drm/amd/display: Handle HDR use cases.

Implementation of de-gamma, blnd-gamma, shaper and
3d lut's.
Removed memory allocations in transfer functions.
Refactor color module.

Signed-off-by: Vitaly Prosyak <vitaly.prosyak@amd.com>
Reviewed-by: Krunoslav Kovac <Krunoslav.Kovac@amd.com>
Reviewed-by: Tony Cheng <Tony.Cheng@amd.com>
Acked-by: Harry Wentland <harry.wentland@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
Vitaly Prosyak 2018-02-13 13:18:43 -06:00 committed by Alex Deucher
parent aef5f5237b
commit 44c6f2e59e
4 changed files with 227 additions and 76 deletions

View File

@ -416,3 +416,156 @@ bool cm_helper_translate_curve_to_hw_format(
return true;
}
#define NUM_DEGAMMA_REGIONS 12
bool cm_helper_translate_curve_to_degamma_hw_format(
const struct dc_transfer_func *output_tf,
struct pwl_params *lut_params)
{
struct curve_points *arr_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
struct fixed31_32 y_r;
struct fixed31_32 y_g;
struct fixed31_32 y_b;
struct fixed31_32 y1_min;
struct fixed31_32 y3_max;
int32_t region_start, region_end;
int32_t i;
uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;
if (output_tf == NULL || lut_params == NULL || output_tf->type == TF_TYPE_BYPASS)
return false;
PERF_TRACE();
arr_points = lut_params->arr_points;
rgb_resulted = lut_params->rgb_resulted;
hw_points = 0;
memset(lut_params, 0, sizeof(struct pwl_params));
memset(seg_distr, 0, sizeof(seg_distr));
region_start = -NUM_DEGAMMA_REGIONS;
region_end = 0;
for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++)
seg_distr[i] = -1;
/* 12 segments
* segments are from 2^-12 to 0
*/
for (i = 0; i < NUM_DEGAMMA_REGIONS ; i++)
seg_distr[i] = 4;
for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (region_end - region_start); k++) {
increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
start_index = (region_start + k + MAX_LOW_POINT) *
NUMBER_SW_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
arr_points[0].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(region_start));
arr_points[1].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(region_end));
y_r = rgb_resulted[0].red;
y_g = rgb_resulted[0].green;
y_b = rgb_resulted[0].blue;
y1_min = dal_fixed31_32_min(y_r, dal_fixed31_32_min(y_g, y_b));
arr_points[0].y = y1_min;
arr_points[0].slope = dal_fixed31_32_div(arr_points[0].y, arr_points[0].x);
y_r = rgb_resulted[hw_points - 1].red;
y_g = rgb_resulted[hw_points - 1].green;
y_b = rgb_resulted[hw_points - 1].blue;
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
y3_max = dal_fixed31_32_max(y_r, dal_fixed31_32_max(y_g, y_b));
arr_points[1].y = y3_max;
arr_points[1].slope = dal_fixed31_32_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value =
dal_fixed31_32_from_int(125);
arr_points[1].slope = dal_fixed31_32_div(
dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
dal_fixed31_32_sub(end_value, arr_points[1].x));
}
lut_params->hw_points_num = hw_points;
i = 1;
for (k = 0; k < MAX_REGIONS_NUMBER && i < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1) {
lut_params->arr_curve_points[k].segments_num =
seg_distr[k];
lut_params->arr_curve_points[i].offset =
lut_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
}
i++;
}
if (seg_distr[k] != -1)
lut_params->arr_curve_points[k].segments_num = seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
if (dal_fixed31_32_lt(rgb_plus_1->red, rgb->red))
rgb_plus_1->red = rgb->red;
if (dal_fixed31_32_lt(rgb_plus_1->green, rgb->green))
rgb_plus_1->green = rgb->green;
if (dal_fixed31_32_lt(rgb_plus_1->blue, rgb->blue))
rgb_plus_1->blue = rgb->blue;
rgb->delta_red = dal_fixed31_32_sub(rgb_plus_1->red, rgb->red);
rgb->delta_green = dal_fixed31_32_sub(rgb_plus_1->green, rgb->green);
rgb->delta_blue = dal_fixed31_32_sub(rgb_plus_1->blue, rgb->blue);
++rgb_plus_1;
++rgb;
++i;
}
cm_helper_convert_to_custom_float(rgb_resulted,
lut_params->arr_points,
hw_points, false);
return true;
}

