net: dsa: bcm_sf2: Get rid of unmarshalling functions
Now that we have migrated the CFP rule handling to a list with a software copy, the delete/get operation just returns what is on the list, no need to read from the hardware which is both slow and more error prone. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
1c0130f0b5
commit
1c60c7f900
|
@ -974,316 +974,6 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
|
|||
flow->m_ext.data[1] ^= cpu_to_be32(~0);
|
||||
}
|
||||
|
||||
static int __maybe_unused bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
|
||||
struct ethtool_tcpip4_spec *v4_spec,
|
||||
bool mask)
|
||||
{
|
||||
u32 reg, offset, ipv4;
|
||||
u16 src_dst_port;
|
||||
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(3);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(3);
|
||||
|
||||
reg = core_readl(priv, offset);
|
||||
/* src port [15:8] */
|
||||
src_dst_port = reg << 8;
|
||||
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(2);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(2);
|
||||
|
||||
reg = core_readl(priv, offset);
|
||||
/* src port [7:0] */
|
||||
src_dst_port |= (reg >> 24);
|
||||
|
||||
v4_spec->pdst = cpu_to_be16(src_dst_port);
|
||||
v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
|
||||
|
||||
/* IPv4 dst [15:8] */
|
||||
ipv4 = (reg & 0xff) << 8;
|
||||
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(1);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(1);
|
||||
|
||||
reg = core_readl(priv, offset);
|
||||
/* IPv4 dst [31:16] */
|
||||
ipv4 |= ((reg >> 8) & 0xffff) << 16;
|
||||
/* IPv4 dst [7:0] */
|
||||
ipv4 |= (reg >> 24) & 0xff;
|
||||
v4_spec->ip4dst = cpu_to_be32(ipv4);
|
||||
|
||||
/* IPv4 src [15:8] */
|
||||
ipv4 = (reg & 0xff) << 8;
|
||||
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(0);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(0);
|
||||
reg = core_readl(priv, offset);
|
||||
|
||||
/* Once the TCAM is programmed, the mask reflects the slice number
|
||||
* being matched, don't bother checking it when reading back the
|
||||
* mask spec
|
||||
*/
|
||||
if (!mask && !(reg & SLICE_VALID))
|
||||
return -EINVAL;
|
||||
|
||||
/* IPv4 src [7:0] */
|
||||
ipv4 |= (reg >> 24) & 0xff;
|
||||
/* IPv4 src [31:16] */
|
||||
ipv4 |= ((reg >> 8) & 0xffff) << 16;
|
||||
v4_spec->ip4src = cpu_to_be32(ipv4);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
|
||||
struct ethtool_rx_flow_spec *fs)
|
||||
{
|
||||
struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
|
||||
u32 reg;
|
||||
int ret;
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
||||
|
||||
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
||||
case IPPROTO_TCP:
|
||||
fs->flow_type = TCP_V4_FLOW;
|
||||
v4_spec = &fs->h_u.tcp_ip4_spec;
|
||||
v4_m_spec = &fs->m_u.tcp_ip4_spec;
|
||||
break;
|
||||
case IPPROTO_UDP:
|
||||
fs->flow_type = UDP_V4_FLOW;
|
||||
v4_spec = &fs->h_u.udp_ip4_spec;
|
||||
v4_m_spec = &fs->m_u.udp_ip4_spec;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
|
||||
v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
|
||||
|
||||
ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
|
||||
}
|
||||
|
||||
static int __maybe_unused bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
|
||||
__be32 *ip6_addr,
|
||||
__be16 *port,
|
||||
bool mask)
|
||||
{
|
||||
u32 reg, tmp, offset;
|
||||
|
||||
/* C-Tag [31:24]
|
||||
* UDF_n_B8 [23:8] (port)
|
||||
* UDF_n_B7 (upper) [7:0] (addr[15:8])
|
||||
*/
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(4);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(4);
|
||||
reg = core_readl(priv, offset);
|
||||
*port = cpu_to_be32(reg) >> 8;
|
||||
tmp = (u32)(reg & 0xff) << 8;
|
||||
|
||||
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
|
||||
* UDF_n_B6 [23:8] (addr[31:16])
|
||||
* UDF_n_B5 (upper) [7:0] (addr[47:40])
|
||||
*/
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(3);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(3);
|
||||
reg = core_readl(priv, offset);
|
||||
tmp |= (reg >> 24) & 0xff;
|
||||
tmp |= (u32)((reg >> 8) << 16);
|
||||
ip6_addr[3] = cpu_to_be32(tmp);
|
||||
tmp = (u32)(reg & 0xff) << 8;
|
||||
|
||||
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
|
||||
* UDF_n_B4 [23:8] (addr[63:48])
|
||||
* UDF_n_B3 (upper) [7:0] (addr[79:72])
|
||||
*/
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(2);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(2);
|
||||
reg = core_readl(priv, offset);
|
||||
tmp |= (reg >> 24) & 0xff;
|
||||
tmp |= (u32)((reg >> 8) << 16);
|
||||
ip6_addr[2] = cpu_to_be32(tmp);
|
||||
tmp = (u32)(reg & 0xff) << 8;
|
||||
|
||||
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
|
||||
* UDF_n_B2 [23:8] (addr[95:80])
|
||||
* UDF_n_B1 (upper) [7:0] (addr[111:104])
|
||||
*/
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(1);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(1);
|
||||
reg = core_readl(priv, offset);
|
||||
tmp |= (reg >> 24) & 0xff;
|
||||
tmp |= (u32)((reg >> 8) << 16);
|
||||
ip6_addr[1] = cpu_to_be32(tmp);
|
||||
tmp = (u32)(reg & 0xff) << 8;
|
||||
|
||||
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
|
||||
* UDF_n_B0 [23:8] (addr[127:112])
|
||||
* Reserved [7:4]
|
||||
* Slice ID [3:2]
|
||||
* Slice valid [1:0]
|
||||
*/
|
||||
if (mask)
|
||||
offset = CORE_CFP_MASK_PORT(0);
|
||||
else
|
||||
offset = CORE_CFP_DATA_PORT(0);
|
||||
reg = core_readl(priv, offset);
|
||||
tmp |= (reg >> 24) & 0xff;
|
||||
tmp |= (u32)((reg >> 8) << 16);
|
||||
ip6_addr[0] = cpu_to_be32(tmp);
|
||||
|
||||
if (!mask && !(reg & SLICE_VALID))
|
||||
return -EINVAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __maybe_unused bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv,
|
||||
int port,
|
||||
struct ethtool_rx_flow_spec *fs,
|
||||
u32 next_loc)
|
||||
{
|
||||
struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
|
||||
u32 reg;
|
||||
int ret;
|
||||
|
||||
/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
|
||||
* assuming tcp_ip6_spec here being an union.
|
||||
*/
|
||||
v6_spec = &fs->h_u.tcp_ip6_spec;
|
||||
v6_m_spec = &fs->m_u.tcp_ip6_spec;
|
||||
|
||||
/* Read the second half first */
|
||||
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
|
||||
false);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
|
||||
&v6_m_spec->pdst, true);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Read last to avoid next entry clobbering the results during search
|
||||
* operations. We would not have the port enabled for this rule, so
|
||||
* don't bother checking it.
|
||||
*/
|
||||
(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
|
||||
|
||||
/* The slice number is valid, so read the rule we are chained from now
|
||||
* which is our first half.
|
||||
*/
|
||||
bcm_sf2_cfp_rule_addr_set(priv, next_loc);
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
||||
|
||||
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
||||
case IPPROTO_TCP:
|
||||
fs->flow_type = TCP_V6_FLOW;
|
||||
break;
|
||||
case IPPROTO_UDP:
|
||||
fs->flow_type = UDP_V6_FLOW;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
|
||||
false);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
|
||||
&v6_m_spec->psrc, true);
|
||||
}
|
||||
|
||||
static int __maybe_unused bcm_sf2_cfp_rule_get_hw(struct bcm_sf2_priv *priv,
|
||||
int port,
|
||||
struct ethtool_rxnfc *nfc)
|
||||
{
|
||||
u32 reg, ipv4_or_chain_id;
|
||||
unsigned int queue_num;
|
||||
int ret;
|
||||
|
||||
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
|
||||
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
reg = core_readl(priv, CORE_ACT_POL_DATA0);
|
||||
|
||||
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Extract the destination port */
|
||||
nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
|
||||
DST_MAP_IB_MASK) - 1;
|
||||
|
||||
/* There is no Port 6, so we compensate for that here */
|
||||
if (nfc->fs.ring_cookie >= 6)
|
||||
nfc->fs.ring_cookie++;
|
||||
nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
|
||||
|
||||
/* Extract the destination queue */
|
||||
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
|
||||
nfc->fs.ring_cookie += queue_num;
|
||||
|
||||
/* Extract the L3_FRAMING or CHAIN_ID */
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
||||
|
||||
/* With IPv6 rules this would contain a non-zero chain ID since
|
||||
* we reserve entry 0 and it cannot be used. So if we read 0 here
|
||||
* this means an IPv4 rule.
|
||||
*/
|
||||
ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
|
||||
if (ipv4_or_chain_id == 0)
|
||||
ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
|
||||
else
|
||||
ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
|
||||
ipv4_or_chain_id);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Read last to avoid next entry clobbering the results during search
|
||||
* operations
|
||||
*/
|
||||
reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
|
||||
if (!(reg & 1 << port))
|
||||
return -EINVAL;
|
||||
|
||||
bcm_sf2_invert_masks(&nfc->fs);
|
||||
|
||||
/* Put the TCAM size here */
|
||||
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
|
||||
struct ethtool_rxnfc *nfc)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue