xtensa: use generic dma_noncoherent_ops

Switch to the generic noncoherent direct mapping implementation.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
This commit is contained in:
Christoph Hellwig 2018-06-19 09:03:16 +02:00 committed by Max Filippov
parent 1e4b044d22
commit 3f2bbf443e
4 changed files with 19 additions and 141 deletions

View File

@ -4,12 +4,15 @@ config ZONE_DMA
config XTENSA
def_bool y
select ARCH_HAS_SYNC_DMA_FOR_CPU
select ARCH_HAS_SYNC_DMA_FOR_DEVICE
select ARCH_NO_COHERENT_DMA_MMAP if !MMU
select ARCH_WANT_FRAME_POINTERS
select ARCH_WANT_IPC_PARSE_VERSION
select BUILDTIME_EXTABLE_SORT
select CLONE_BACKWARDS
select COMMON_CLK
select DMA_NONCOHERENT_OPS
select GENERIC_ATOMIC64
select GENERIC_CLOCKEVENTS
select GENERIC_IRQ_SHOW

View File

@ -3,6 +3,7 @@ generic-y += compat.h
generic-y += device.h
generic-y += div64.h
generic-y += dma-contiguous.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h

View File

@ -1,26 +0,0 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2003 - 2005 Tensilica Inc.
* Copyright (C) 2015 Cadence Design Systems Inc.
*/
#ifndef _XTENSA_DMA_MAPPING_H
#define _XTENSA_DMA_MAPPING_H
#include <asm/cache.h>
#include <asm/io.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
extern const struct dma_map_ops xtensa_dma_map_ops;
static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
{
return &xtensa_dma_map_ops;
}
#endif /* _XTENSA_DMA_MAPPING_H */

View File

@ -16,26 +16,24 @@
*/
#include <linux/dma-contiguous.h>
#include <linux/dma-noncoherent.h>
#include <linux/dma-direct.h>
#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
static void do_cache_op(dma_addr_t dma_handle, size_t size,
static void do_cache_op(phys_addr_t paddr, size_t size,
void (*fn)(unsigned long, unsigned long))
{
unsigned long off = dma_handle & (PAGE_SIZE - 1);
unsigned long pfn = PFN_DOWN(dma_handle);
unsigned long off = paddr & (PAGE_SIZE - 1);
unsigned long pfn = PFN_DOWN(paddr);
struct page *page = pfn_to_page(pfn);
if (!PageHighMem(page))
fn((unsigned long)bus_to_virt(dma_handle), size);
fn((unsigned long)phys_to_virt(paddr), size);
else
while (size > 0) {
size_t sz = min_t(size_t, size, PAGE_SIZE - off);
@ -49,14 +47,13 @@ static void do_cache_op(dma_addr_t dma_handle, size_t size,
}
}
static void xtensa_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir)
{
switch (dir) {
case DMA_BIDIRECTIONAL:
case DMA_FROM_DEVICE:
do_cache_op(dma_handle, size, __invalidate_dcache_range);
do_cache_op(paddr, size, __invalidate_dcache_range);
break;
case DMA_NONE:
@ -68,15 +65,14 @@ static void xtensa_sync_single_for_cpu(struct device *dev,
}
}
static void xtensa_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir)
{
switch (dir) {
case DMA_BIDIRECTIONAL:
case DMA_TO_DEVICE:
if (XCHAL_DCACHE_IS_WRITEBACK)
do_cache_op(dma_handle, size, __flush_dcache_range);
do_cache_op(paddr, size, __flush_dcache_range);
break;
case DMA_NONE:
@ -88,40 +84,13 @@ static void xtensa_sync_single_for_device(struct device *dev,
}
}
static void xtensa_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
sg_dma_len(s), dir);
}
}
static void xtensa_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_sync_single_for_device(dev, sg_dma_address(s),
sg_dma_len(s), dir);
}
}
/*
* Note: We assume that the full memory space is always mapped to 'kseg'
* Otherwise we have to use page attributes (not implemented).
*/
static void *xtensa_dma_alloc(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t flag,
unsigned long attrs)
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
gfp_t flag, unsigned long attrs)
{
unsigned long ret;
unsigned long uncached;
@ -171,8 +140,8 @@ static void *xtensa_dma_alloc(struct device *dev, size_t size,
return (void *)uncached;
}
static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long addr = (unsigned long)vaddr;
@ -192,72 +161,3 @@ static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size));
}
static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t dma_handle = page_to_phys(page) + offset;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
xtensa_sync_single_for_device(dev, dma_handle, size, dir);
return dma_handle;
}
static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
}
static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
s->length, dir, attrs);
}
return nents;
}
static void xtensa_unmap_sg(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_unmap_page(dev, sg_dma_address(s),
sg_dma_len(s), dir, attrs);
}
}
int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
const struct dma_map_ops xtensa_dma_map_ops = {
.alloc = xtensa_dma_alloc,
.free = xtensa_dma_free,
.map_page = xtensa_map_page,
.unmap_page = xtensa_unmap_page,
.map_sg = xtensa_map_sg,
.unmap_sg = xtensa_unmap_sg,
.sync_single_for_cpu = xtensa_sync_single_for_cpu,
.sync_single_for_device = xtensa_sync_single_for_device,
.sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
.sync_sg_for_device = xtensa_sync_sg_for_device,
.mapping_error = xtensa_dma_mapping_error,
};
EXPORT_SYMBOL(xtensa_dma_map_ops);