bpf: document answers to common questions about BPF
to address common misconceptions about what BPF is and what it's not add short BPF Q&A that clarifies core BPF design principles and answers some common questions. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
da13c59b99
commit
2e39748a42
|
@ -0,0 +1,156 @@
|
|||
BPF extensibility and applicability to networking, tracing, security
|
||||
in the linux kernel and several user space implementations of BPF
|
||||
virtual machine led to a number of misunderstanding on what BPF actually is.
|
||||
This short QA is an attempt to address that and outline a direction
|
||||
of where BPF is heading long term.
|
||||
|
||||
Q: Is BPF a generic instruction set similar to x64 and arm64?
|
||||
A: NO.
|
||||
|
||||
Q: Is BPF a generic virtual machine ?
|
||||
A: NO.
|
||||
|
||||
BPF is generic instruction set _with_ C calling convention.
|
||||
|
||||
Q: Why C calling convention was chosen?
|
||||
A: Because BPF programs are designed to run in the linux kernel
|
||||
which is written in C, hence BPF defines instruction set compatible
|
||||
with two most used architectures x64 and arm64 (and takes into
|
||||
consideration important quirks of other architectures) and
|
||||
defines calling convention that is compatible with C calling
|
||||
convention of the linux kernel on those architectures.
|
||||
|
||||
Q: can multiple return values be supported in the future?
|
||||
A: NO. BPF allows only register R0 to be used as return value.
|
||||
|
||||
Q: can more than 5 function arguments be supported in the future?
|
||||
A: NO. BPF calling convention only allows registers R1-R5 to be used
|
||||
as arguments. BPF is not a standalone instruction set.
|
||||
(unlike x64 ISA that allows msft, cdecl and other conventions)
|
||||
|
||||
Q: can BPF programs access instruction pointer or return address?
|
||||
A: NO.
|
||||
|
||||
Q: can BPF programs access stack pointer ?
|
||||
A: NO. Only frame pointer (register R10) is accessible.
|
||||
From compiler point of view it's necessary to have stack pointer.
|
||||
For example LLVM defines register R11 as stack pointer in its
|
||||
BPF backend, but it makes sure that generated code never uses it.
|
||||
|
||||
Q: Does C-calling convention diminishes possible use cases?
|
||||
A: YES. BPF design forces addition of major functionality in the form
|
||||
of kernel helper functions and kernel objects like BPF maps with
|
||||
seamless interoperability between them. It lets kernel call into
|
||||
BPF programs and programs call kernel helpers with zero overhead.
|
||||
As all of them were native C code. That is particularly the case
|
||||
for JITed BPF programs that are indistinguishable from
|
||||
native kernel C code.
|
||||
|
||||
Q: Does it mean that 'innovative' extensions to BPF code are disallowed?
|
||||
A: Soft yes. At least for now until BPF core has support for
|
||||
bpf-to-bpf calls, indirect calls, loops, global variables,
|
||||
jump tables, read only sections and all other normal constructs
|
||||
that C code can produce.
|
||||
|
||||
Q: Can loops be supported in a safe way?
|
||||
A: It's not clear yet. BPF developers are trying to find a way to
|
||||
support bounded loops where the verifier can guarantee that
|
||||
the program terminates in less than 4096 instructions.
|
||||
|
||||
Q: How come LD_ABS and LD_IND instruction are present in BPF whereas
|
||||
C code cannot express them and has to use builtin intrinsics?
|
||||
A: This is artifact of compatibility with classic BPF. Modern
|
||||
networking code in BPF performs better without them.
|
||||
See 'direct packet access'.
|
||||
|
||||
Q: It seems not all BPF instructions are one-to-one to native CPU.
|
||||
For example why BPF_JNE and other compare and jumps are not cpu-like?
|
||||
A: This was necessary to avoid introducing flags into ISA which are
|
||||
impossible to make generic and efficient across CPU architectures.
|
||||
|
||||
Q: why BPF_DIV instruction doesn't map to x64 div?
|
||||
A: Because if we picked one-to-one relationship to x64 it would have made
|
||||
it more complicated to support on arm64 and other archs. Also it
|
||||
needs div-by-zero runtime check.
|
||||
|
||||
Q: why there is no BPF_SDIV for signed divide operation?
|
||||
A: Because it would be rarely used. llvm errors in such case and
|
||||
prints a suggestion to use unsigned divide instead
|
||||
|
||||
Q: Why BPF has implicit prologue and epilogue?
|
||||
A: Because architectures like sparc have register windows and in general
|
||||
there are enough subtle differences between architectures, so naive
|
||||
store return address into stack won't work. Another reason is BPF has
|
||||
to be safe from division by zero (and legacy exception path
|
||||
of LD_ABS insn). Those instructions need to invoke epilogue and
|
||||
return implicitly.
|
||||
|
||||
Q: Why BPF_JLT and BPF_JLE instructions were not introduced in the beginning?
|
||||
A: Because classic BPF didn't have them and BPF authors felt that compiler
|
||||
workaround would be acceptable. Turned out that programs lose performance
|
||||
due to lack of these compare instructions and they were added.
|
||||
These two instructions is a perfect example what kind of new BPF
|
||||
instructions are acceptable and can be added in the future.
|
||||
These two already had equivalent instructions in native CPUs.
|
||||
New instructions that don't have one-to-one mapping to HW instructions
|
||||
will not be accepted.
|
||||
|
||||
Q: BPF 32-bit subregisters have a requirement to zero upper 32-bits of BPF
|
||||
registers which makes BPF inefficient virtual machine for 32-bit
|
||||
CPU architectures and 32-bit HW accelerators. Can true 32-bit registers
|
||||
be added to BPF in the future?
|
||||
A: NO. The first thing to improve performance on 32-bit archs is to teach
|
||||
LLVM to generate code that uses 32-bit subregisters. Then second step
|
||||
is to teach verifier to mark operations where zero-ing upper bits
|
||||
is unnecessary. Then JITs can take advantage of those markings and
|
||||
drastically reduce size of generated code and improve performance.
|
||||
|
||||
Q: Does BPF have a stable ABI?
|
||||
A: YES. BPF instructions, arguments to BPF programs, set of helper
|
||||
functions and their arguments, recognized return codes are all part
|
||||
of ABI. However when tracing programs are using bpf_probe_read() helper
|
||||
to walk kernel internal datastructures and compile with kernel
|
||||
internal headers these accesses can and will break with newer
|
||||
kernels. The union bpf_attr -> kern_version is checked at load time
|
||||
to prevent accidentally loading kprobe-based bpf programs written
|
||||
for a different kernel. Networking programs don't do kern_version check.
|
||||
|
||||
Q: How much stack space a BPF program uses?
|
||||
A: Currently all program types are limited to 512 bytes of stack
|
||||
space, but the verifier computes the actual amount of stack used
|
||||
and both interpreter and most JITed code consume necessary amount.
|
||||
|
||||
Q: Can BPF be offloaded to HW?
|
||||
A: YES. BPF HW offload is supported by NFP driver.
|
||||
|
||||
Q: Does classic BPF interpreter still exist?
|
||||
A: NO. Classic BPF programs are converted into extend BPF instructions.
|
||||
|
||||
Q: Can BPF call arbitrary kernel functions?
|
||||
A: NO. BPF programs can only call a set of helper functions which
|
||||
is defined for every program type.
|
||||
|
||||
Q: Can BPF overwrite arbitrary kernel memory?
|
||||
A: NO. Tracing bpf programs can _read_ arbitrary memory with bpf_probe_read()
|
||||
and bpf_probe_read_str() helpers. Networking programs cannot read
|
||||
arbitrary memory, since they don't have access to these helpers.
|
||||
Programs can never read or write arbitrary memory directly.
|
||||
|
||||
Q: Can BPF overwrite arbitrary user memory?
|
||||
A: Sort-of. Tracing BPF programs can overwrite the user memory
|
||||
of the current task with bpf_probe_write_user(). Every time such
|
||||
program is loaded the kernel will print warning message, so
|
||||
this helper is only useful for experiments and prototypes.
|
||||
Tracing BPF programs are root only.
|
||||
|
||||
Q: When bpf_trace_printk() helper is used the kernel prints nasty
|
||||
warning message. Why is that?
|
||||
A: This is done to nudge program authors into better interfaces when
|
||||
programs need to pass data to user space. Like bpf_perf_event_output()
|
||||
can be used to efficiently stream data via perf ring buffer.
|
||||
BPF maps can be used for asynchronous data sharing between kernel
|
||||
and user space. bpf_trace_printk() should only be used for debugging.
|
||||
|
||||
Q: Can BPF functionality such as new program or map types, new
|
||||
helpers, etc be added out of kernel module code?
|
||||
A: NO.
|
|
@ -2713,6 +2713,7 @@ L: linux-kernel@vger.kernel.org
|
|||
S: Supported
|
||||
F: arch/x86/net/bpf_jit*
|
||||
F: Documentation/networking/filter.txt
|
||||
F: Documentation/bpf/
|
||||
F: include/linux/bpf*
|
||||
F: include/linux/filter.h
|
||||
F: include/uapi/linux/bpf*
|
||||
|
|
Loading…
Reference in New Issue