Btrfs: compression heuristic: replace heap sort with radix sort

Slowest part of heuristic for now is kernel heap sort()
It's can take up to 55% of runtime on sorting bucket items.

As sorting will always call on most data sets to get correctly
byte_core_set_size, the only way to speed up heuristic, is to
speed up sort on bucket.

Add a general radix_sort function.
Radix sort require 2 buffers, one full size of input array
and one for store counters (jump addresses).

That increase usage per heuristic workspace +1KiB
8KiB + 1KiB -> 8KiB + 2KiB

That is LSD Radix, i use 4 bit as a base for calculating,
to make counters array acceptable small (16 elements * 8 byte).

That Radix sort implementation have several points to adjust,
I added him to make radix sort general usable in kernel,
like heap sort, if needed.

Performance tested in userspace copy of heuristic code,
throughput:
    - average <-> random data: ~3500 MiB/s - heap  sort
    - average <-> random data: ~6000 MiB/s - radix sort

Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
[ coding style fixes ]
Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
Timofey Titovets 2017-12-04 00:30:33 +03:00 committed by David Sterba
parent 1c3063b6db
commit 440c840cb4
1 changed files with 124 additions and 8 deletions

View File

@ -33,7 +33,6 @@
#include <linux/bit_spinlock.h> #include <linux/bit_spinlock.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/sched/mm.h> #include <linux/sched/mm.h>
#include <linux/sort.h>
#include <linux/log2.h> #include <linux/log2.h>
#include "ctree.h" #include "ctree.h"
#include "disk-io.h" #include "disk-io.h"
@ -752,6 +751,8 @@ struct heuristic_ws {
u32 sample_size; u32 sample_size;
/* Buckets store counters for each byte value */ /* Buckets store counters for each byte value */
struct bucket_item *bucket; struct bucket_item *bucket;
/* Sorting buffer */
struct bucket_item *bucket_b;
struct list_head list; struct list_head list;
}; };
@ -763,6 +764,7 @@ static void free_heuristic_ws(struct list_head *ws)
kvfree(workspace->sample); kvfree(workspace->sample);
kfree(workspace->bucket); kfree(workspace->bucket);
kfree(workspace->bucket_b);
kfree(workspace); kfree(workspace);
} }
@ -782,6 +784,10 @@ static struct list_head *alloc_heuristic_ws(void)
if (!ws->bucket) if (!ws->bucket)
goto fail; goto fail;
ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
if (!ws->bucket_b)
goto fail;
INIT_LIST_HEAD(&ws->list); INIT_LIST_HEAD(&ws->list);
return &ws->list; return &ws->list;
fail: fail:
@ -1278,13 +1284,122 @@ static u32 shannon_entropy(struct heuristic_ws *ws)
return entropy_sum * 100 / entropy_max; return entropy_sum * 100 / entropy_max;
} }
/* Compare buckets by size, ascending */ #define RADIX_BASE 4U
static int bucket_comp_rev(const void *lv, const void *rv) #define COUNTERS_SIZE (1U << RADIX_BASE)
{
const struct bucket_item *l = (const struct bucket_item *)lv;
const struct bucket_item *r = (const struct bucket_item *)rv;
return r->count - l->count; static u8 get4bits(u64 num, int shift) {
u8 low4bits;
num >>= shift;
/* Reverse order */
low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
return low4bits;
}
static void copy_cell(void *dst, int dest_i, void *src, int src_i)
{
struct bucket_item *dstv = (struct bucket_item *)dst;
struct bucket_item *srcv = (struct bucket_item *)src;
dstv[dest_i] = srcv[src_i];
}
static u64 get_num(const void *a, int i)
{
struct bucket_item *av = (struct bucket_item *)a;
return av[i].count;
}
/*
* Use 4 bits as radix base
* Use 16 u32 counters for calculating new possition in buf array
*
* @array - array that will be sorted
* @array_buf - buffer array to store sorting results
* must be equal in size to @array
* @num - array size
* @get_num - function to extract number from array
* @copy_cell - function to copy data from array to array_buf and vice versa
* @get4bits - function to get 4 bits from number at specified offset
*/
static void radix_sort(void *array, void *array_buf, int num,
u64 (*get_num)(const void *, int i),
void (*copy_cell)(void *dest, int dest_i,
void* src, int src_i),
u8 (*get4bits)(u64 num, int shift))
{
u64 max_num;
u64 buf_num;
u32 counters[COUNTERS_SIZE];
u32 new_addr;
u32 addr;
int bitlen;
int shift;
int i;
/*
* Try avoid useless loop iterations for small numbers stored in big
* counters. Example: 48 33 4 ... in 64bit array
*/
max_num = get_num(array, 0);
for (i = 1; i < num; i++) {
buf_num = get_num(array, i);
if (buf_num > max_num)
max_num = buf_num;
}
buf_num = ilog2(max_num);
bitlen = ALIGN(buf_num, RADIX_BASE * 2);
shift = 0;
while (shift < bitlen) {
memset(counters, 0, sizeof(counters));
for (i = 0; i < num; i++) {
buf_num = get_num(array, i);
addr = get4bits(buf_num, shift);
counters[addr]++;
}
for (i = 1; i < COUNTERS_SIZE; i++)
counters[i] += counters[i - 1];
for (i = num - 1; i >= 0; i--) {
buf_num = get_num(array, i);
addr = get4bits(buf_num, shift);
counters[addr]--;
new_addr = counters[addr];
copy_cell(array_buf, new_addr, array, i);
}
shift += RADIX_BASE;
/*
* Normal radix expects to move data from a temporary array, to
* the main one. But that requires some CPU time. Avoid that
* by doing another sort iteration to original array instead of
* memcpy()
*/
memset(counters, 0, sizeof(counters));
for (i = 0; i < num; i ++) {
buf_num = get_num(array_buf, i);
addr = get4bits(buf_num, shift);
counters[addr]++;
}
for (i = 1; i < COUNTERS_SIZE; i++)
counters[i] += counters[i - 1];
for (i = num - 1; i >= 0; i--) {
buf_num = get_num(array_buf, i);
addr = get4bits(buf_num, shift);
counters[addr]--;
new_addr = counters[addr];
copy_cell(array, new_addr, array_buf, i);
}
shift += RADIX_BASE;
}
} }
/* /*
@ -1314,7 +1429,8 @@ static int byte_core_set_size(struct heuristic_ws *ws)
struct bucket_item *bucket = ws->bucket; struct bucket_item *bucket = ws->bucket;
/* Sort in reverse order */ /* Sort in reverse order */
sort(bucket, BUCKET_SIZE, sizeof(*bucket), &bucket_comp_rev, NULL); radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE, get_num, copy_cell,
get4bits);
for (i = 0; i < BYTE_CORE_SET_LOW; i++) for (i = 0; i < BYTE_CORE_SET_LOW; i++)
coreset_sum += bucket[i].count; coreset_sum += bucket[i].count;