RISC-V: KVM: Use G-stage name for hypervisor page table

The two-stage address translation defined by the RISC-V privileged
specification defines: VS-stage (guest virtual address to guest
physical address) programmed by the Guest OS  and G-stage (guest
physical addree to host physical address) programmed by the
hypervisor.

To align with above terminology, we replace "stage2" with "gstage"
and "Stage2" with "G-stage" name everywhere in KVM RISC-V sources.

Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
This commit is contained in:
Anup Patel 2022-05-09 10:43:30 +05:30 committed by Anup Patel
parent dba90d6fb8
commit 26708234eb
7 changed files with 150 additions and 150 deletions

View File

@ -54,10 +54,10 @@ struct kvm_vmid {
}; };
struct kvm_arch { struct kvm_arch {
/* stage2 vmid */ /* G-stage vmid */
struct kvm_vmid vmid; struct kvm_vmid vmid;
/* stage2 page table */ /* G-stage page table */
pgd_t *pgd; pgd_t *pgd;
phys_addr_t pgd_phys; phys_addr_t pgd_phys;
@ -207,21 +207,21 @@ void __kvm_riscv_hfence_gvma_vmid(unsigned long vmid);
void __kvm_riscv_hfence_gvma_gpa(unsigned long gpa_divby_4); void __kvm_riscv_hfence_gvma_gpa(unsigned long gpa_divby_4);
void __kvm_riscv_hfence_gvma_all(void); void __kvm_riscv_hfence_gvma_all(void);
int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu, int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
struct kvm_memory_slot *memslot, struct kvm_memory_slot *memslot,
gpa_t gpa, unsigned long hva, bool is_write); gpa_t gpa, unsigned long hva, bool is_write);
int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm); int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm);
void kvm_riscv_stage2_free_pgd(struct kvm *kvm); void kvm_riscv_gstage_free_pgd(struct kvm *kvm);
void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu); void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu);
void kvm_riscv_stage2_mode_detect(void); void kvm_riscv_gstage_mode_detect(void);
unsigned long kvm_riscv_stage2_mode(void); unsigned long kvm_riscv_gstage_mode(void);
int kvm_riscv_stage2_gpa_bits(void); int kvm_riscv_gstage_gpa_bits(void);
void kvm_riscv_stage2_vmid_detect(void); void kvm_riscv_gstage_vmid_detect(void);
unsigned long kvm_riscv_stage2_vmid_bits(void); unsigned long kvm_riscv_gstage_vmid_bits(void);
int kvm_riscv_stage2_vmid_init(struct kvm *kvm); int kvm_riscv_gstage_vmid_init(struct kvm *kvm);
bool kvm_riscv_stage2_vmid_ver_changed(struct kvm_vmid *vmid); bool kvm_riscv_gstage_vmid_ver_changed(struct kvm_vmid *vmid);
void kvm_riscv_stage2_vmid_update(struct kvm_vcpu *vcpu); void kvm_riscv_gstage_vmid_update(struct kvm_vcpu *vcpu);
void __kvm_riscv_unpriv_trap(void); void __kvm_riscv_unpriv_trap(void);

View File

@ -89,13 +89,13 @@ int kvm_arch_init(void *opaque)
return -ENODEV; return -ENODEV;
} }
kvm_riscv_stage2_mode_detect(); kvm_riscv_gstage_mode_detect();
kvm_riscv_stage2_vmid_detect(); kvm_riscv_gstage_vmid_detect();
kvm_info("hypervisor extension available\n"); kvm_info("hypervisor extension available\n");
switch (kvm_riscv_stage2_mode()) { switch (kvm_riscv_gstage_mode()) {
case HGATP_MODE_SV32X4: case HGATP_MODE_SV32X4:
str = "Sv32x4"; str = "Sv32x4";
break; break;
@ -110,7 +110,7 @@ int kvm_arch_init(void *opaque)
} }
kvm_info("using %s G-stage page table format\n", str); kvm_info("using %s G-stage page table format\n", str);
kvm_info("VMID %ld bits available\n", kvm_riscv_stage2_vmid_bits()); kvm_info("VMID %ld bits available\n", kvm_riscv_gstage_vmid_bits());
return 0; return 0;
} }

View File

@ -21,50 +21,50 @@
#include <asm/sbi.h> #include <asm/sbi.h>
#ifdef CONFIG_64BIT #ifdef CONFIG_64BIT
static unsigned long stage2_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT); static unsigned long gstage_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
static unsigned long stage2_pgd_levels = 3; static unsigned long gstage_pgd_levels = 3;
#define stage2_index_bits 9 #define gstage_index_bits 9
#else #else
static unsigned long stage2_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT); static unsigned long gstage_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
static unsigned long stage2_pgd_levels = 2; static unsigned long gstage_pgd_levels = 2;
#define stage2_index_bits 10 #define gstage_index_bits 10
#endif #endif
#define stage2_pgd_xbits 2 #define gstage_pgd_xbits 2
#define stage2_pgd_size (1UL << (HGATP_PAGE_SHIFT + stage2_pgd_xbits)) #define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
#define stage2_gpa_bits (HGATP_PAGE_SHIFT + \ #define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
(stage2_pgd_levels * stage2_index_bits) + \ (gstage_pgd_levels * gstage_index_bits) + \
stage2_pgd_xbits) gstage_pgd_xbits)
#define stage2_gpa_size ((gpa_t)(1ULL << stage2_gpa_bits)) #define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
#define stage2_pte_leaf(__ptep) \ #define gstage_pte_leaf(__ptep) \
(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)) (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
static inline unsigned long stage2_pte_index(gpa_t addr, u32 level) static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
{ {
unsigned long mask; unsigned long mask;
unsigned long shift = HGATP_PAGE_SHIFT + (stage2_index_bits * level); unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
if (level == (stage2_pgd_levels - 1)) if (level == (gstage_pgd_levels - 1))
mask = (PTRS_PER_PTE * (1UL << stage2_pgd_xbits)) - 1; mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
else else
mask = PTRS_PER_PTE - 1; mask = PTRS_PER_PTE - 1;
return (addr >> shift) & mask; return (addr >> shift) & mask;
} }
static inline unsigned long stage2_pte_page_vaddr(pte_t pte) static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
{ {
return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT); return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
} }
static int stage2_page_size_to_level(unsigned long page_size, u32 *out_level) static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
{ {
u32 i; u32 i;
unsigned long psz = 1UL << 12; unsigned long psz = 1UL << 12;
for (i = 0; i < stage2_pgd_levels; i++) { for (i = 0; i < gstage_pgd_levels; i++) {
if (page_size == (psz << (i * stage2_index_bits))) { if (page_size == (psz << (i * gstage_index_bits))) {
*out_level = i; *out_level = i;
return 0; return 0;
} }
@ -73,27 +73,27 @@ static int stage2_page_size_to_level(unsigned long page_size, u32 *out_level)
return -EINVAL; return -EINVAL;
} }
static int stage2_level_to_page_size(u32 level, unsigned long *out_pgsize) static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
{ {
if (stage2_pgd_levels < level) if (gstage_pgd_levels < level)
return -EINVAL; return -EINVAL;
*out_pgsize = 1UL << (12 + (level * stage2_index_bits)); *out_pgsize = 1UL << (12 + (level * gstage_index_bits));
return 0; return 0;
} }
static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr, static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
pte_t **ptepp, u32 *ptep_level) pte_t **ptepp, u32 *ptep_level)
{ {
pte_t *ptep; pte_t *ptep;
u32 current_level = stage2_pgd_levels - 1; u32 current_level = gstage_pgd_levels - 1;
*ptep_level = current_level; *ptep_level = current_level;
ptep = (pte_t *)kvm->arch.pgd; ptep = (pte_t *)kvm->arch.pgd;
ptep = &ptep[stage2_pte_index(addr, current_level)]; ptep = &ptep[gstage_pte_index(addr, current_level)];
while (ptep && pte_val(*ptep)) { while (ptep && pte_val(*ptep)) {
if (stage2_pte_leaf(ptep)) { if (gstage_pte_leaf(ptep)) {
*ptep_level = current_level; *ptep_level = current_level;
*ptepp = ptep; *ptepp = ptep;
return true; return true;
@ -102,8 +102,8 @@ static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr,
if (current_level) { if (current_level) {
current_level--; current_level--;
*ptep_level = current_level; *ptep_level = current_level;
ptep = (pte_t *)stage2_pte_page_vaddr(*ptep); ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
ptep = &ptep[stage2_pte_index(addr, current_level)]; ptep = &ptep[gstage_pte_index(addr, current_level)];
} else { } else {
ptep = NULL; ptep = NULL;
} }
@ -112,12 +112,12 @@ static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr,
return false; return false;
} }
static void stage2_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr) static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
{ {
unsigned long size = PAGE_SIZE; unsigned long size = PAGE_SIZE;
struct kvm_vmid *vmid = &kvm->arch.vmid; struct kvm_vmid *vmid = &kvm->arch.vmid;
if (stage2_level_to_page_size(level, &size)) if (gstage_level_to_page_size(level, &size))
return; return;
addr &= ~(size - 1); addr &= ~(size - 1);
@ -131,19 +131,19 @@ static void stage2_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
preempt_enable(); preempt_enable();
} }
static int stage2_set_pte(struct kvm *kvm, u32 level, static int gstage_set_pte(struct kvm *kvm, u32 level,
struct kvm_mmu_memory_cache *pcache, struct kvm_mmu_memory_cache *pcache,
gpa_t addr, const pte_t *new_pte) gpa_t addr, const pte_t *new_pte)
{ {
u32 current_level = stage2_pgd_levels - 1; u32 current_level = gstage_pgd_levels - 1;
pte_t *next_ptep = (pte_t *)kvm->arch.pgd; pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
pte_t *ptep = &next_ptep[stage2_pte_index(addr, current_level)]; pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
if (current_level < level) if (current_level < level)
return -EINVAL; return -EINVAL;
while (current_level != level) { while (current_level != level) {
if (stage2_pte_leaf(ptep)) if (gstage_pte_leaf(ptep))
return -EEXIST; return -EEXIST;
if (!pte_val(*ptep)) { if (!pte_val(*ptep)) {
@ -155,23 +155,23 @@ static int stage2_set_pte(struct kvm *kvm, u32 level,
*ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)), *ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
__pgprot(_PAGE_TABLE)); __pgprot(_PAGE_TABLE));
} else { } else {
if (stage2_pte_leaf(ptep)) if (gstage_pte_leaf(ptep))
return -EEXIST; return -EEXIST;
next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep); next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
} }
current_level--; current_level--;
ptep = &next_ptep[stage2_pte_index(addr, current_level)]; ptep = &next_ptep[gstage_pte_index(addr, current_level)];
} }
*ptep = *new_pte; *ptep = *new_pte;
if (stage2_pte_leaf(ptep)) if (gstage_pte_leaf(ptep))
stage2_remote_tlb_flush(kvm, current_level, addr); gstage_remote_tlb_flush(kvm, current_level, addr);
return 0; return 0;
} }
static int stage2_map_page(struct kvm *kvm, static int gstage_map_page(struct kvm *kvm,
struct kvm_mmu_memory_cache *pcache, struct kvm_mmu_memory_cache *pcache,
gpa_t gpa, phys_addr_t hpa, gpa_t gpa, phys_addr_t hpa,
unsigned long page_size, unsigned long page_size,
@ -182,7 +182,7 @@ static int stage2_map_page(struct kvm *kvm,
pte_t new_pte; pte_t new_pte;
pgprot_t prot; pgprot_t prot;
ret = stage2_page_size_to_level(page_size, &level); ret = gstage_page_size_to_level(page_size, &level);
if (ret) if (ret)
return ret; return ret;
@ -193,9 +193,9 @@ static int stage2_map_page(struct kvm *kvm,
* PTE so that software can update these bits. * PTE so that software can update these bits.
* *
* We support both options mentioned above. To achieve this, we * We support both options mentioned above. To achieve this, we
* always set 'A' and 'D' PTE bits at time of creating stage2 * always set 'A' and 'D' PTE bits at time of creating G-stage
* mapping. To support KVM dirty page logging with both options * mapping. To support KVM dirty page logging with both options
* mentioned above, we will write-protect stage2 PTEs to track * mentioned above, we will write-protect G-stage PTEs to track
* dirty pages. * dirty pages.
*/ */
@ -213,24 +213,24 @@ static int stage2_map_page(struct kvm *kvm,
new_pte = pfn_pte(PFN_DOWN(hpa), prot); new_pte = pfn_pte(PFN_DOWN(hpa), prot);
new_pte = pte_mkdirty(new_pte); new_pte = pte_mkdirty(new_pte);
return stage2_set_pte(kvm, level, pcache, gpa, &new_pte); return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
} }
enum stage2_op { enum gstage_op {
STAGE2_OP_NOP = 0, /* Nothing */ GSTAGE_OP_NOP = 0, /* Nothing */
STAGE2_OP_CLEAR, /* Clear/Unmap */ GSTAGE_OP_CLEAR, /* Clear/Unmap */
STAGE2_OP_WP, /* Write-protect */ GSTAGE_OP_WP, /* Write-protect */
}; };
static void stage2_op_pte(struct kvm *kvm, gpa_t addr, static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
pte_t *ptep, u32 ptep_level, enum stage2_op op) pte_t *ptep, u32 ptep_level, enum gstage_op op)
{ {
int i, ret; int i, ret;
pte_t *next_ptep; pte_t *next_ptep;
u32 next_ptep_level; u32 next_ptep_level;
unsigned long next_page_size, page_size; unsigned long next_page_size, page_size;
ret = stage2_level_to_page_size(ptep_level, &page_size); ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret) if (ret)
return; return;
@ -239,31 +239,31 @@ static void stage2_op_pte(struct kvm *kvm, gpa_t addr,
if (!pte_val(*ptep)) if (!pte_val(*ptep))
return; return;
if (ptep_level && !stage2_pte_leaf(ptep)) { if (ptep_level && !gstage_pte_leaf(ptep)) {
next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep); next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
next_ptep_level = ptep_level - 1; next_ptep_level = ptep_level - 1;
ret = stage2_level_to_page_size(next_ptep_level, ret = gstage_level_to_page_size(next_ptep_level,
&next_page_size); &next_page_size);
if (ret) if (ret)
return; return;
if (op == STAGE2_OP_CLEAR) if (op == GSTAGE_OP_CLEAR)
set_pte(ptep, __pte(0)); set_pte(ptep, __pte(0));
for (i = 0; i < PTRS_PER_PTE; i++) for (i = 0; i < PTRS_PER_PTE; i++)
stage2_op_pte(kvm, addr + i * next_page_size, gstage_op_pte(kvm, addr + i * next_page_size,
&next_ptep[i], next_ptep_level, op); &next_ptep[i], next_ptep_level, op);
if (op == STAGE2_OP_CLEAR) if (op == GSTAGE_OP_CLEAR)
put_page(virt_to_page(next_ptep)); put_page(virt_to_page(next_ptep));
} else { } else {
if (op == STAGE2_OP_CLEAR) if (op == GSTAGE_OP_CLEAR)
set_pte(ptep, __pte(0)); set_pte(ptep, __pte(0));
else if (op == STAGE2_OP_WP) else if (op == GSTAGE_OP_WP)
set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE)); set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
stage2_remote_tlb_flush(kvm, ptep_level, addr); gstage_remote_tlb_flush(kvm, ptep_level, addr);
} }
} }
static void stage2_unmap_range(struct kvm *kvm, gpa_t start, static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
gpa_t size, bool may_block) gpa_t size, bool may_block)
{ {
int ret; int ret;
@ -274,9 +274,9 @@ static void stage2_unmap_range(struct kvm *kvm, gpa_t start,
gpa_t addr = start, end = start + size; gpa_t addr = start, end = start + size;
while (addr < end) { while (addr < end) {
found_leaf = stage2_get_leaf_entry(kvm, addr, found_leaf = gstage_get_leaf_entry(kvm, addr,
&ptep, &ptep_level); &ptep, &ptep_level);
ret = stage2_level_to_page_size(ptep_level, &page_size); ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret) if (ret)
break; break;
@ -284,8 +284,8 @@ static void stage2_unmap_range(struct kvm *kvm, gpa_t start,
goto next; goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size)) if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
stage2_op_pte(kvm, addr, ptep, gstage_op_pte(kvm, addr, ptep,
ptep_level, STAGE2_OP_CLEAR); ptep_level, GSTAGE_OP_CLEAR);
next: next:
addr += page_size; addr += page_size;
@ -299,7 +299,7 @@ next:
} }
} }
static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end) static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
{ {
int ret; int ret;
pte_t *ptep; pte_t *ptep;
@ -309,9 +309,9 @@ static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
unsigned long page_size; unsigned long page_size;
while (addr < end) { while (addr < end) {
found_leaf = stage2_get_leaf_entry(kvm, addr, found_leaf = gstage_get_leaf_entry(kvm, addr,
&ptep, &ptep_level); &ptep, &ptep_level);
ret = stage2_level_to_page_size(ptep_level, &page_size); ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret) if (ret)
break; break;
@ -319,15 +319,15 @@ static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
goto next; goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size)) if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
stage2_op_pte(kvm, addr, ptep, gstage_op_pte(kvm, addr, ptep,
ptep_level, STAGE2_OP_WP); ptep_level, GSTAGE_OP_WP);
next: next:
addr += page_size; addr += page_size;
} }
} }
static void stage2_wp_memory_region(struct kvm *kvm, int slot) static void gstage_wp_memory_region(struct kvm *kvm, int slot)
{ {
struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
@ -335,12 +335,12 @@ static void stage2_wp_memory_region(struct kvm *kvm, int slot)
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
stage2_wp_range(kvm, start, end); gstage_wp_range(kvm, start, end);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm); kvm_flush_remote_tlbs(kvm);
} }
