KVM: arm64: Add KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
Add a capability for userspace to specify the eager split chunk size. The chunk size specifies how many pages to break at a time, using a single allocation. Bigger the chunk size, more pages need to be allocated ahead of time. Suggested-by: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Ricardo Koller <ricarkol@google.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Link: https://lore.kernel.org/r/20230426172330.1439644-6-ricarkol@google.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
This commit is contained in:
parent
26f457142d
commit
2f440b72e8
|
@ -8445,6 +8445,33 @@ structure.
|
|||
When getting the Modified Change Topology Report value, the attr->addr
|
||||
must point to a byte where the value will be stored or retrieved from.
|
||||
|
||||
8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
|
||||
---------------------------------------
|
||||
|
||||
:Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
|
||||
:Architectures: arm64
|
||||
:Type: vm
|
||||
:Parameters: arg[0] is the new split chunk size.
|
||||
:Returns: 0 on success, -EINVAL if any memslot was already created.
|
||||
|
||||
This capability sets the chunk size used in Eager Page Splitting.
|
||||
|
||||
Eager Page Splitting improves the performance of dirty-logging (used
|
||||
in live migrations) when guest memory is backed by huge-pages. It
|
||||
avoids splitting huge-pages (into PAGE_SIZE pages) on fault, by doing
|
||||
it eagerly when enabling dirty logging (with the
|
||||
KVM_MEM_LOG_DIRTY_PAGES flag for a memory region), or when using
|
||||
KVM_CLEAR_DIRTY_LOG.
|
||||
|
||||
The chunk size specifies how many pages to break at a time, using a
|
||||
single allocation for each chunk. Bigger the chunk size, more pages
|
||||
need to be allocated ahead of time.
|
||||
|
||||
The chunk size needs to be a valid block size. The list of acceptable
|
||||
block sizes is exposed in KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES as a
|
||||
64-bit bitmap (each bit describing a block size). The default value is
|
||||
0, to disable the eager page splitting.
|
||||
|
||||
9. Known KVM API problems
|
||||
=========================
|
||||
|
||||
|
|
|
@ -159,6 +159,21 @@ struct kvm_s2_mmu {
|
|||
/* The last vcpu id that ran on each physical CPU */
|
||||
int __percpu *last_vcpu_ran;
|
||||
|
||||
#define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
|
||||
/*
|
||||
* Memory cache used to split
|
||||
* KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
|
||||
* is used to allocate stage2 page tables while splitting huge
|
||||
* pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
|
||||
* influences both the capacity of the split page cache, and
|
||||
* how often KVM reschedules. Be wary of raising CHUNK_SIZE
|
||||
* too high.
|
||||
*
|
||||
* Protected by kvm->slots_lock.
|
||||
*/
|
||||
struct kvm_mmu_memory_cache split_page_cache;
|
||||
uint64_t split_page_chunk_size;
|
||||
|
||||
struct kvm_arch *arch;
|
||||
};
|
||||
|
||||
|
|
|
@ -92,6 +92,24 @@ static inline bool kvm_level_supports_block_mapping(u32 level)
|
|||
return level >= KVM_PGTABLE_MIN_BLOCK_LEVEL;
|
||||
}
|
||||
|
||||
static inline u32 kvm_supported_block_sizes(void)
|
||||
{
|
||||
u32 level = KVM_PGTABLE_MIN_BLOCK_LEVEL;
|
||||
u32 r = 0;
|
||||
|
||||
for (; level < KVM_PGTABLE_MAX_LEVELS; level++)
|
||||
r |= BIT(kvm_granule_shift(level));
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static inline bool kvm_is_block_size_supported(u64 size)
|
||||
{
|
||||
bool is_power_of_two = IS_ALIGNED(size, size);
|
||||
|
||||
return is_power_of_two && (size & kvm_supported_block_sizes());
|
||||
}
|
||||
|
||||
/**
|
||||
* struct kvm_pgtable_mm_ops - Memory management callbacks.
|
||||
* @zalloc_page: Allocate a single zeroed memory page.
|
||||
|
|
|
@ -65,6 +65,7 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|||
struct kvm_enable_cap *cap)
|
||||
{
|
||||
int r;
|
||||
u64 new_cap;
|
||||
|
||||
if (cap->flags)
|
||||
return -EINVAL;
|
||||
|
@ -89,6 +90,24 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|||
r = 0;
|
||||
set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
|
||||
break;
|
||||
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
|
||||
new_cap = cap->args[0];
|
||||
|
||||
mutex_lock(&kvm->slots_lock);
|
||||
/*
|
||||
* To keep things simple, allow changing the chunk
|
||||
* size only when no memory slots have been created.
|
||||
*/
|
||||
if (!kvm_are_all_memslots_empty(kvm)) {
|
||||
r = -EINVAL;
|
||||
} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
|
||||
r = -EINVAL;
|
||||
} else {
|
||||
r = 0;
|
||||
kvm->arch.mmu.split_page_chunk_size = new_cap;
|
||||
}
|
||||
mutex_unlock(&kvm->slots_lock);
|
||||
break;
|
||||
default:
|
||||
r = -EINVAL;
|
||||
break;
|
||||
|
@ -302,6 +321,15 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|||
case KVM_CAP_ARM_PTRAUTH_GENERIC:
|
||||
r = system_has_full_ptr_auth();
|
||||
break;
|
||||
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
|
||||
if (kvm)
|
||||
r = kvm->arch.mmu.split_page_chunk_size;
|
||||
else
|
||||
r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
|
||||
break;
|
||||
case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
|
||||
r = kvm_supported_block_sizes();
|
||||
break;
|
||||
default:
|
||||
r = 0;
|
||||
}
|
||||
|
|
|
@ -775,6 +775,10 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t
|
|||
for_each_possible_cpu(cpu)
|
||||
*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
|
||||
|
||||
/* The eager page splitting is disabled by default */
|
||||
mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
|
||||
mmu->split_page_cache.gfp_zero = __GFP_ZERO;
|
||||
|
||||
mmu->pgt = pgt;
|
||||
mmu->pgd_phys = __pa(pgt->pgd);
|
||||
return 0;
|
||||
|
|
|
@ -1190,6 +1190,8 @@ struct kvm_ppc_resize_hpt {
|
|||
#define KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP 225
|
||||
#define KVM_CAP_PMU_EVENT_MASKED_EVENTS 226
|
||||
#define KVM_CAP_COUNTER_OFFSET 227
|
||||
#define KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE 228
|
||||
#define KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES 229
|
||||
|
||||
#ifdef KVM_CAP_IRQ_ROUTING
|
||||
|
||||
|
|
Loading…
Reference in New Issue