x86: merge the TSC cpu-freq code
Unify the TSC cpufreq code. Signed-off-by: Alok N Kataria <akataria@vmware.com> Signed-off-by: Dan Hecht <dhecht@vmware.com> Cc: Dan Hecht <dhecht@vmware.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
bfc0f5947a
commit
2dbe06faf3
|
@ -4,6 +4,7 @@
|
|||
#include <linux/module.h>
|
||||
#include <linux/timer.h>
|
||||
#include <linux/acpi_pmtmr.h>
|
||||
#include <linux/cpufreq.h>
|
||||
|
||||
#include <asm/hpet.h>
|
||||
|
||||
|
@ -215,3 +216,116 @@ int recalibrate_cpu_khz(void)
|
|||
EXPORT_SYMBOL(recalibrate_cpu_khz);
|
||||
|
||||
#endif /* CONFIG_X86_32 */
|
||||
|
||||
/* Accelerators for sched_clock()
|
||||
* convert from cycles(64bits) => nanoseconds (64bits)
|
||||
* basic equation:
|
||||
* ns = cycles / (freq / ns_per_sec)
|
||||
* ns = cycles * (ns_per_sec / freq)
|
||||
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||||
* ns = cycles * (10^6 / cpu_khz)
|
||||
*
|
||||
* Then we use scaling math (suggested by george@mvista.com) to get:
|
||||
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
||||
* ns = cycles * cyc2ns_scale / SC
|
||||
*
|
||||
* And since SC is a constant power of two, we can convert the div
|
||||
* into a shift.
|
||||
*
|
||||
* We can use khz divisor instead of mhz to keep a better precision, since
|
||||
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
|
||||
* (mathieu.desnoyers@polymtl.ca)
|
||||
*
|
||||
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
||||
*/
|
||||
|
||||
DEFINE_PER_CPU(unsigned long, cyc2ns);
|
||||
|
||||
void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
|
||||
{
|
||||
unsigned long long tsc_now, ns_now;
|
||||
unsigned long flags, *scale;
|
||||
|
||||
local_irq_save(flags);
|
||||
sched_clock_idle_sleep_event();
|
||||
|
||||
scale = &per_cpu(cyc2ns, cpu);
|
||||
|
||||
rdtscll(tsc_now);
|
||||
ns_now = __cycles_2_ns(tsc_now);
|
||||
|
||||
if (cpu_khz)
|
||||
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||||
|
||||
sched_clock_idle_wakeup_event(0);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
|
||||
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
|
||||
* changes.
|
||||
*
|
||||
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
|
||||
* not that important because current Opteron setups do not support
|
||||
* scaling on SMP anyroads.
|
||||
*
|
||||
* Should fix up last_tsc too. Currently gettimeofday in the
|
||||
* first tick after the change will be slightly wrong.
|
||||
*/
|
||||
|
||||
static unsigned int ref_freq;
|
||||
static unsigned long loops_per_jiffy_ref;
|
||||
static unsigned long tsc_khz_ref;
|
||||
|
||||
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
unsigned long *lpj, dummy;
|
||||
|
||||
if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
|
||||
return 0;
|
||||
|
||||
lpj = &dummy;
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
#ifdef CONFIG_SMP
|
||||
lpj = &cpu_data(freq->cpu).loops_per_jiffy;
|
||||
#else
|
||||
lpj = &boot_cpu_data.loops_per_jiffy;
|
||||
#endif
|
||||
|
||||
if (!ref_freq) {
|
||||
ref_freq = freq->old;
|
||||
loops_per_jiffy_ref = *lpj;
|
||||
tsc_khz_ref = tsc_khz;
|
||||
}
|
||||
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||||
(val == CPUFREQ_RESUMECHANGE)) {
|
||||
*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
|
||||
|
||||
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
mark_tsc_unstable("cpufreq changes");
|
||||
}
|
||||
|
||||
set_cyc2ns_scale(tsc_khz_ref, freq->cpu);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block time_cpufreq_notifier_block = {
|
||||
.notifier_call = time_cpufreq_notifier
|
||||
};
|
||||
|
||||
static int __init cpufreq_tsc(void)
|
||||
{
|
||||
cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||||
CPUFREQ_TRANSITION_NOTIFIER);
|
||||
return 0;
|
||||
}
|
||||
|
||||
core_initcall(cpufreq_tsc);
|
||||
|
||||
#endif /* CONFIG_CPU_FREQ */
|
||||
|
|
|
@ -18,119 +18,6 @@
|
|||
extern int tsc_unstable;
|
||||
extern int tsc_disabled;
|
||||
|
||||
/* Accelerators for sched_clock()
|
||||
* convert from cycles(64bits) => nanoseconds (64bits)
|
||||
* basic equation:
|
||||
* ns = cycles / (freq / ns_per_sec)
|
||||
* ns = cycles * (ns_per_sec / freq)
|
||||
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||||
* ns = cycles * (10^6 / cpu_khz)
|
||||
*
|
||||
* Then we use scaling math (suggested by george@mvista.com) to get:
|
||||
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
||||
* ns = cycles * cyc2ns_scale / SC
|
||||
*
|
||||
* And since SC is a constant power of two, we can convert the div
|
||||
* into a shift.
|
||||
*
|
||||
* We can use khz divisor instead of mhz to keep a better precision, since
|
||||
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
|
||||
* (mathieu.desnoyers@polymtl.ca)
|
||||
*
|
||||
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
||||
*/
|
||||
|
||||
DEFINE_PER_CPU(unsigned long, cyc2ns);
|
||||
|
||||
void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
|
||||
{
|
||||
unsigned long long tsc_now, ns_now;
|
||||
unsigned long flags, *scale;
|
||||
|
||||
local_irq_save(flags);
|
||||
sched_clock_idle_sleep_event();
|
||||
|
||||
scale = &per_cpu(cyc2ns, cpu);
|
||||
|
||||
rdtscll(tsc_now);
|
||||
ns_now = __cycles_2_ns(tsc_now);
|
||||
|
||||
if (cpu_khz)
|
||||
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||||
|
||||
/*
|
||||
* Start smoothly with the new frequency:
|
||||
*/
|
||||
sched_clock_idle_wakeup_event(0);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
|
||||
/*
|
||||
* if the CPU frequency is scaled, TSC-based delays will need a different
|
||||
* loops_per_jiffy value to function properly.
|
||||
*/
|
||||
static unsigned int ref_freq;
|
||||
static unsigned long loops_per_jiffy_ref;
|
||||
static unsigned long cpu_khz_ref;
|
||||
|
||||
static int
|
||||
time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
|
||||
if (!ref_freq) {
|
||||
if (!freq->old){
|
||||
ref_freq = freq->new;
|
||||
return 0;
|
||||
}
|
||||
ref_freq = freq->old;
|
||||
loops_per_jiffy_ref = cpu_data(freq->cpu).loops_per_jiffy;
|
||||
cpu_khz_ref = cpu_khz;
|
||||
}
|
||||
|
||||
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||||
(val == CPUFREQ_RESUMECHANGE)) {
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
cpu_data(freq->cpu).loops_per_jiffy =
|
||||
cpufreq_scale(loops_per_jiffy_ref,
|
||||
ref_freq, freq->new);
|
||||
|
||||
if (cpu_khz) {
|
||||
|
||||
if (num_online_cpus() == 1)
|
||||
cpu_khz = cpufreq_scale(cpu_khz_ref,
|
||||
ref_freq, freq->new);
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
|
||||
tsc_khz = cpu_khz;
|
||||
set_cyc2ns_scale(cpu_khz, freq->cpu);
|
||||
/*
|
||||
* TSC based sched_clock turns
|
||||
* to junk w/ cpufreq
|
||||
*/
|
||||
mark_tsc_unstable("cpufreq changes");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block time_cpufreq_notifier_block = {
|
||||
.notifier_call = time_cpufreq_notifier
|
||||
};
|
||||
|
||||
static int __init cpufreq_tsc(void)
|
||||
{
|
||||
return cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||||
CPUFREQ_TRANSITION_NOTIFIER);
|
||||
}
|
||||
core_initcall(cpufreq_tsc);
|
||||
|
||||
#endif
|
||||
|
||||
/* clock source code */
|
||||
|
||||
static struct clocksource clocksource_tsc;
|
||||
|
|
|
@ -16,120 +16,6 @@
|
|||
extern int tsc_unstable;
|
||||
extern int tsc_disabled;
|
||||
|
||||
/* Accelerators for sched_clock()
|
||||
* convert from cycles(64bits) => nanoseconds (64bits)
|
||||
* basic equation:
|
||||
* ns = cycles / (freq / ns_per_sec)
|
||||
* ns = cycles * (ns_per_sec / freq)
|
||||
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||||
* ns = cycles * (10^6 / cpu_khz)
|
||||
*
|
||||
* Then we use scaling math (suggested by george@mvista.com) to get:
|
||||
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
||||
* ns = cycles * cyc2ns_scale / SC
|
||||
*
|
||||
* And since SC is a constant power of two, we can convert the div
|
||||
* into a shift.
|
||||
*
|
||||
* We can use khz divisor instead of mhz to keep a better precision, since
|
||||
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
|
||||
* (mathieu.desnoyers@polymtl.ca)
|
||||
*
|
||||
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
||||
*/
|
||||
|
||||
DEFINE_PER_CPU(unsigned long, cyc2ns);
|
||||
|
||||
void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
|
||||
{
|
||||
unsigned long long tsc_now, ns_now;
|
||||
unsigned long flags, *scale;
|
||||
|
||||
local_irq_save(flags);
|
||||
sched_clock_idle_sleep_event();
|
||||
|
||||
scale = &per_cpu(cyc2ns, cpu);
|
||||
|
||||
rdtscll(tsc_now);
|
||||
ns_now = __cycles_2_ns(tsc_now);
|
||||
|
||||
if (cpu_khz)
|
||||
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||||
|
||||
sched_clock_idle_wakeup_event(0);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
|
||||
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
|
||||
* changes.
|
||||
*
|
||||
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
|
||||
* not that important because current Opteron setups do not support
|
||||
* scaling on SMP anyroads.
|
||||
*
|
||||
* Should fix up last_tsc too. Currently gettimeofday in the
|
||||
* first tick after the change will be slightly wrong.
|
||||
*/
|
||||
|
||||
static unsigned int ref_freq;
|
||||
static unsigned long loops_per_jiffy_ref;
|
||||
static unsigned long tsc_khz_ref;
|
||||
|
||||
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
unsigned long *lpj, dummy;
|
||||
|
||||
if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
|
||||
return 0;
|
||||
|
||||
lpj = &dummy;
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
#ifdef CONFIG_SMP
|
||||
lpj = &cpu_data(freq->cpu).loops_per_jiffy;
|
||||
#else
|
||||
lpj = &boot_cpu_data.loops_per_jiffy;
|
||||
#endif
|
||||
|
||||
if (!ref_freq) {
|
||||
ref_freq = freq->old;
|
||||
loops_per_jiffy_ref = *lpj;
|
||||
tsc_khz_ref = tsc_khz;
|
||||
}
|
||||
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||||
(val == CPUFREQ_RESUMECHANGE)) {
|
||||
*lpj =
|
||||
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
|
||||
|
||||
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
mark_tsc_unstable("cpufreq changes");
|
||||
}
|
||||
|
||||
set_cyc2ns_scale(tsc_khz_ref, freq->cpu);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block time_cpufreq_notifier_block = {
|
||||
.notifier_call = time_cpufreq_notifier
|
||||
};
|
||||
|
||||
static int __init cpufreq_tsc(void)
|
||||
{
|
||||
cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||||
CPUFREQ_TRANSITION_NOTIFIER);
|
||||
return 0;
|
||||
}
|
||||
|
||||
core_initcall(cpufreq_tsc);
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Make an educated guess if the TSC is trustworthy and synchronized
|
||||
* over all CPUs.
|
||||
|
|
Loading…
Reference in New Issue