ALSA: doc: ReSTize timestamping document

A simple conversion from a plain text file.
Put to designs subdirectory.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit is contained in:
Takashi Iwai 2016-11-10 11:06:55 +01:00
parent e9df12c3ba
commit 20a1d0f44d
2 changed files with 80 additions and 64 deletions

View File

@ -7,6 +7,7 @@ Designs and Implementations
control-names
channel-mapping-api
compress-offload
timestamping
procfile
powersave
oss-emulation

View File

@ -1,3 +1,7 @@
=====================
ALSA PCM Timestamping
=====================
The ALSA API can provide two different system timestamps:
- Trigger_tstamp is the system time snapshot taken when the .trigger
@ -22,15 +26,15 @@ the ring buffer and the amount of queued samples.
The use of these different pointers and time information depends on
the application needs:
- 'avail' reports how much can be written in the ring buffer
- 'delay' reports the time it will take to hear a new sample after all
- ``avail`` reports how much can be written in the ring buffer
- ``delay`` reports the time it will take to hear a new sample after all
queued samples have been played out.
When timestamps are enabled, the avail/delay information is reported
along with a snapshot of system time. Applications can select from
CLOCK_REALTIME (NTP corrections including going backwards),
CLOCK_MONOTONIC (NTP corrections but never going backwards),
CLOCK_MONOTIC_RAW (without NTP corrections) and change the mode
``CLOCK_REALTIME`` (NTP corrections including going backwards),
``CLOCK_MONOTONIC`` (NTP corrections but never going backwards),
``CLOCK_MONOTIC_RAW`` (without NTP corrections) and change the mode
dynamically with sw_params
@ -38,7 +42,7 @@ The ALSA API also provide an audio_tstamp which reflects the passage
of time as measured by different components of audio hardware. In
ascii-art, this could be represented as follows (for the playback
case):
::
--------------------------------------------------------------> time
^ ^ ^ ^ ^
@ -50,6 +54,7 @@ case):
|<----------------- delay---------------------->| |
|<----ring buffer length---->|
The analog time is taken at the last stage of the playback, as close
as possible to the actual transducer
@ -113,11 +118,11 @@ audio applications...
Due to the varied nature of timestamping needs, even for a single
application, the audio_tstamp_config can be changed dynamically. In
the STATUS ioctl, the parameters are read-only and do not allow for
the ``STATUS`` ioctl, the parameters are read-only and do not allow for
any application selection. To work around this limitation without
impacting legacy applications, a new STATUS_EXT ioctl is introduced
impacting legacy applications, a new ``STATUS_EXT`` ioctl is introduced
with read/write parameters. ALSA-lib will be modified to make use of
STATUS_EXT and effectively deprecate STATUS.
``STATUS_EXT`` and effectively deprecate ``STATUS``.
The ALSA API only allows for a single audio timestamp to be reported
at a time. This is a conscious design decision, reading the audio
@ -135,12 +140,14 @@ the hardware, there is a risk of misalignment with the avail and delay
information. To make sure applications are not confused, a
driver_timestamp field is added in the snd_pcm_status structure; this
timestamp shows when the information is put together by the driver
before returning from the STATUS and STATUS_EXT ioctl. in most cases
before returning from the ``STATUS`` and ``STATUS_EXT`` ioctl. in most cases
this driver_timestamp will be identical to the regular system tstamp.
Examples of typestamping with HDaudio:
1. DMA timestamp, no compensation for DMA+analog delay
::
$ ./audio_time -p --ts_type=1
playback: systime: 341121338 nsec, audio time 342000000 nsec, systime delta -878662
playback: systime: 426236663 nsec, audio time 427187500 nsec, systime delta -950837
@ -150,6 +157,8 @@ playback: systime: 852896415 nsec, audio time 853854166 nsec, systime delta -95
playback: systime: 937903344 nsec, audio time 938854166 nsec, systime delta -950822
2. DMA timestamp, compensation for DMA+analog delay
::
$ ./audio_time -p --ts_type=1 -d
playback: systime: 341053347 nsec, audio time 341062500 nsec, systime delta -9153
playback: systime: 426072447 nsec, audio time 426062500 nsec, systime delta 9947
@ -158,6 +167,8 @@ playback: systime: 681915317 nsec, audio time 681916666 nsec, systime delta -13
playback: systime: 852741306 nsec, audio time 852750000 nsec, systime delta -8694
3. link timestamp, compensation for DMA+analog delay
::
$ ./audio_time -p --ts_type=2 -d
playback: systime: 341060004 nsec, audio time 341062791 nsec, systime delta -2787
playback: systime: 426242074 nsec, audio time 426244875 nsec, systime delta -2801
@ -181,6 +192,8 @@ shows how compensating for the delay exposes a 1ms accuracy (due to
the use of the frame counter by the driver)
Example 3: DMA timestamp, no compensation for delay, delta of ~5ms
::
$ ./audio_time -p -Dhw:1 -t1
playback: systime: 120174019 nsec, audio time 125000000 nsec, systime delta -4825981
playback: systime: 245041136 nsec, audio time 250000000 nsec, systime delta -4958864
@ -191,6 +204,8 @@ playback: systime: 745087741 nsec, audio time 750000000 nsec, systime delta -49
playback: systime: 870037336 nsec, audio time 875000000 nsec, systime delta -4962664
Example 4: DMA timestamp, compensation for delay, delay of ~1ms
::
$ ./audio_time -p -Dhw:1 -t1 -d
playback: systime: 120190520 nsec, audio time 120000000 nsec, systime delta 190520
playback: systime: 245036740 nsec, audio time 244000000 nsec, systime delta 1036740