timers, sched/clock: Avoid deadlock during read from NMI
Currently it is possible for an NMI (or FIQ on ARM) to come in and read sched_clock() whilst update_sched_clock() has locked the seqcount for writing. This results in the NMI handler locking up when it calls raw_read_seqcount_begin(). This patch fixes the NMI safety issues by providing banked clock data. This is a similar approach to the one used in Thomas Gleixner's 4396e058c52e("timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC"). Suggested-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1427397806-20889-6-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
9fee69a8c8
commit
1809bfa44e
|
@ -47,19 +47,20 @@ struct clock_read_data {
|
|||
* struct clock_data - all data needed for sched_clock (including
|
||||
* registration of a new clock source)
|
||||
*
|
||||
* @seq: Sequence counter for protecting updates.
|
||||
* @seq: Sequence counter for protecting updates. The lowest
|
||||
* bit is the index for @read_data.
|
||||
* @read_data: Data required to read from sched_clock.
|
||||
* @wrap_kt: Duration for which clock can run before wrapping
|
||||
* @rate: Tick rate of the registered clock
|
||||
* @actual_read_sched_clock: Registered clock read function
|
||||
*
|
||||
* The ordering of this structure has been chosen to optimize cache
|
||||
* performance. In particular seq and read_data (combined) should fit
|
||||
* performance. In particular seq and read_data[0] (combined) should fit
|
||||
* into a single 64 byte cache line.
|
||||
*/
|
||||
struct clock_data {
|
||||
seqcount_t seq;
|
||||
struct clock_read_data read_data;
|
||||
struct clock_read_data read_data[2];
|
||||
ktime_t wrap_kt;
|
||||
unsigned long rate;
|
||||
u64 (*actual_read_sched_clock)(void);
|
||||
|
@ -80,10 +81,9 @@ static u64 notrace jiffy_sched_clock_read(void)
|
|||
}
|
||||
|
||||
static struct clock_data cd ____cacheline_aligned = {
|
||||
.read_data = { .mult = NSEC_PER_SEC / HZ,
|
||||
.read_sched_clock = jiffy_sched_clock_read, },
|
||||
.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
|
||||
.read_sched_clock = jiffy_sched_clock_read, },
|
||||
.actual_read_sched_clock = jiffy_sched_clock_read,
|
||||
|
||||
};
|
||||
|
||||
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
||||
|
@ -95,10 +95,11 @@ unsigned long long notrace sched_clock(void)
|
|||
{
|
||||
u64 cyc, res;
|
||||
unsigned long seq;
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
struct clock_read_data *rd;
|
||||
|
||||
do {
|
||||
seq = raw_read_seqcount_begin(&cd.seq);
|
||||
seq = raw_read_seqcount(&cd.seq);
|
||||
rd = cd.read_data + (seq & 1);
|
||||
|
||||
cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
|
||||
rd->sched_clock_mask;
|
||||
|
@ -108,27 +109,51 @@ unsigned long long notrace sched_clock(void)
|
|||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* Updating the data required to read the clock.
|
||||
*
|
||||
* sched_clock will never observe mis-matched data even if called from
|
||||
* an NMI. We do this by maintaining an odd/even copy of the data and
|
||||
* steering sched_clock to one or the other using a sequence counter.
|
||||
* In order to preserve the data cache profile of sched_clock as much
|
||||
* as possible the system reverts back to the even copy when the update
|
||||
* completes; the odd copy is used *only* during an update.
|
||||
*/
|
||||
static void update_clock_read_data(struct clock_read_data *rd)
|
||||
{
|
||||
/* update the backup (odd) copy with the new data */
|
||||
cd.read_data[1] = *rd;
|
||||
|
||||
/* steer readers towards the odd copy */
|
||||
raw_write_seqcount_latch(&cd.seq);
|
||||
|
||||
/* now its safe for us to update the normal (even) copy */
|
||||
cd.read_data[0] = *rd;
|
||||
|
||||
/* switch readers back to the even copy */
|
||||
raw_write_seqcount_latch(&cd.seq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Atomically update the sched_clock epoch.
|
||||
*/
|
||||
static void update_sched_clock(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
u64 cyc;
|
||||
u64 ns;
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
struct clock_read_data rd;
|
||||
|
||||
rd = cd.read_data[0];
|
||||
|
||||
cyc = cd.actual_read_sched_clock();
|
||||
ns = rd->epoch_ns +
|
||||
cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask,
|
||||
rd->mult, rd->shift);
|
||||
ns = rd.epoch_ns +
|
||||
cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
|
||||
rd.mult, rd.shift);
|
||||
|
||||
raw_local_irq_save(flags);
|
||||
raw_write_seqcount_begin(&cd.seq);
|
||||
rd->epoch_ns = ns;
|
||||
rd->epoch_cyc = cyc;
|
||||
raw_write_seqcount_end(&cd.seq);
|
||||
raw_local_irq_restore(flags);
|
||||
rd.epoch_ns = ns;
|
||||
rd.epoch_cyc = cyc;
|
||||
|
||||
update_clock_read_data(&rd);
|
||||
}
|
||||
|
||||
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
|
||||
|
@ -145,7 +170,7 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
u32 new_mult, new_shift;
|
||||
unsigned long r;
|
||||
char r_unit;
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
struct clock_read_data rd;
|
||||
|
||||
if (cd.rate > rate)
|
||||
return;
|
||||
|
@ -162,22 +187,23 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
|
||||
cd.wrap_kt = ns_to_ktime(wrap);
|
||||
|
||||
rd = cd.read_data[0];
|
||||
|
||||
/* update epoch for new counter and update epoch_ns from old counter*/
|
||||
new_epoch = read();
|
||||
cyc = cd.actual_read_sched_clock();
|
||||
ns = rd->epoch_ns +
|
||||
cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask,
|
||||
rd->mult, rd->shift);
|
||||
ns = rd.epoch_ns +
|
||||
cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
|
||||
rd.mult, rd.shift);
|
||||
cd.actual_read_sched_clock = read;
|
||||
|
||||
raw_write_seqcount_begin(&cd.seq);
|
||||
rd->read_sched_clock = read;
|
||||
rd->sched_clock_mask = new_mask;
|
||||
rd->mult = new_mult;
|
||||
rd->shift = new_shift;
|
||||
rd->epoch_cyc = new_epoch;
|
||||
rd->epoch_ns = ns;
|
||||
raw_write_seqcount_end(&cd.seq);
|
||||
rd.read_sched_clock = read;
|
||||
rd.sched_clock_mask = new_mask;
|
||||
rd.mult = new_mult;
|
||||
rd.shift = new_shift;
|
||||
rd.epoch_cyc = new_epoch;
|
||||
rd.epoch_ns = ns;
|
||||
update_clock_read_data(&rd);
|
||||
|
||||
r = rate;
|
||||
if (r >= 4000000) {
|
||||
|
@ -227,15 +253,22 @@ void __init sched_clock_postinit(void)
|
|||
*
|
||||
* This function makes it appear to sched_clock() as if the clock
|
||||
* stopped counting at its last update.
|
||||
*
|
||||
* This function must only be called from the critical
|
||||
* section in sched_clock(). It relies on the read_seqcount_retry()
|
||||
* at the end of the critical section to be sure we observe the
|
||||
* correct copy of epoch_cyc.
|
||||
*/
|
||||
static u64 notrace suspended_sched_clock_read(void)
|
||||
{
|
||||
return cd.read_data.epoch_cyc;
|
||||
unsigned long seq = raw_read_seqcount(&cd.seq);
|
||||
|
||||
return cd.read_data[seq & 1].epoch_cyc;
|
||||
}
|
||||
|
||||
static int sched_clock_suspend(void)
|
||||
{
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
struct clock_read_data *rd = &cd.read_data[0];
|
||||
|
||||
update_sched_clock();
|
||||
hrtimer_cancel(&sched_clock_timer);
|
||||
|
@ -245,7 +278,7 @@ static int sched_clock_suspend(void)
|
|||
|
||||
static void sched_clock_resume(void)
|
||||
{
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
struct clock_read_data *rd = &cd.read_data[0];
|
||||
|
||||
rd->epoch_cyc = cd.actual_read_sched_clock();
|
||||
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|
||||
|
|
Loading…
Reference in New Issue