View File

@ -106,4 +106,9 @@ bool cm_helper_translate_curve_to_hw_format(
const struct dc_transfer_func *output_tf,
struct pwl_params *lut_params, bool fixpoint);
bool cm_helper_translate_curve_to_degamma_hw_format(
const struct dc_transfer_func *output_tf,
struct pwl_params *lut_params);
#endif

View File

@ -35,6 +35,8 @@ struct dpp {
int inst;
struct dpp_caps *caps;
struct pwl_params regamma_params;
struct pwl_params degamma_params;
};
struct dpp_grph_csc_adjustment {

View File

@ -30,15 +30,12 @@
#define NUM_PTS_IN_REGION 16
#define NUM_REGIONS 32
#define NUM_DEGAMMA_REGIONS 12
#define MAX_HW_POINTS (NUM_PTS_IN_REGION*NUM_REGIONS)
#define MAX_HW_DEGAMMA_POINTS (NUM_PTS_IN_REGION*NUM_DEGAMMA_REGIONS)
static struct hw_x_point coordinates_x[MAX_HW_POINTS + 2];
static struct hw_x_point degamma_coordinates_x[MAX_HW_DEGAMMA_POINTS + 2];
static struct fixed31_32 pq_table[MAX_HW_POINTS + 2];
static struct fixed31_32 de_pq_table[MAX_HW_DEGAMMA_POINTS + 2];
static struct fixed31_32 de_pq_table[MAX_HW_POINTS + 2];
static bool pq_initialized; /* = false; */
static bool de_pq_initialized; /* = false; */
@ -69,26 +66,6 @@ void setup_x_points_distribution(void)
(coordinates_x[index-1].x, increment);
}
}
region_size = dal_fixed31_32_from_int(1);
degamma_coordinates_x[MAX_HW_DEGAMMA_POINTS].x = region_size;
degamma_coordinates_x[MAX_HW_DEGAMMA_POINTS + 1].x = region_size;
for (segment = -1; segment > -(NUM_DEGAMMA_REGIONS + 1); segment--) {
region_size = dal_fixed31_32_div_int(region_size, 2);
increment = dal_fixed31_32_div_int(region_size,
NUM_PTS_IN_REGION);
seg_offset = (segment + NUM_DEGAMMA_REGIONS) * NUM_PTS_IN_REGION;
degamma_coordinates_x[seg_offset].x = region_size;
for (index = seg_offset + 1;
index < seg_offset + NUM_PTS_IN_REGION;
index++) {
degamma_coordinates_x[index].x = dal_fixed31_32_add
(degamma_coordinates_x[index-1].x, increment);
}
}
}
static void compute_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y)
@ -179,15 +156,26 @@ void precompute_de_pq(void)
{
int i;
struct fixed31_32 y;
const struct hw_x_point *coord_x = degamma_coordinates_x;
uint32_t begin_index, end_index;
struct fixed31_32 scaling_factor = dal_fixed31_32_from_int(125);
/* X points is 2^-25 to 2^7
* De-gamma X is 2^-12 to 2^0 we are skipping first -12-(-25) = 13 regions
*/
begin_index = 13 * NUM_PTS_IN_REGION;
end_index = begin_index + 12 * NUM_PTS_IN_REGION;
for (i = 0; i <= MAX_HW_DEGAMMA_POINTS; i++) {
compute_de_pq(coord_x->x, &y);
for (i = 0; i <= begin_index; i++)
de_pq_table[i] = dal_fixed31_32_zero;
for (; i <= end_index; i++) {
compute_de_pq(coordinates_x[i].x, &y);
de_pq_table[i] = dal_fixed31_32_mul(y, scaling_factor);
++coord_x;
}
for (; i <= MAX_HW_POINTS; i++)
de_pq_table[i] = de_pq_table[i-1];
}
struct dividers {
struct fixed31_32 divider1;
@ -617,8 +605,6 @@ static void build_de_pq(struct pwl_float_data_ex *de_pq,
uint32_t i;
struct fixed31_32 output;
struct pwl_float_data_ex *rgb = de_pq;
const struct hw_x_point *coord_x = degamma_coordinates_x;
