lguest: don't share Switcher PTE pages between guests.
We currently use the whole top PGD entry for the switcher, so we simply share a fixed page of PTEs between all guests (actually, it's one per Host CPU, to ensure isolation between guests). Changes to a scheme where every guest has its own mappings. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
parent
f1f394b1c3
commit
3412b6ae29
|
@ -333,15 +333,10 @@ static int __init init(void)
|
|||
if (err)
|
||||
goto out;
|
||||
|
||||
/* Now we set up the pagetable implementation for the Guests. */
|
||||
err = init_pagetables(lg_switcher_pages);
|
||||
if (err)
|
||||
goto unmap;
|
||||
|
||||
/* We might need to reserve an interrupt vector. */
|
||||
err = init_interrupts();
|
||||
if (err)
|
||||
goto free_pgtables;
|
||||
goto unmap;
|
||||
|
||||
/* /dev/lguest needs to be registered. */
|
||||
err = lguest_device_init();
|
||||
|
@ -356,8 +351,6 @@ static int __init init(void)
|
|||
|
||||
free_interrupts:
|
||||
free_interrupts();
|
||||
free_pgtables:
|
||||
free_pagetables();
|
||||
unmap:
|
||||
unmap_switcher();
|
||||
out:
|
||||
|
@ -369,7 +362,6 @@ static void __exit fini(void)
|
|||
{
|
||||
lguest_device_remove();
|
||||
free_interrupts();
|
||||
free_pagetables();
|
||||
unmap_switcher();
|
||||
|
||||
lguest_arch_host_fini();
|
||||
|
|
|
@ -14,9 +14,6 @@
|
|||
|
||||
#include <asm/lguest.h>
|
||||
|
||||
void free_pagetables(void);
|
||||
int init_pagetables(struct page **switcher_pages);
|
||||
|
||||
struct pgdir {
|
||||
unsigned long gpgdir;
|
||||
pgd_t *pgdir;
|
||||
|
|
|
@ -62,20 +62,11 @@
|
|||
* will need the last pmd entry of the last pmd page.
|
||||
*/
|
||||
#ifdef CONFIG_X86_PAE
|
||||
#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
|
||||
#define CHECK_GPGD_MASK _PAGE_PRESENT
|
||||
#else
|
||||
#define CHECK_GPGD_MASK _PAGE_TABLE
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We actually need a separate PTE page for each CPU. Remember that after the
|
||||
* Switcher code itself comes two pages for each CPU, and we don't want this
|
||||
* CPU's guest to see the pages of any other CPU.
|
||||
*/
|
||||
static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
|
||||
#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
|
||||
|
||||
/*H:320
|
||||
* The page table code is curly enough to need helper functions to keep it
|
||||
* clear and clean. The kernel itself provides many of them; one advantage
|
||||
|
@ -714,9 +705,6 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
int *blank_pgdir)
|
||||
{
|
||||
unsigned int next;
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t *pmd_table;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We pick one entry at random to throw out. Choosing the Least
|
||||
|
@ -731,29 +719,11 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
if (!cpu->lg->pgdirs[next].pgdir)
|
||||
next = cpu->cpu_pgd;
|
||||
else {
|
||||
#ifdef CONFIG_X86_PAE
|
||||
/*
|
||||
* In PAE mode, allocate a pmd page and populate the
|
||||
* last pgd entry.
|
||||
* This is a blank page, so there are no kernel
|
||||
* mappings: caller must map the stack!
|
||||
*/
|
||||
pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!pmd_table) {
|
||||
free_page((long)cpu->lg->pgdirs[next].pgdir);
|
||||
set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
|
||||
next = cpu->cpu_pgd;
|
||||
} else {
|
||||
set_pgd(cpu->lg->pgdirs[next].pgdir +
|
||||
SWITCHER_PGD_INDEX,
|
||||
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
|
||||
/*
|
||||
* This is a blank page, so there are no kernel
|
||||
* mappings: caller must map the stack!
|
||||
*/
|
||||
*blank_pgdir = 1;
|
||||
}
|
||||
#else
|
||||
*blank_pgdir = 1;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/* Record which Guest toplevel this shadows. */
|
||||
|
@ -764,6 +734,23 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|||
return next;
|
||||
}
|
||||
|
||||
/*H:501
|
||||
* We do need the Switcher code mapped at all times, so we allocate that
|
||||
* part of the Guest page table here, and populate it when we're about to run
|
||||
* the guest.
|
||||
*/
|
||||
static bool allocate_switcher_mapping(struct lg_cpu *cpu)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
|
||||
if (!find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
|
||||
CHECK_GPGD_MASK, _PAGE_TABLE))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/*H:470
|
||||
* Finally, a routine which throws away everything: all PGD entries in all
|
||||
* the shadow page tables, including the Guest's kernel mappings. This is used
|
||||
|
@ -774,28 +761,14 @@ static void release_all_pagetables(struct lguest *lg)
|
|||
unsigned int i, j;
|
||||
|
||||
/* Every shadow pagetable this Guest has */
|
||||
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
|
||||
if (lg->pgdirs[i].pgdir) {
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pgd_t *spgd;
|
||||
pmd_t *pmdpage;
|
||||
unsigned int k;
|
||||
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
|
||||
if (!lg->pgdirs[i].pgdir)
|
||||
continue;
|
||||
|
||||
/* Get the last pmd page. */
|
||||
spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
|
||||
pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
|
||||
|
||||
/*
|
||||
* And release the pmd entries of that pmd page,
|
||||
* except for the switcher pmd.
|
||||
*/
|
||||
for (k = 0; k < SWITCHER_PMD_INDEX; k++)
|
||||
release_pmd(&pmdpage[k]);
|
||||
#endif
|
||||
/* Every PGD entry except the Switcher at the top */
|
||||
for (j = 0; j < SWITCHER_PGD_INDEX; j++)
|
||||
release_pgd(lg->pgdirs[i].pgdir + j);
|
||||
}
|
||||
/* Every PGD entry. */
|
||||
for (j = 0; j < PTRS_PER_PGD; j++)
|
||||
release_pgd(lg->pgdirs[i].pgdir + j);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -809,6 +782,9 @@ void guest_pagetable_clear_all(struct lg_cpu *cpu)
|
|||
release_all_pagetables(cpu->lg);
|
||||
/* We need the Guest kernel stack mapped again. */
|
||||
pin_stack_pages(cpu);
|
||||
/* And we need Switcher allocated. */
|
||||
if (!allocate_switcher_mapping(cpu))
|
||||
kill_guest(cpu, "Cannot populate switcher mapping");
|
||||
}
|
||||
|
||||
/*H:430
|
||||
|
@ -844,9 +820,15 @@ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
|
|||
newpgdir = new_pgdir(cpu, pgtable, &repin);
|
||||
/* Change the current pgd index to the new one. */
|
||||
cpu->cpu_pgd = newpgdir;
|
||||
/* If it was completely blank, we map in the Guest kernel stack */
|
||||
/*
|
||||
* If it was completely blank, we map in the Guest kernel stack and
|
||||
* the Switcher.
|
||||
*/
|
||||
if (repin)
|
||||
pin_stack_pages(cpu);
|
||||
|
||||
if (!allocate_switcher_mapping(cpu))
|
||||
kill_guest(cpu, "Cannot populate switcher mapping");
|
||||
}
|
||||
/*:*/
|
||||
|
||||
|
@ -976,14 +958,23 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
|||
{
|
||||
int pgdir;
|
||||
|
||||
if (idx >= SWITCHER_PGD_INDEX)
|
||||
if (idx > PTRS_PER_PGD) {
|
||||
kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
|
||||
idx, PTRS_PER_PGD);
|
||||
return;
|
||||
}
|
||||
|
||||
/* If they're talking about a page table we have a shadow for... */
|
||||
pgdir = find_pgdir(lg, gpgdir);
|
||||
if (pgdir < ARRAY_SIZE(lg->pgdirs))
|
||||
if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
|
||||
/* ... throw it away. */
|
||||
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
|
||||
/* That might have been the Switcher mapping, remap it. */
|
||||
if (!allocate_switcher_mapping(&lg->cpus[0])) {
|
||||
kill_guest(&lg->cpus[0],
|
||||
"Cannot populate switcher mapping");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
|
@ -1001,6 +992,9 @@ void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
|
|||
* we will populate on future faults. The Guest doesn't have any actual
|
||||
* pagetables yet, so we set linear_pages to tell demand_page() to fake it
|
||||
* for the moment.
|
||||
*
|
||||
* We do need the Switcher to be mapped at all times, so we allocate that
|
||||
* part of the Guest page table here.
|
||||
*/
|
||||
int init_guest_pagetable(struct lguest *lg)
|
||||
{
|
||||
|
@ -1014,6 +1008,13 @@ int init_guest_pagetable(struct lguest *lg)
|
|||
|
||||
/* We start with a linear mapping until the initialize. */
|
||||
cpu->linear_pages = true;
|
||||
|
||||
/* Allocate the page tables for the Switcher. */
|
||||
if (!allocate_switcher_mapping(cpu)) {
|
||||
release_all_pagetables(lg);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1065,92 +1066,69 @@ void free_guest_pagetable(struct lguest *lg)
|
|||
* (vi) Mapping the Switcher when the Guest is about to run.
|
||||
*
|
||||
* The Switcher and the two pages for this CPU need to be visible in the
|
||||
* Guest (and not the pages for other CPUs). We have the appropriate PTE pages
|
||||
* for each CPU already set up, we just need to hook them in now we know which
|
||||
* Guest is about to run on this CPU.
|
||||
* Guest (and not the pages for other CPUs).
|
||||
*
|
||||
* The pages have all been allocate
|
||||
*/
|
||||
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
||||
{
|
||||
pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
|
||||
pte_t regs_pte;
|
||||
unsigned long base, i;
|
||||
struct page *percpu_switcher_page, *regs_page;
|
||||
pte_t *pte;
|
||||
|
||||
#ifdef CONFIG_X86_PAE
|
||||
pmd_t switcher_pmd;
|
||||
pmd_t *pmd_table;
|
||||
/* Code page should always be mapped, and executable. */
|
||||
pte = find_spte(cpu, switcher_addr, false, 0, 0);
|
||||
get_page(lg_switcher_pages[0]);
|
||||
set_pte(pte, mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
|
||||
|
||||
switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
|
||||
PAGE_KERNEL_EXEC);
|
||||
/* Clear all the Switcher mappings for any other CPUs. */
|
||||
/* FIXME: This is dumb: update only when Host CPU changes. */
|
||||
for_each_possible_cpu(i) {
|
||||
/* Get location of lguest_pages (indexed by Host CPU) */
|
||||
base = switcher_addr + PAGE_SIZE
|
||||
+ i * sizeof(struct lguest_pages);
|
||||
|
||||
/* Figure out where the pmd page is, by reading the PGD, and converting
|
||||
* it to a virtual address. */
|
||||
pmd_table = __va(pgd_pfn(cpu->lg->
|
||||
pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
|
||||
<< PAGE_SHIFT);
|
||||
/* Now write it into the shadow page table. */
|
||||
set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
|
||||
#else
|
||||
pgd_t switcher_pgd;
|
||||
/* Get shadow PTE for first page (where we put guest regs). */
|
||||
pte = find_spte(cpu, base, false, 0, 0);
|
||||
set_pte(pte, __pte(0));
|
||||
|
||||
/* This is where we put R/O state. */
|
||||
pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
|
||||
set_pte(pte, __pte(0));
|
||||
}
|
||||
|
||||
/*
|
||||
* Make the last PGD entry for this Guest point to the Switcher's PTE
|
||||
* page for this CPU (with appropriate flags).
