scsi: lpfc: Add rx monitoring statistics

The driver provides overwatch of the cm behavior by maintaining a set of rx
I/O statistics. This information is also used in later updating of the cm
statistics buffer.

Link: https://lore.kernel.org/r/20210816162901.121235-11-jsmart2021@gmail.com
Co-developed-by: Justin Tee <justin.tee@broadcom.com>
Signed-off-by: Justin Tee <justin.tee@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This commit is contained in:
James Smart 2021-08-16 09:28:55 -07:00 committed by Martin K. Petersen
parent 02243836ad
commit 17b27ac592
5 changed files with 92 additions and 0 deletions

View File

@ -1546,6 +1546,12 @@ struct lpfc_hba {
u32 cgn_sig_freq; u32 cgn_sig_freq;
u32 cgn_acqe_cnt; u32 cgn_acqe_cnt;
/* RX monitor handling for CMF */
struct rxtable_entry *rxtable; /* RX_monitor information */
atomic_t rxtable_idx_head;
#define LPFC_RXMONITOR_TABLE_IN_USE (LPFC_MAX_RXMONITOR_ENTRY + 73)
atomic_t rxtable_idx_tail;
atomic_t rx_max_read_cnt; /* Maximum read bytes */
uint64_t rx_block_cnt; uint64_t rx_block_cnt;
/* Congestion parameters from flash */ /* Congestion parameters from flash */
@ -1591,6 +1597,21 @@ struct lpfc_hba {
struct dbg_log_ent dbg_log[DBG_LOG_SZ]; struct dbg_log_ent dbg_log[DBG_LOG_SZ];
}; };
#define LPFC_MAX_RXMONITOR_ENTRY 800
struct rxtable_entry {
uint64_t total_bytes; /* Total no of read bytes requested */
uint64_t rcv_bytes; /* Total no of read bytes completed */
uint64_t avg_io_size;
uint64_t avg_io_latency;/* Average io latency in microseconds */
uint64_t max_read_cnt; /* Maximum read bytes */
uint64_t max_bytes_per_interval;
uint32_t cmf_busy;
uint32_t cmf_info; /* CMF_SYNC_WQE info */
uint32_t io_cnt;
uint32_t timer_utilization;
uint32_t timer_interval;
};
static inline struct Scsi_Host * static inline struct Scsi_Host *
lpfc_shost_from_vport(struct lpfc_vport *vport) lpfc_shost_from_vport(struct lpfc_vport *vport)
{ {

View File

@ -5452,9 +5452,13 @@ lpfc_cmf_timer(struct hrtimer *timer)
{ {
struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
cmf_timer); cmf_timer);
struct rxtable_entry *entry;
uint32_t io_cnt; uint32_t io_cnt;
uint32_t head, tail;
uint32_t busy, max_read;
uint64_t total, rcv, lat, mbpi; uint64_t total, rcv, lat, mbpi;
int timer_interval = LPFC_CMF_INTERVAL; int timer_interval = LPFC_CMF_INTERVAL;
uint32_t ms;
struct lpfc_cgn_stat *cgs; struct lpfc_cgn_stat *cgs;
int cpu; int cpu;
@ -5479,6 +5483,14 @@ lpfc_cmf_timer(struct hrtimer *timer)
*/ */
atomic_set(&phba->cmf_stop_io, 1); atomic_set(&phba->cmf_stop_io, 1);
/* First we need to calculate the actual ms between
* the last timer interrupt and this one. We ask for
* LPFC_CMF_INTERVAL, however the actual time may
* vary depending on system overhead.
*/
ms = lpfc_calc_cmf_latency(phba);
/* Immediately after we calculate the time since the last /* Immediately after we calculate the time since the last
* timer interrupt, set the start time for the next * timer interrupt, set the start time for the next
* interrupt * interrupt
@ -5525,6 +5537,8 @@ lpfc_cmf_timer(struct hrtimer *timer)
atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
atomic64_add(lat, &phba->cgn_latency_evt); atomic64_add(lat, &phba->cgn_latency_evt);
} }
busy = atomic_xchg(&phba->cmf_busy, 0);
max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
/* Calculate MBPI for the next timer interval */ /* Calculate MBPI for the next timer interval */
if (mbpi) { if (mbpi) {
@ -5539,6 +5553,42 @@ lpfc_cmf_timer(struct hrtimer *timer)
phba->cmf_max_bytes_per_interval = mbpi; phba->cmf_max_bytes_per_interval = mbpi;
} }
/* Save rxmonitor information for debug */
if (phba->rxtable) {
head = atomic_xchg(&phba->rxtable_idx_head,
LPFC_RXMONITOR_TABLE_IN_USE);
entry = &phba->rxtable[head];
entry->total_bytes = total;
entry->rcv_bytes = rcv;
entry->cmf_busy = busy;
entry->cmf_info = phba->cmf_active_info;
if (io_cnt) {
entry->avg_io_latency = div_u64(lat, io_cnt);
entry->avg_io_size = div_u64(rcv, io_cnt);
} else {
entry->avg_io_latency = 0;
entry->avg_io_size = 0;
}
entry->max_read_cnt = max_read;
entry->io_cnt = io_cnt;
entry->max_bytes_per_interval = mbpi;
if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
entry->timer_utilization = phba->cmf_last_ts;
else
entry->timer_utilization = ms;
entry->timer_interval = ms;
phba->cmf_last_ts = 0;
/* Increment rxtable index */
head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY;
tail = atomic_read(&phba->rxtable_idx_tail);
if (head == tail) {
tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY;
atomic_set(&phba->rxtable_idx_tail, tail);
}
atomic_set(&phba->rxtable_idx_head, head);
}
if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
/* If Monitor mode, check if we are oversubscribed /* If Monitor mode, check if we are oversubscribed
* against the full line rate. * against the full line rate.

View File

@ -344,6 +344,10 @@ lpfc_mem_free_all(struct lpfc_hba *phba)
phba->cgn_i = NULL; phba->cgn_i = NULL;
} }
/* Free RX table */
kfree(phba->rxtable);
phba->rxtable = NULL;
/* Free the iocb lookup array */ /* Free the iocb lookup array */
kfree(psli->iocbq_lookup); kfree(psli->iocbq_lookup);
psli->iocbq_lookup = NULL; psli->iocbq_lookup = NULL;

View File

@ -3981,6 +3981,8 @@ lpfc_update_cmf_cmd(struct lpfc_hba *phba, uint32_t size)
atomic_inc(&phba->cmf_busy); atomic_inc(&phba->cmf_busy);
return -EBUSY; return -EBUSY;
} }
if (size > atomic_read(&phba->rx_max_read_cnt))
atomic_set(&phba->rx_max_read_cnt, size);
} }
cgs = this_cpu_ptr(phba->cmf_stat); cgs = this_cpu_ptr(phba->cmf_stat);

View File

@ -8068,6 +8068,21 @@ no_cmf:
atomic64_set(&phba->cgn_latency_evt, 0); atomic64_set(&phba->cgn_latency_evt, 0);
phba->cmf_interval_rate = LPFC_CMF_INTERVAL; phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
/* Allocate RX Monitor Buffer */
if (!phba->rxtable) {
phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY,
sizeof(struct rxtable_entry),
GFP_KERNEL);
if (!phba->rxtable) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"2644 Failed to alloc memory "
"for RX Monitor Buffer\n");
return -ENOMEM;
}
}
atomic_set(&phba->rxtable_idx_head, 0);
atomic_set(&phba->rxtable_idx_tail, 0);
return 0; return 0;
} }