struct fixed31_32 scaling_factor = dal_fixed31_32_from_int(125);
if (!de_pq_initialized) {
@ -634,13 +620,9 @@ static void build_de_pq(struct pwl_float_data_ex *de_pq,
output = dal_fixed31_32_zero;
else if (dal_fixed31_32_lt(scaling_factor, output))
output = scaling_factor;
rgb->r = output;
rgb->g = output;
rgb->b = output;
++coord_x;
++rgb;
de_pq[i].r = output;
de_pq[i].g = output;
de_pq[i].b = output;
}
}
@ -675,24 +657,37 @@ static void build_degamma(struct pwl_float_data_ex *curve,
const struct hw_x_point *coordinate_x, bool is_2_4)
{
uint32_t i;
struct gamma_coefficients coeff;
struct pwl_float_data_ex *rgb = curve;
const struct hw_x_point *coord_x = degamma_coordinates_x;
uint32_t begin_index, end_index;
build_coefficients(&coeff, is_2_4);
i = 0;
/* X points is 2^-25 to 2^7
* De-gamma X is 2^-12 to 2^0 we are skipping first -12-(-25) = 13 regions
*/
begin_index = 13 * NUM_PTS_IN_REGION;
end_index = begin_index + 12 * NUM_PTS_IN_REGION;
while (i != begin_index) {
curve[i].r = dal_fixed31_32_zero;
curve[i].g = dal_fixed31_32_zero;
curve[i].b = dal_fixed31_32_zero;
i++;
}
while (i != end_index) {
curve[i].r = translate_to_linear_space_ex(
coordinate_x[i].x, &coeff, 0);
curve[i].g = curve[i].r;
curve[i].b = curve[i].r;
i++;
}
while (i != hw_points_num + 1) {
/*TODO use y vs r,g,b*/
rgb->r = translate_to_linear_space_ex(
coord_x->x, &coeff, 0);
rgb->g = rgb->r;
rgb->b = rgb->r;
++coord_x;
++rgb;
++i;
curve[i].r = dal_fixed31_32_one;
curve[i].g = dal_fixed31_32_one;
curve[i].b = dal_fixed31_32_one;
i++;
}
}
@ -1173,10 +1168,6 @@ rgb_user_alloc_fail:
return ret;
}
/*TODO fix me should be 2*/
#define _EXTRA_POINTS 3
bool mod_color_calculate_degamma_params(struct dc_transfer_func *input_tf,
const struct dc_gamma *ramp, bool mapUserRamp)
{
@ -1205,7 +1196,7 @@ bool mod_color_calculate_degamma_params(struct dc_transfer_func *input_tf,
GFP_KERNEL);
if (!rgb_user)
goto rgb_user_alloc_fail;
curve = kzalloc(sizeof(*curve) * (MAX_HW_DEGAMMA_POINTS + _EXTRA_POINTS),
curve = kzalloc(sizeof(*curve) * (MAX_HW_POINTS + _EXTRA_POINTS),
GFP_KERNEL);
if (!curve)
goto curve_alloc_fail;
@ -1213,7 +1204,7 @@ bool mod_color_calculate_degamma_params(struct dc_transfer_func *input_tf,
GFP_KERNEL);
if (!axix_x)
goto axix_x_alloc_fail;
coeff = kzalloc(sizeof(*coeff) * (MAX_HW_DEGAMMA_POINTS + _EXTRA_POINTS), GFP_KERNEL);
coeff = kzalloc(sizeof(*coeff) * (MAX_HW_POINTS + _EXTRA_POINTS), GFP_KERNEL);
if (!coeff)
goto coeff_alloc_fail;
@ -1235,12 +1226,12 @@ bool mod_color_calculate_degamma_params(struct dc_transfer_func *input_tf,
if (tf == TRANSFER_FUNCTION_PQ)
build_de_pq(curve,
MAX_HW_DEGAMMA_POINTS,
degamma_coordinates_x);
MAX_HW_POINTS,
coordinates_x);
else
build_degamma(curve,
MAX_HW_DEGAMMA_POINTS,
degamma_coordinates_x,
MAX_HW_POINTS,
coordinates_x,
tf == TRANSFER_FUNCTION_SRGB ? true:false);
tf_pts->end_exponent = 0;
@ -1249,8 +1240,8 @@ bool mod_color_calculate_degamma_params(struct dc_transfer_func *input_tf,
tf_pts->x_point_at_y1_blue = 1;
map_regamma_hw_to_x_user(ramp, coeff, rgb_user,
degamma_coordinates_x, axix_x, curve,
