From 2667f50e8b81457fcb4a3dbe6aff3e81ea009e13 Mon Sep 17 00:00:00 2001 From: Steve Capper Date: Thu, 9 Oct 2014 15:29:14 -0700 Subject: [PATCH] mm: introduce a general RCU get_user_pages_fast() This series implements general forms of get_user_pages_fast and __get_user_pages_fast in core code and activates them for arm and arm64. These are required for Transparent HugePages to function correctly, as a futex on a THP tail will otherwise result in an infinite loop (due to the core implementation of __get_user_pages_fast always returning 0). Unfortunately, a futex on THP tail can be quite common for certain workloads; thus THP is unreliable without a __get_user_pages_fast implementation. This series may also be beneficial for direct-IO heavy workloads and certain KVM workloads. This patch (of 6): get_user_pages_fast() attempts to pin user pages by walking the page tables directly and avoids taking locks. Thus the walker needs to be protected from page table pages being freed from under it, and needs to block any THP splits. One way to achieve this is to have the walker disable interrupts, and rely on IPIs from the TLB flushing code blocking before the page table pages are freed. On some platforms we have hardware broadcast of TLB invalidations, thus the TLB flushing code doesn't necessarily need to broadcast IPIs; and spuriously broadcasting IPIs can hurt system performance if done too often. This problem has been solved on PowerPC and Sparc by batching up page table pages belonging to more than one mm_user, then scheduling an rcu_sched callback to free the pages. This RCU page table free logic has been promoted to core code and is activated when one enables HAVE_RCU_TABLE_FREE. Unfortunately, these architectures implement their own get_user_pages_fast routines. The RCU page table free logic coupled with an IPI broadcast on THP split (which is a rare event), allows one to protect a page table walker by merely disabling the interrupts during the walk. This patch provides a general RCU implementation of get_user_pages_fast that can be used by architectures that perform hardware broadcast of TLB invalidations. It is based heavily on the PowerPC implementation by Nick Piggin. [akpm@linux-foundation.org: various comment fixes] Signed-off-by: Steve Capper Tested-by: Dann Frazier Reviewed-by: Catalin Marinas Acked-by: Hugh Dickins Cc: Russell King Cc: Mark Rutland Cc: Mel Gorman Cc: Will Deacon Cc: Christoffer Dall Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/Kconfig | 3 + mm/gup.c | 354 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 357 insertions(+) diff --git a/mm/Kconfig b/mm/Kconfig index 886db2158538..0ceb8a567dab 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -137,6 +137,9 @@ config HAVE_MEMBLOCK_NODE_MAP config HAVE_MEMBLOCK_PHYS_MAP boolean +config HAVE_GENERIC_RCU_GUP + boolean + config ARCH_DISCARD_MEMBLOCK boolean diff --git a/mm/gup.c b/mm/gup.c index af7ea3e0826b..cd62c8c90d4a 100644 --- a/mm/gup.c +++ b/mm/gup.c @@ -10,6 +10,10 @@ #include #include +#include +#include +#include + #include "internal.h" static struct page *no_page_table(struct vm_area_struct *vma, @@ -676,3 +680,353 @@ struct page *get_dump_page(unsigned long addr) return page; } #endif /* CONFIG_ELF_CORE */ + +/* + * Generic RCU Fast GUP + * + * get_user_pages_fast attempts to pin user pages by walking the page + * tables directly and avoids taking locks. Thus the walker needs to be + * protected from page table pages being freed from under it, and should + * block any THP splits. + * + * One way to achieve this is to have the walker disable interrupts, and + * rely on IPIs from the TLB flushing code blocking before the page table + * pages are freed. This is unsuitable for architectures that do not need + * to broadcast an IPI when invalidating TLBs. + * + * Another way to achieve this is to batch up page table containing pages + * belonging to more than one mm_user, then rcu_sched a callback to free those + * pages. Disabling interrupts will allow the fast_gup walker