static int stage2_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa, static int gstage_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
unsigned long size, bool writable) unsigned long size, bool writable)
{ {
pte_t pte; pte_t pte;
@ -361,12 +361,12 @@ static int stage2_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
if (!writable) if (!writable)
pte = pte_wrprotect(pte); pte = pte_wrprotect(pte);
ret = kvm_mmu_topup_memory_cache(&pcache, stage2_pgd_levels); ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
if (ret) if (ret)
goto out; goto out;
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
ret = stage2_set_pte(kvm, 0, &pcache, addr, &pte); ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
if (ret) if (ret)
goto out; goto out;
@ -388,7 +388,7 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
stage2_wp_range(kvm, start, end); gstage_wp_range(kvm, start, end);
} }
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
@ -411,7 +411,7 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
void kvm_arch_flush_shadow_all(struct kvm *kvm) void kvm_arch_flush_shadow_all(struct kvm *kvm)
{ {
kvm_riscv_stage2_free_pgd(kvm); kvm_riscv_gstage_free_pgd(kvm);
} }
void kvm_arch_flush_shadow_memslot(struct kvm *kvm, void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
@ -421,7 +421,7 @@ void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
phys_addr_t size = slot->npages << PAGE_SHIFT; phys_addr_t size = slot->npages << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
stage2_unmap_range(kvm, gpa, size, false); gstage_unmap_range(kvm, gpa, size, false);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
} }
@ -436,7 +436,7 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
* the memory slot is write protected. * the memory slot is write protected.
*/ */
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
stage2_wp_memory_region(kvm, new->id); gstage_wp_memory_region(kvm, new->id);
} }
int kvm_arch_prepare_memory_region(struct kvm *kvm, int kvm_arch_prepare_memory_region(struct kvm *kvm,
@ -458,7 +458,7 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
* space addressable by the KVM guest GPA space. * space addressable by the KVM guest GPA space.
*/ */
if ((new->base_gfn + new->npages) >= if ((new->base_gfn + new->npages) >=
(stage2_gpa_size >> PAGE_SHIFT)) (gstage_gpa_size >> PAGE_SHIFT))
return -EFAULT; return -EFAULT;
hva = new->userspace_addr; hva = new->userspace_addr;
@ -514,7 +514,7 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
goto out; goto out;
} }
ret = stage2_ioremap(kvm, gpa, pa, ret = gstage_ioremap(kvm, gpa, pa,
vm_end - vm_start, writable); vm_end - vm_start, writable);
if (ret) if (ret)
break; break;
@ -527,7 +527,7 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
if (ret) if (ret)
stage2_unmap_range(kvm, base_gpa, size, false); gstage_unmap_range(kvm, base_gpa, size, false);
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
out: out:
@ -540,7 +540,7 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
if (!kvm->arch.pgd) if (!kvm->arch.pgd)
return false; return false;
stage2_unmap_range(kvm, range->start << PAGE_SHIFT, gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
(range->end - range->start) << PAGE_SHIFT, (range->end - range->start) << PAGE_SHIFT,
range->may_block); range->may_block);
return false; return false;
@ -556,10 +556,10 @@ bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
WARN_ON(range->end - range->start != 1); WARN_ON(range->end - range->start != 1);
ret = stage2_map_page(kvm, NULL, range->start << PAGE_SHIFT, ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT,
__pfn_to_phys(pfn), PAGE_SIZE, true, true); __pfn_to_phys(pfn), PAGE_SIZE, true, true);
if (ret) { if (ret) {
kvm_debug("Failed to map stage2 page (error %d)\n", ret); kvm_debug("Failed to map G-stage page (error %d)\n", ret);
return true; return true;
} }
@ -577,7 +577,7 @@ bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE); WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT, if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
&ptep, &ptep_level)) &ptep, &ptep_level))
return false; return false;
@ -595,14 +595,14 @@ bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE); WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT, if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
&ptep, &ptep_level)) &ptep, &ptep_level))
return false; return false;
return pte_young(*ptep); return pte_young(*ptep);