|
||||
* When we're running the Guest, we want the Guest's "regs" page to
|
||||
* appear where the first Switcher page for this CPU is. This is an
|
||||
* optimization: when the Switcher saves the Guest registers, it saves
|
||||
* them into the first page of this CPU's "struct lguest_pages": if we
|
||||
* make sure the Guest's register page is already mapped there, we
|
||||
* don't have to copy them out again.
|
||||
*/
|
||||
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
|
||||
/* Find the shadow PTE for this regs page. */
|
||||
base = switcher_addr + PAGE_SIZE
|
||||
+ raw_smp_processor_id() * sizeof(struct lguest_pages);
|
||||
pte = find_spte(cpu, base, false, 0, 0);
|
||||
regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
|
||||
get_page(regs_page);
|
||||
set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
|
||||
|
||||
cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
|
||||
|
||||
#endif
|
||||
/*
|
||||
* We also change the Switcher PTE page. When we're running the Guest,
|
||||
* we want the Guest's "regs" page to appear where the first Switcher
|
||||
* page for this CPU is. This is an optimization: when the Switcher
|
||||
* saves the Guest registers, it saves them into the first page of this
|
||||
* CPU's "struct lguest_pages": if we make sure the Guest's register
|
||||
* page is already mapped there, we don't have to copy them out
|
||||
* again.
|
||||
* We map the second page of the struct lguest_pages read-only in
|
||||
* the Guest: the IDT, GDT and other things it's not supposed to
|
||||
* change.
|
||||
*/
|
||||
regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
|
||||
set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
|
||||
base += PAGE_SIZE;
|
||||
pte = find_spte(cpu, base, false, 0, 0);
|
||||
|
||||
percpu_switcher_page
|
||||
= lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
|
||||
get_page(percpu_switcher_page);
|
||||
set_pte(pte, mk_pte(percpu_switcher_page,
|
||||
__pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
|
||||
}
|
||||
/*:*/
|
||||
|
||||
static void free_switcher_pte_pages(void)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for_each_possible_cpu(i)
|
||||
free_page((long)switcher_pte_page(i));
|
||||
}
|
||||
|
||||
/*H:520
|
||||
* Setting up the Switcher PTE page for given CPU is fairly easy, given
|
||||
* the CPU number and the "struct page"s for the Switcher and per-cpu pages.
|
||||
*/
|
||||
static __init void populate_switcher_pte_page(unsigned int cpu,
|
||||
struct page *switcher_pages[])
|
||||
{
|
||||
pte_t *pte = switcher_pte_page(cpu);
|
||||
int i;
|
||||
|
||||
/* The first entries maps the Switcher code. */
|
||||
set_pte(&pte[0], mk_pte(switcher_pages[0],
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
|
||||
|
||||
/* The only other thing we map is this CPU's pair of pages. */
|
||||
i = 1 + cpu*2;
|
||||
|
||||
/* First page (Guest registers) is writable from the Guest */
|
||||
set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_pages[i]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
|
||||
|
||||
/*
|
||||
* The second page contains the "struct lguest_ro_state", and is
|
||||
* read-only.
|
||||
*/
|
||||
set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_pages[i+1]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
|
||||
}
|
||||
|
||||
/*
|
||||
* We've made it through the page table code. Perhaps our tired brains are
|
||||
* still processing the details, or perhaps we're simply glad it's over.
|
||||
|
@ -1163,29 +1141,3 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
|
|||
*
|
||||
* There is just one file remaining in the Host.
|
||||
*/
|
||||
|
||||
/*H:510
|
||||
* At boot or module load time, init_pagetables() allocates and populates
|
||||
* the Switcher PTE page for each CPU.
|
||||
*/
|
||||
__init int init_pagetables(struct page **switcher_pages)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!switcher_pte_page(i)) {
|
||||
free_switcher_pte_pages();
|
||||
return -ENOMEM;
|
||||
}
|
||||
populate_switcher_pte_page(i, switcher_pages);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Cleaning up simply involves freeing the PTE page for each CPU. */
|
||||
void free_pagetables(void)
|
||||
{
|
||||
free_switcher_pte_pages();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue