val1, int scale0,
|
|||
int rem;
|
||||
|
||||
if (exp > 0) {
|
||||
*val0 = scale0 * pow_10(exp);
|
||||
*val0 = scale0 * int_pow(10, exp);
|
||||
res = 0;
|
||||
if (exp > 9) {
|
||||
*val1 = 0;
|
||||
return;
|
||||
}
|
||||
for (i = 0; i < exp; ++i) {
|
||||
x = scale1 / pow_10(8 - i);
|
||||
res += (pow_10(exp - 1 - i) * x);
|
||||
scale1 = scale1 % pow_10(8 - i);
|
||||
x = scale1 / int_pow(10, 8 - i);
|
||||
res += int_pow(10, exp - 1 - i) * x;
|
||||
scale1 = scale1 % int_pow(10, 8 - i);
|
||||
}
|
||||
*val0 += res;
|
||||
*val1 = scale1 * pow_10(exp);
|
||||
*val1 = scale1 * int_pow(10, exp);
|
||||
} else if (exp < 0) {
|
||||
exp = abs(exp);
|
||||
if (exp > 9) {
|
||||
*val0 = *val1 = 0;
|
||||
return;
|
||||
}
|
||||
*val0 = scale0 / pow_10(exp);
|
||||
rem = scale0 % pow_10(exp);
|
||||
*val0 = scale0 / int_pow(10, exp);
|
||||
rem = scale0 % int_pow(10, exp);
|
||||
res = 0;
|
||||
for (i = 0; i < (9 - exp); ++i) {
|
||||
x = scale1 / pow_10(8 - i);
|
||||
res += (pow_10(8 - exp - i) * x);
|
||||
scale1 = scale1 % pow_10(8 - i);
|
||||
x = scale1 / int_pow(10, 8 - i);
|
||||
res += int_pow(10, 8 - exp - i) * x;
|
||||
scale1 = scale1 % int_pow(10, 8 - i);
|
||||
}
|
||||
*val1 = rem * pow_10(9 - exp) + res;
|
||||
*val1 = rem * int_pow(10, 9 - exp) + res;
|
||||
} else {
|
||||
*val0 = scale0;
|
||||
*val1 = scale1;
|
||||
|
|
Loading…
Reference in New Issue