MAX_HW_DEGAMMA_POINTS, tf_pts,
coordinates_x, axix_x, curve,
MAX_HW_POINTS, tf_pts,
mapUserRamp);
ret = true;
@ -1282,7 +1273,7 @@ bool mod_color_calculate_curve(enum dc_transfer_func_predefined trans,
points->x_point_at_y1_green = 1;
points->x_point_at_y1_blue = 1;
for (i = 0; i < MAX_HW_POINTS ; i++) {
for (i = 0; i <= MAX_HW_POINTS ; i++) {
points->red[i] = coordinates_x[i].x;
points->green[i] = coordinates_x[i].x;
points->blue[i] = coordinates_x[i].x;
@ -1303,7 +1294,7 @@ bool mod_color_calculate_curve(enum dc_transfer_func_predefined trans,
MAX_HW_POINTS,
coordinates_x,
80);
for (i = 0; i < MAX_HW_POINTS ; i++) {
for (i = 0; i <= MAX_HW_POINTS ; i++) {
points->red[i] = rgb_regamma[i].r;
points->green[i] = rgb_regamma[i].g;
points->blue[i] = rgb_regamma[i].b;
@ -1325,7 +1316,7 @@ bool mod_color_calculate_curve(enum dc_transfer_func_predefined trans,
build_regamma(rgb_regamma,
MAX_HW_POINTS,
coordinates_x, trans == TRANSFER_FUNCTION_SRGB ? true:false);
for (i = 0; i < MAX_HW_POINTS ; i++) {
for (i = 0; i <= MAX_HW_POINTS ; i++) {
points->red[i] = rgb_regamma[i].r;
points->green[i] = rgb_regamma[i].g;
points->blue[i] = rgb_regamma[i].b;
@ -1348,23 +1339,23 @@ bool mod_color_calculate_degamma_curve(enum dc_transfer_func_predefined trans,
if (trans == TRANSFER_FUNCTION_UNITY) {
for (i = 0; i < MAX_HW_DEGAMMA_POINTS ; i++) {
points->red[i] = degamma_coordinates_x[i].x;
points->green[i] = degamma_coordinates_x[i].x;
points->blue[i] = degamma_coordinates_x[i].x;
for (i = 0; i <= MAX_HW_POINTS ; i++) {
points->red[i] = coordinates_x[i].x;
points->green[i] = coordinates_x[i].x;
points->blue[i] = coordinates_x[i].x;
}
ret = true;
} else if (trans == TRANSFER_FUNCTION_PQ) {
rgb_degamma = kzalloc(sizeof(*rgb_degamma) * (MAX_HW_DEGAMMA_POINTS +
rgb_degamma = kzalloc(sizeof(*rgb_degamma) * (MAX_HW_POINTS +
_EXTRA_POINTS), GFP_KERNEL);
if (!rgb_degamma)
goto rgb_degamma_alloc_fail;
build_de_pq(rgb_degamma,
MAX_HW_DEGAMMA_POINTS,
degamma_coordinates_x);
for (i = 0; i < MAX_HW_DEGAMMA_POINTS ; i++) {
MAX_HW_POINTS,
coordinates_x);
for (i = 0; i <= MAX_HW_POINTS ; i++) {
points->red[i] = rgb_degamma[i].r;
points->green[i] = rgb_degamma[i].g;
points->blue[i] = rgb_degamma[i].b;
@ -1374,15 +1365,15 @@ bool mod_color_calculate_degamma_curve(enum dc_transfer_func_predefined trans,
kfree(rgb_degamma);
} else if (trans == TRANSFER_FUNCTION_SRGB ||
trans == TRANSFER_FUNCTION_BT709) {
rgb_degamma = kzalloc(sizeof(*rgb_degamma) * (MAX_HW_DEGAMMA_POINTS +
rgb_degamma = kzalloc(sizeof(*rgb_degamma) * (MAX_HW_POINTS +
_EXTRA_POINTS), GFP_KERNEL);
if (!rgb_degamma)
goto rgb_degamma_alloc_fail;
build_degamma(rgb_degamma,
MAX_HW_DEGAMMA_POINTS,
degamma_coordinates_x, trans == TRANSFER_FUNCTION_SRGB ? true:false);
for (i = 0; i < MAX_HW_DEGAMMA_POINTS ; i++) {
MAX_HW_POINTS,
coordinates_x, trans == TRANSFER_FUNCTION_SRGB ? true:false);
for (i = 0; i <= MAX_HW_POINTS ; i++) {
points->red[i] = rgb_degamma[i].r;
points->green[i] = rgb_degamma[i].g;
points->blue[i] = rgb_degamma[i].b;