} }
int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu, int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
struct kvm_memory_slot *memslot, struct kvm_memory_slot *memslot,
gpa_t gpa, unsigned long hva, bool is_write) gpa_t gpa, unsigned long hva, bool is_write)
{ {
@ -648,9 +648,9 @@ int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu,
} }
/* We need minimum second+third level pages */ /* We need minimum second+third level pages */
ret = kvm_mmu_topup_memory_cache(pcache, stage2_pgd_levels); ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
if (ret) { if (ret) {
kvm_err("Failed to topup stage2 cache\n"); kvm_err("Failed to topup G-stage cache\n");
return ret; return ret;
} }
@ -680,15 +680,15 @@ int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu,
if (writeable) { if (writeable) {
kvm_set_pfn_dirty(hfn); kvm_set_pfn_dirty(hfn);
mark_page_dirty(kvm, gfn); mark_page_dirty(kvm, gfn);
ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT, ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, false, true); vma_pagesize, false, true);
} else { } else {
ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT, ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, true, true); vma_pagesize, true, true);
} }
if (ret) if (ret)
kvm_err("Failed to map in stage2\n"); kvm_err("Failed to map in G-stage\n");
out_unlock: out_unlock:
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
@ -697,7 +697,7 @@ out_unlock:
return ret; return ret;
} }
int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm) int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
{ {
struct page *pgd_page; struct page *pgd_page;
@ -707,7 +707,7 @@ int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm)
} }
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
get_order(stage2_pgd_size)); get_order(gstage_pgd_size));
if (!pgd_page) if (!pgd_page)
return -ENOMEM; return -ENOMEM;
kvm->arch.pgd = page_to_virt(pgd_page); kvm->arch.pgd = page_to_virt(pgd_page);
@ -716,13 +716,13 @@ int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm)
return 0; return 0;
} }
void kvm_riscv_stage2_free_pgd(struct kvm *kvm) void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
{ {
void *pgd = NULL; void *pgd = NULL;
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) { if (kvm->arch.pgd) {
stage2_unmap_range(kvm, 0UL, stage2_gpa_size, false); gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
pgd = READ_ONCE(kvm->arch.pgd); pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL; kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0; kvm->arch.pgd_phys = 0;
@ -730,12 +730,12 @@ void kvm_riscv_stage2_free_pgd(struct kvm *kvm)
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
if (pgd) if (pgd)
free_pages((unsigned long)pgd, get_order(stage2_pgd_size)); free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
} }
void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu) void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
{ {
unsigned long hgatp = stage2_mode; unsigned long hgatp = gstage_mode;
struct kvm_arch *k = &vcpu->kvm->arch; struct kvm_arch *k = &vcpu->kvm->arch;
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
@ -744,18 +744,18 @@ void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu)
csr_write(CSR_HGATP, hgatp); csr_write(CSR_HGATP, hgatp);
if (!kvm_riscv_stage2_vmid_bits()) if (!kvm_riscv_gstage_vmid_bits())
__kvm_riscv_hfence_gvma_all(); __kvm_riscv_hfence_gvma_all();
} }
void kvm_riscv_stage2_mode_detect(void) void kvm_riscv_gstage_mode_detect(void)
{ {
#ifdef CONFIG_64BIT #ifdef CONFIG_64BIT
/* Try Sv48x4 stage2 mode */ /* Try Sv48x4 G-stage mode */
csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT); csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) { if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
stage2_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT); gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
stage2_pgd_levels = 4; gstage_pgd_levels = 4;
} }
csr_write(CSR_HGATP, 0); csr_write(CSR_HGATP, 0);
@ -763,12 +763,12 @@ void kvm_riscv_stage2_mode_detect(void)
#endif #endif
} }
unsigned long kvm_riscv_stage2_mode(void) unsigned long kvm_riscv_gstage_mode(void)
{ {
return stage2_mode >> HGATP_MODE_SHIFT; return gstage_mode >> HGATP_MODE_SHIFT;
} }
int kvm_riscv_stage2_gpa_bits(void) int kvm_riscv_gstage_gpa_bits(void)
{ {
return stage2_gpa_bits; return gstage_gpa_bits;
} }