to both block + * the rcu_sched callback, and an IPI that we broadcast for splitting THPs + * (which is a relatively rare event). The code below adopts this strategy. + * + * Before activating this code, please be aware that the following assumptions + * are currently made: + * + * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free + * pages containing page tables. + * + * *) THP splits will broadcast an IPI, this can be achieved by overriding + * pmdp_splitting_flush. + * + * *) ptes can be read atomically by the architecture. + * + * *) access_ok is sufficient to validate userspace address ranges. + * + * The last two assumptions can be relaxed by the addition of helper functions. + * + * This code is based heavily on the PowerPC implementation by Nick Piggin. + */ +#ifdef CONFIG_HAVE_GENERIC_RCU_GUP + +#ifdef __HAVE_ARCH_PTE_SPECIAL +static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, + int write, struct page **pages, int *nr) +{ + pte_t *ptep, *ptem; + int ret = 0; + + ptem = ptep = pte_offset_map(&pmd, addr); + do { + /* + * In the line below we are assuming that the pte can be read + * atomically. If this is not the case for your architecture, + * please wrap this in a helper function! + * + * for an example see gup_get_pte in arch/x86/mm/gup.c + */ + pte_t pte = ACCESS_ONCE(*ptep); + struct page *page; + + /* + * Similar to the PMD case below, NUMA hinting must take slow + * path + */ + if (!pte_present(pte) || pte_special(pte) || + pte_numa(pte) || (write && !pte_write(pte))) + goto pte_unmap; + + VM_BUG_ON(!pfn_valid(pte_pfn(pte))); + page = pte_page(pte); + + if (!page_cache_get_speculative(page)) + goto pte_unmap; + + if (unlikely(pte_val(pte) != pte_val(*ptep))) { + put_page(page); + goto pte_unmap; + } + + pages[*nr] = page; + (*nr)++; + + } while (ptep++, addr += PAGE_SIZE, addr != end); + + ret = 1; + +pte_unmap: + pte_unmap(ptem); + return ret; +} +#else + +/* + * If we can't determine whether or not a pte is special, then fail immediately + * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not + * to be special. + * + * For a futex to be placed on a THP tail page, get_futex_key requires a + * __get_user_pages_fast implementation that can pin pages. Thus it's still + * useful to have gup_huge_pmd even if we can't operate on ptes. + */ +static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, + int write, struct page **pages, int *nr) +{ + return 0; +} +#endif /* __HAVE_ARCH_PTE_SPECIAL */ + +static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, + unsigned long end, int write, struct page **pages, int *nr) +{ + struct page *head, *page, *tail; + int refs; + + if (write && !pmd_write(orig)) + return 0; + + refs = 0; + head = pmd_page(orig); + page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); + tail = page; + do { + VM_BUG_ON_PAGE(compound_head(page) != head, page); + pages[*nr] = page; + (*nr)++; + page++; + refs++; + } while (addr += PAGE_SIZE, addr != end); + + if (!page_cache_add_speculative(head, refs)) { + *nr -= refs; + return 0; + } + + if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { + *nr -= refs; + while (refs--) + put_page(head); + return 0; + } + + /* + * Any tail pages need their mapcount reference taken before we + * return. (This allows the THP code to bump their ref count when + * they are split into base pages). + */ + while (refs--) { + if (PageTail(tail)) + get_huge_page_tail(tail); + tail++; + } + + return 1; +} + +static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, + unsigned long end, int write, struct page **pages, int *nr) +{ + struct page *head, *page, *tail; + int refs; + + if (write && !pud_write(orig)) + return 0; + + refs = 0; + head = pud_page(orig); + page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); + tail = page; + do { + VM_BUG_ON_PAGE(compound_head(page) != head, page); + pages[*nr] = page; + (*nr)++; + page++; + refs++; + } while (addr += PAGE_SIZE, addr != end); + + if (!page_cache_add_speculative(head, refs)) { + *nr -= refs; + return 0; + } + + if (unlikely(pud_val(orig) != pud_val(*pudp))) { + *nr -= refs; + while (refs--) + put_page(head); + return 0; + } + + while (refs--) { + if (PageTail(tail)) + get_huge_page_tail(tail); + tail++; + } + + return 1; +} + +static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, + int write, struct page **pages, int *nr) +{ + unsigned long next; + pmd_t *pmdp; + + pmdp = pmd_offset(&pud, addr); + do { + pmd_t pmd = ACCESS_ONCE(*pmdp); + + next = pmd_addr_end(addr, end); + if (pmd_none(pmd) || pmd_trans_splitting(pmd)) + return 0; + + if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { + /* + * NUMA hinting faults need to be handled in the GUP + * slowpath for accounting purposes and so that they + * can be serialised against THP migration. + */ + if (pmd_numa(pmd)) + return 0; + + if (!gup_huge_pmd(pmd, pmdp, addr, next, write, + pages, nr)) + return 0; + + } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) + return 0; + } while (pmdp++, addr = next, addr != end); + + return 1; +} + +static int gup_pud_range(pgd_t *pgdp, unsigned long addr, unsigned long end, + int write, struct page **pages, int *nr) +{ + unsigned long next; + pud_t *pudp; + + pudp = pud_offset(pgdp, addr); + do { + pud_t pud = ACCESS_ONCE(*pudp); + + next = pud_addr_end(addr, end); + if (pud_none(pud)) + return 0; + if (pud_huge(pud)) { + if (!gup_huge_pud(pud, pudp, addr, next, write, + pages, nr)) + return 0; + } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) + return 0; + } while (pudp++, addr = next, addr != end); + + return 1; +} + +/* + * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to + * the regular GUP. It will only return non-negative values. + */ +int __get_user_pages_fast(unsigned long start, int nr_pages, int write, + struct page **pages) +{ + struct mm_struct *mm = current->mm; + unsigned long addr, len, end; + unsigned long next, flags; + pgd_t *pgdp; + int nr = 0; + + start &= PAGE_MASK; + addr = start; + len = (unsigned long) nr_pages << PAGE_SHIFT; + end = start + len; + + if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, + start, len))) + return 0; + + /* + * Disable interrupts. We use the nested form as we can already have + * interrupts disabled by get_futex_key. + * + * With interrupts disabled, we block page table pages from being + * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h + * for more details. + * + * We do not adopt an rcu_read_lock(.) here as we also want to + * block IPIs that come from THPs splitting. + */ + + local_irq_save(flags); + pgdp = pgd_offset(mm, addr); + do { + next = pgd_addr_end(addr, end); + if (pgd_none(*pgdp)) + break; + else if (!gup_pud_range(pgdp, addr, next, write, pages, &nr)) + break; + } while (pgdp++, addr = next, addr != end); + local_irq_restore(flags); + + return nr; +} + +/** + * get_user_pages_fast() - pin user pages in memory + * @start: starting user address + * @nr_pages: number of pages from start to pin + * @write: whether pages will be written to + * @pages: array that receives pointers to the pages pinned. + * Should be at least nr_pages long. + * + * Attempt to pin user pages in memory without taking mm->mmap_sem. + * If not successful, it will fall back to taking the lock and + * calling get_user_pages(). + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. + */ +int get_user_pages_fast(unsigned long start, int nr_pages, int write, + struct page **pages) +{ + struct mm_struct *mm = current->mm; + int nr, ret; + + start &= PAGE_MASK; + nr = __get_user_pages_fast(start, nr_pages, write, pages); + ret = nr; + + if (nr < nr_pages) { + /* Try to get the remaining pages with get_user_pages */ + start += nr << PAGE_SHIFT; + pages += nr; + + down_read(&mm->mmap_sem); + ret = get_user_pages(current, mm, start, + nr_pages - nr, write, 0, pages, NULL); + up_read(&mm->mmap_sem); + + /* Have to be a bit careful with return values */ + if (nr > 0) { + if (ret < 0) + ret = nr; + else + ret += nr; + } + } + + return ret; +} + +#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */