bcache: Move sector allocator to alloc.c
Just reorganizing things a bit. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
This commit is contained in:
parent
220bb38c21
commit
2599b53b7b
|
@ -487,8 +487,188 @@ int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
|
|||
return ret;
|
||||
}
|
||||
|
||||
/* Sector allocator */
|
||||
|
||||
struct open_bucket {
|
||||
struct list_head list;
|
||||
unsigned last_write_point;
|
||||
unsigned sectors_free;
|
||||
BKEY_PADDED(key);
|
||||
};
|
||||
|
||||
/*
|
||||
* We keep multiple buckets open for writes, and try to segregate different
|
||||
* write streams for better cache utilization: first we look for a bucket where
|
||||
* the last write to it was sequential with the current write, and failing that
|
||||
* we look for a bucket that was last used by the same task.
|
||||
*
|
||||
* The ideas is if you've got multiple tasks pulling data into the cache at the
|
||||
* same time, you'll get better cache utilization if you try to segregate their
|
||||
* data and preserve locality.
|
||||
*
|
||||
* For example, say you've starting Firefox at the same time you're copying a
|
||||
* bunch of files. Firefox will likely end up being fairly hot and stay in the
|
||||
* cache awhile, but the data you copied might not be; if you wrote all that
|
||||
* data to the same buckets it'd get invalidated at the same time.
|
||||
*
|
||||
* Both of those tasks will be doing fairly random IO so we can't rely on
|
||||
* detecting sequential IO to segregate their data, but going off of the task
|
||||
* should be a sane heuristic.
|
||||
*/
|
||||
static struct open_bucket *pick_data_bucket(struct cache_set *c,
|
||||
const struct bkey *search,
|
||||
unsigned write_point,
|
||||
struct bkey *alloc)
|
||||
{
|
||||
struct open_bucket *ret, *ret_task = NULL;
|
||||
|
||||
list_for_each_entry_reverse(ret, &c->data_buckets, list)
|
||||
if (!bkey_cmp(&ret->key, search))
|
||||
goto found;
|
||||
else if (ret->last_write_point == write_point)
|
||||
ret_task = ret;
|
||||
|
||||
ret = ret_task ?: list_first_entry(&c->data_buckets,
|
||||
struct open_bucket, list);
|
||||
found:
|
||||
if (!ret->sectors_free && KEY_PTRS(alloc)) {
|
||||
ret->sectors_free = c->sb.bucket_size;
|
||||
bkey_copy(&ret->key, alloc);
|
||||
bkey_init(alloc);
|
||||
}
|
||||
|
||||
if (!ret->sectors_free)
|
||||
ret = NULL;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocates some space in the cache to write to, and k to point to the newly
|
||||
* allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
|
||||
* end of the newly allocated space).
|
||||
*
|
||||
* May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
|
||||
* sectors were actually allocated.
|
||||
*
|
||||
* If s->writeback is true, will not fail.
|
||||
*/
|
||||
bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
|
||||
unsigned write_point, unsigned write_prio, bool wait)
|
||||
{
|
||||
struct open_bucket *b;
|
||||
BKEY_PADDED(key) alloc;
|
||||
unsigned i;
|
||||
|
||||
/*
|
||||
* We might have to allocate a new bucket, which we can't do with a
|
||||
* spinlock held. So if we have to allocate, we drop the lock, allocate
|
||||
* and then retry. KEY_PTRS() indicates whether alloc points to
|
||||
* allocated bucket(s).
|
||||
*/
|
||||
|
||||
bkey_init(&alloc.key);
|
||||
spin_lock(&c->data_bucket_lock);
|
||||
|
||||
while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
|
||||
unsigned watermark = write_prio
|
||||
? WATERMARK_MOVINGGC
|
||||
: WATERMARK_NONE;
|
||||
|
||||
spin_unlock(&c->data_bucket_lock);
|
||||
|
||||
if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
|
||||
return false;
|
||||
|
||||
spin_lock(&c->data_bucket_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we had to allocate, we might race and not need to allocate the
|
||||
* second time we call find_data_bucket(). If we allocated a bucket but
|
||||
* didn't use it, drop the refcount bch_bucket_alloc_set() took:
|
||||
*/
|
||||
if (KEY_PTRS(&alloc.key))
|
||||
__bkey_put(c, &alloc.key);
|
||||
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
||||
EBUG_ON(ptr_stale(c, &b->key, i));
|
||||
|
||||
/* Set up the pointer to the space we're allocating: */
|
||||
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
||||
k->ptr[i] = b->key.ptr[i];
|
||||
|
||||
sectors = min(sectors, b->sectors_free);
|
||||
|
||||
SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
|
||||
SET_KEY_SIZE(k, sectors);
|
||||
SET_KEY_PTRS(k, KEY_PTRS(&b->key));
|
||||
|
||||
/*
|
||||
* Move b to the end of the lru, and keep track of what this bucket was
|
||||
* last used for:
|
||||
*/
|
||||
list_move_tail(&b->list, &c->data_buckets);
|
||||
bkey_copy_key(&b->key, k);
|
||||
b->last_write_point = write_point;
|
||||
|
||||
b->sectors_free -= sectors;
|
||||
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++) {
|
||||
SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
|
||||
|
||||
atomic_long_add(sectors,
|
||||
&PTR_CACHE(c, &b->key, i)->sectors_written);
|
||||
}
|
||||
|
||||
if (b->sectors_free < c->sb.block_size)
|
||||
b->sectors_free = 0;
|
||||
|
||||
/*
|
||||
* k takes refcounts on the buckets it points to until it's inserted
|
||||
* into the btree, but if we're done with this bucket we just transfer
|
||||
* get_data_bucket()'s refcount.
|
||||
*/
|
||||
if (b->sectors_free)
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
||||
atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
|
||||
|
||||
spin_unlock(&c->data_bucket_lock);
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Init */
|
||||
|
||||
void bch_open_buckets_free(struct cache_set *c)
|
||||
{
|
||||
struct open_bucket *b;
|
||||
|
||||
while (!list_empty(&c->data_buckets)) {
|
||||
b = list_first_entry(&c->data_buckets,
|
||||
struct open_bucket, list);
|
||||
list_del(&b->list);
|
||||
kfree(b);
|
||||
}
|
||||
}
|
||||
|
||||
int bch_open_buckets_alloc(struct cache_set *c)
|
||||
{
|
||||
int i;
|
||||
|
||||
spin_lock_init(&c->data_bucket_lock);
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
|
||||
if (!b)
|
||||
return -ENOMEM;
|
||||
|
||||
list_add(&b->list, &c->data_buckets);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int bch_cache_allocator_start(struct cache *ca)
|
||||
{
|
||||
struct task_struct *k = kthread_run(bch_allocator_thread,
|
||||
|
|
|
@ -1170,6 +1170,8 @@ int __bch_bucket_alloc_set(struct cache_set *, unsigned,
|
|||
struct bkey *, int, bool);
|
||||
int bch_bucket_alloc_set(struct cache_set *, unsigned,
|
||||
struct bkey *, int, bool);
|
||||
bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
|
||||
unsigned, unsigned, bool);
|
||||
|
||||
__printf(2, 3)
|
||||
bool bch_cache_set_error(struct cache_set *, const char *, ...);
|
||||
|
@ -1210,6 +1212,8 @@ struct cache_set *bch_cache_set_alloc(struct cache_sb *);
|
|||
void bch_btree_cache_free(struct cache_set *);
|
||||
int bch_btree_cache_alloc(struct cache_set *);
|
||||
void bch_moving_init_cache_set(struct cache_set *);
|
||||
int bch_open_buckets_alloc(struct cache_set *);
|
||||
void bch_open_buckets_free(struct cache_set *);
|
||||
|
||||
int bch_cache_allocator_start(struct cache *ca);
|
||||
int bch_cache_allocator_init(struct cache *ca);
|
||||
|
|
|
@ -255,186 +255,6 @@ static void bch_data_insert_keys(struct closure *cl)
|
|||
closure_return(cl);
|
||||
}
|
||||
|
||||
struct open_bucket {
|
||||
struct list_head list;
|
||||
struct task_struct *last;
|
||||
unsigned sectors_free;
|
||||
BKEY_PADDED(key);
|
||||
};
|
||||
|
||||
void bch_open_buckets_free(struct cache_set *c)
|
||||
{
|
||||
struct open_bucket *b;
|
||||
|
||||
while (!list_empty(&c->data_buckets)) {
|
||||
b = list_first_entry(&c->data_buckets,
|
||||
struct open_bucket, list);
|
||||
list_del(&b->list);
|
||||
kfree(b);
|
||||
}
|
||||
}
|
||||
|
||||
int bch_open_buckets_alloc(struct cache_set *c)
|
||||
{
|
||||
int i;
|
||||
|
||||
spin_lock_init(&c->data_bucket_lock);
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
|
||||
if (!b)
|
||||
return -ENOMEM;
|
||||
|
||||
list_add(&b->list, &c->data_buckets);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* We keep multiple buckets open for writes, and try to segregate different
|
||||
* write streams for better cache utilization: first we look for a bucket where
|
||||
* the last write to it was sequential with the current write, and failing that
|
||||
* we look for a bucket that was last used by the same task.
|
||||
*
|
||||
* The ideas is if you've got multiple tasks pulling data into the cache at the
|
||||
* same time, you'll get better cache utilization if you try to segregate their
|
||||
* data and preserve locality.
|
||||
*
|
||||
* For example, say you've starting Firefox at the same time you're copying a
|
||||
* bunch of files. Firefox will likely end up being fairly hot and stay in the
|
||||
* cache awhile, but the data you copied might not be; if you wrote all that
|
||||
* data to the same buckets it'd get invalidated at the same time.
|
||||
*
|
||||
* Both of those tasks will be doing fairly random IO so we can't rely on
|
||||
* detecting sequential IO to segregate their data, but going off of the task
|
||||
* should be a sane heuristic.
|
||||
*/
|
||||
static struct open_bucket *pick_data_bucket(struct cache_set *c,
|
||||
const struct bkey *search,
|
||||
struct task_struct *task,
|
||||
struct bkey *alloc)
|
||||
{
|
||||
struct open_bucket *ret, *ret_task = NULL;
|
||||
|
||||
list_for_each_entry_reverse(ret, &c->data_buckets, list)
|
||||
if (!bkey_cmp(&ret->key, search))
|
||||
goto found;
|
||||
else if (ret->last == task)
|
||||
ret_task = ret;
|
||||
|
||||
ret = ret_task ?: list_first_entry(&c->data_buckets,
|
||||
struct open_bucket, list);
|
||||
found:
|
||||
if (!ret->sectors_free && KEY_PTRS(alloc)) {
|
||||
ret->sectors_free = c->sb.bucket_size;
|
||||
bkey_copy(&ret->key, alloc);
|
||||
bkey_init(alloc);
|
||||
}
|
||||
|
||||
if (!ret->sectors_free)
|
||||
ret = NULL;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocates some space in the cache to write to, and k to point to the newly
|
||||
* allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
|
||||
* end of the newly allocated space).
|
||||
*
|
||||
* May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
|
||||
* sectors were actually allocated.
|
||||
*
|
||||
* If s->writeback is true, will not fail.
|
||||
*/
|
||||
static bool bch_alloc_sectors(struct data_insert_op *op,
|
||||
struct bkey *k, unsigned sectors)
|
||||
{
|
||||
struct cache_set *c = op->c;
|
||||
struct open_bucket *b;
|
||||
BKEY_PADDED(key) alloc;
|
||||
unsigned i;
|
||||
|
||||
/*
|
||||
* We might have to allocate a new bucket, which we can't do with a
|
||||
* spinlock held. So if we have to allocate, we drop the lock, allocate
|
||||
* and then retry. KEY_PTRS() indicates whether alloc points to
|
||||
* allocated bucket(s).
|
||||
*/
|
||||
|
||||
bkey_init(&alloc.key);
|
||||
spin_lock(&c->data_bucket_lock);
|
||||
|
||||
while (!(b = pick_data_bucket(c, k, op->task, &alloc.key))) {
|
||||
unsigned watermark = op->write_prio
|
||||
? WATERMARK_MOVINGGC
|
||||
: WATERMARK_NONE;
|
||||
|
||||
spin_unlock(&c->data_bucket_lock);
|
||||
|
||||
if (bch_bucket_alloc_set(c, watermark, &alloc.key,
|
||||
1, op->writeback))
|
||||
return false;
|
||||
|
||||
spin_lock(&c->data_bucket_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we had to allocate, we might race and not need to allocate the
|
||||
* second time we call find_data_bucket(). If we allocated a bucket but
|
||||
* didn't use it, drop the refcount bch_bucket_alloc_set() took:
|
||||
*/
|
||||
if (KEY_PTRS(&alloc.key))
|
||||
__bkey_put(c, &alloc.key);
|
||||
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
||||
EBUG_ON(ptr_stale(c, &b->key, i));
|
||||
|
||||
/* Set up the pointer to the space we're allocating: */
|
||||
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
||||
k->ptr[i] = b->key.ptr[i];
|
||||
|
||||
sectors = min(sectors, b->sectors_free);
|
||||
|
||||
SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
|
||||
SET_KEY_SIZE(k, sectors);
|
||||
SET_KEY_PTRS(k, KEY_PTRS(&b->key));
|
||||
|
||||
/*
|
||||
* Move b to the end of the lru, and keep track of what this bucket was
|
||||
* last used for:
|
||||
*/
|
||||
list_move_tail(&b->list, &c->data_buckets);
|
||||
bkey_copy_key(&b->key, k);
|
||||
b->last = op->task;
|
||||
|
||||
b->sectors_free -= sectors;
|
||||
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++) {
|
||||
SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
|
||||
|
||||
atomic_long_add(sectors,
|
||||
&PTR_CACHE(c, &b->key, i)->sectors_written);
|
||||
}
|
||||
|
||||
if (b->sectors_free < c->sb.block_size)
|
||||
b->sectors_free = 0;
|
||||
|
||||
/*
|
||||
* k takes refcounts on the buckets it points to until it's inserted
|
||||
* into the btree, but if we're done with this bucket we just transfer
|
||||
* get_data_bucket()'s refcount.
|
||||
*/
|
||||
if (b->sectors_free)
|
||||
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
||||
atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
|
||||
|
||||
spin_unlock(&c->data_bucket_lock);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void bch_data_invalidate(struct closure *cl)
|
||||
{
|
||||
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
|
||||
|
@ -545,7 +365,9 @@ static void bch_data_insert_start(struct closure *cl)
|
|||
SET_KEY_INODE(k, op->inode);
|
||||
SET_KEY_OFFSET(k, bio->bi_sector);
|
||||
|
||||
if (!bch_alloc_sectors(op, k, bio_sectors(bio)))
|
||||
if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
|
||||
op->write_point, op->write_prio,
|
||||
op->writeback))
|
||||
goto err;
|
||||
|
||||
n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
|
||||
|
@ -968,7 +790,7 @@ static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
|
|||
s->iop.c = d->c;
|
||||
s->d = d;
|
||||
s->op.lock = -1;
|
||||
s->iop.task = current;
|
||||
s->iop.write_point = hash_long((unsigned long) current, 16);
|
||||
s->orig_bio = bio;
|
||||
s->write = (bio->bi_rw & REQ_WRITE) != 0;
|
||||
s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
|
||||
|
|
|
@ -6,10 +6,10 @@
|
|||
struct data_insert_op {
|
||||
struct closure cl;
|
||||
struct cache_set *c;
|
||||
struct task_struct *task;
|
||||
struct bio *bio;
|
||||
|
||||
unsigned inode;
|
||||
uint16_t write_point;
|
||||
uint16_t write_prio;
|
||||
short error;
|
||||
|
||||
|
@ -31,9 +31,6 @@ struct data_insert_op {
|
|||
unsigned bch_get_congested(struct cache_set *);
|
||||
void bch_data_insert(struct closure *cl);
|
||||
|
||||
void bch_open_buckets_free(struct cache_set *);
|
||||
int bch_open_buckets_alloc(struct cache_set *);
|
||||
|
||||
void bch_cached_dev_request_init(struct cached_dev *dc);
|
||||
void bch_flash_dev_request_init(struct bcache_device *d);
|
||||
|
||||
|
|
Loading…
Reference in New Issue