View File

@ -137,7 +137,7 @@ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
/* Cleanup VCPU timer */ /* Cleanup VCPU timer */
kvm_riscv_vcpu_timer_deinit(vcpu); kvm_riscv_vcpu_timer_deinit(vcpu);
/* Free unused pages pre-allocated for Stage2 page table mappings */ /* Free unused pages pre-allocated for G-stage page table mappings */
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
} }
@ -635,7 +635,7 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
csr_write(CSR_HVIP, csr->hvip); csr_write(CSR_HVIP, csr->hvip);
csr_write(CSR_VSATP, csr->vsatp); csr_write(CSR_VSATP, csr->vsatp);
kvm_riscv_stage2_update_hgatp(vcpu); kvm_riscv_gstage_update_hgatp(vcpu);
kvm_riscv_vcpu_timer_restore(vcpu); kvm_riscv_vcpu_timer_restore(vcpu);
@ -690,7 +690,7 @@ static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
kvm_riscv_reset_vcpu(vcpu); kvm_riscv_reset_vcpu(vcpu);
if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu)) if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
kvm_riscv_stage2_update_hgatp(vcpu); kvm_riscv_gstage_update_hgatp(vcpu);
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
__kvm_riscv_hfence_gvma_all(); __kvm_riscv_hfence_gvma_all();
@ -762,7 +762,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
/* Check conditions before entering the guest */ /* Check conditions before entering the guest */
cond_resched(); cond_resched();
kvm_riscv_stage2_vmid_update(vcpu); kvm_riscv_gstage_vmid_update(vcpu);
kvm_riscv_check_vcpu_requests(vcpu); kvm_riscv_check_vcpu_requests(vcpu);
@ -800,7 +800,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
kvm_riscv_update_hvip(vcpu); kvm_riscv_update_hvip(vcpu);
if (ret <= 0 || if (ret <= 0 ||
kvm_riscv_stage2_vmid_ver_changed(&vcpu->kvm->arch.vmid) || kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
kvm_request_pending(vcpu)) { kvm_request_pending(vcpu)) {
vcpu->mode = OUTSIDE_GUEST_MODE; vcpu->mode = OUTSIDE_GUEST_MODE;
local_irq_enable(); local_irq_enable();

View File

@ -412,7 +412,7 @@ static int emulate_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
return 0; return 0;
} }
static int stage2_page_fault(struct kvm_vcpu *vcpu, struct kvm_run *run, static int gstage_page_fault(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_cpu_trap *trap) struct kvm_cpu_trap *trap)
{ {
struct kvm_memory_slot *memslot; struct kvm_memory_slot *memslot;
@ -440,7 +440,7 @@ static int stage2_page_fault(struct kvm_vcpu *vcpu, struct kvm_run *run,
}; };
} }
ret = kvm_riscv_stage2_map(vcpu, memslot, fault_addr, hva, ret = kvm_riscv_gstage_map(vcpu, memslot, fault_addr, hva,
(trap->scause == EXC_STORE_GUEST_PAGE_FAULT) ? true : false); (trap->scause == EXC_STORE_GUEST_PAGE_FAULT) ? true : false);
if (ret < 0) if (ret < 0)
return ret; return ret;
@ -686,7 +686,7 @@ int kvm_riscv_vcpu_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
case EXC_LOAD_GUEST_PAGE_FAULT: case EXC_LOAD_GUEST_PAGE_FAULT:
case EXC_STORE_GUEST_PAGE_FAULT: case EXC_STORE_GUEST_PAGE_FAULT:
if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV) if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)
ret = stage2_page_fault(vcpu, run, trap); ret = gstage_page_fault(vcpu, run, trap);
break; break;
case EXC_SUPERVISOR_SYSCALL: case EXC_SUPERVISOR_SYSCALL:
if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV) if (vcpu->arch.guest_context.hstatus & HSTATUS_SPV)

View File

@ -31,13 +31,13 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{ {
int r; int r;
r = kvm_riscv_stage2_alloc_pgd(kvm); r = kvm_riscv_gstage_alloc_pgd(kvm);
if (r) if (r)
return r; return r;
r = kvm_riscv_stage2_vmid_init(kvm); r = kvm_riscv_gstage_vmid_init(kvm);
if (r) { if (r) {
kvm_riscv_stage2_free_pgd(kvm); kvm_riscv_gstage_free_pgd(kvm);
return r; return r;
} }
@ -75,7 +75,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
r = KVM_USER_MEM_SLOTS; r = KVM_USER_MEM_SLOTS;
break; break;
case KVM_CAP_VM_GPA_BITS: case KVM_CAP_VM_GPA_BITS:
r = kvm_riscv_stage2_gpa_bits(); r = kvm_riscv_gstage_gpa_bits();
break; break;
default: default:
r = 0; r = 0;

View File

@ -20,7 +20,7 @@ static unsigned long vmid_next;
static unsigned long vmid_bits; static unsigned long vmid_bits;
static DEFINE_SPINLOCK(vmid_lock); static DEFINE_SPINLOCK(vmid_lock);
void kvm_riscv_stage2_vmid_detect(void) void kvm_riscv_gstage_vmid_detect(void)
{ {
unsigned long old; unsigned long old;
@ -40,12 +40,12 @@ void kvm_riscv_stage2_vmid_detect(void)
vmid_bits = 0; vmid_bits = 0;
} }
unsigned long kvm_riscv_stage2_vmid_bits(void) unsigned long kvm_riscv_gstage_vmid_bits(void)
{ {
return vmid_bits; return vmid_bits;
} }
int kvm_riscv_stage2_vmid_init(struct kvm *kvm) int kvm_riscv_gstage_vmid_init(struct kvm *kvm)
{ {
/* Mark the initial VMID and VMID version invalid */ /* Mark the initial VMID and VMID version invalid */
kvm->arch.vmid.vmid_version = 0; kvm->arch.vmid.vmid_version = 0;
@ -54,7 +54,7 @@ int kvm_riscv_stage2_vmid_init(struct kvm *kvm)
return 0; return 0;
} }
bool kvm_riscv_stage2_vmid_ver_changed(struct kvm_vmid *vmid) bool kvm_riscv_gstage_vmid_ver_changed(struct kvm_vmid *vmid)
{ {
if (!vmid_bits) if (!vmid_bits)
return false; return false;
@ -63,13 +63,13 @@ bool kvm_riscv_stage2_vmid_ver_changed(struct kvm_vmid *vmid)
READ_ONCE(vmid_version)); READ_ONCE(vmid_version));
} }
void kvm_riscv_stage2_vmid_update(struct kvm_vcpu *vcpu) void kvm_riscv_gstage_vmid_update(struct kvm_vcpu *vcpu)
{ {
unsigned long i; unsigned long i;
struct kvm_vcpu *v; struct kvm_vcpu *v;
struct kvm_vmid *vmid = &vcpu->kvm->arch.vmid; struct kvm_vmid *vmid = &vcpu->kvm->arch.vmid;
if (!kvm_riscv_stage2_vmid_ver_changed(vmid)) if (!kvm_riscv_gstage_vmid_ver_changed(vmid))
return; return;
spin_lock(&vmid_lock); spin_lock(&vmid_lock);
@ -78,7 +78,7 @@ void kvm_riscv_stage2_vmid_update(struct kvm_vcpu *vcpu)
* We need to re-check the vmid_version here to ensure that if * We need to re-check the vmid_version here to ensure that if
* another vcpu already allocated a valid vmid for this vm. * another vcpu already allocated a valid vmid for this vm.
*/ */
if (!kvm_riscv_stage2_vmid_ver_changed(vmid)) { if (!kvm_riscv_gstage_vmid_ver_changed(vmid)) {
spin_unlock(&vmid_lock); spin_unlock(&vmid_lock);
return; return;
} }
@ -96,7 +96,7 @@ void kvm_riscv_stage2_vmid_update(struct kvm_vcpu *vcpu)
* instances is invalid and we have force VMID re-assignement * instances is invalid and we have force VMID re-assignement
* for all Guest instances. The Guest instances that were not * for all Guest instances. The Guest instances that were not
* running will automatically pick-up new VMIDs because will * running will automatically pick-up new VMIDs because will
* call kvm_riscv_stage2_vmid_update() whenever they enter * call kvm_riscv_gstage_vmid_update() whenever they enter
* in-kernel run loop. For Guest instances that are already * in-kernel run loop. For Guest instances that are already
* running, we force VM exits on all host CPUs using IPI and * running, we force VM exits on all host CPUs using IPI and
* flush all Guest TLBs. * flush all Guest TLBs.
@ -112,7 +112,7 @@ void kvm_riscv_stage2_vmid_update(struct kvm_vcpu *vcpu)
spin_unlock(&vmid_lock); spin_unlock(&vmid_lock);
/* Request stage2 page table update for all VCPUs */ /* Request G-stage page table update for all VCPUs */
kvm_for_each_vcpu(i, v, vcpu->kvm) kvm_for_each_vcpu(i, v, vcpu->kvm)
kvm_make_request(KVM_REQ_UPDATE_HGATP, v); kvm_make_request(KVM_REQ_UPDATE_HGATP, v);
} }